ON A THEOREM OF LELONG

_{вү} THU PHAM-GIA

Let $\Gamma_n = \{z = (z_1, z_2, ..., z_n) : z_i \in \mathcal{C} \text{ and } \operatorname{Re}(z_i) > 0, \forall i\}$. For a multisequence M_j , $j = (j_1, j_2, ..., j_n)$ and $0 < M_{(j)} \le \infty$, let $z^j = z_1^{j_1}, z_2^{j_2}, ..., z_n^{j_n}, |j| = \sum_{k=1}^n j_k$, $q(r) = \sup_{|j|} \{r^{|j|}/M_j\}$ and $\mathcal{T} = \int_0^\infty (\log q(r)/1 + r^2) dr$.

In [1], Lelong proved the following theorem.

THEOREM. There exists a function $f \neq 0$, holomorphic in Γ_n s.t. $|f(z)| \leq M_j / |z^j|$, \forall_j if and only if \mathcal{T} converges.

For f defined in \mathscr{C}^n and $||j|| = \sum_{k=1}^n j_k^2$ we define $\lambda_f = \sup_j \{\sup_z (|z^j f(z)|^{1/|j|})\}$ and prove the following theorem.

THEOREM. For any $\beta > 1$, there exists $f \neq 0$, holomorphic in Γ_n s.t. $1 < \lambda_f \leq \beta$.

Let $C\{M_j\}$ denote the class of infinitely differentiable functions f on \mathbb{R}^n , $n \ge 1$, s.t.

$$\left|\frac{\partial^{|j|}f}{\partial_{x_1}^{j_1}\partial_{x_2}^{j_2}\cdots\partial_{x_n}^{j_n}}\right| \leq \alpha_f B_f^{|j|} M_j$$

where α_f and B_f are positive constants depending only on f.

It is further proved in [1] that the convergence of \mathcal{T} is equivalent to the existence in $C\{M_j\}$ of a function with compact support (in which case $C\{M_j\}$ is called non quasi-analytic). For n = 1, the later condition is equivalent to the existence of a function g vanishing with all its derivatives at a point x_0 (condition which is itself equivalent to the convergence of $\sum_{j=1}^{\infty} M_{j-1}/M_j$ by the Denjoy-Carleman Theorem [3]).

For n > 1, Lelong [1] has shown that the same is not true and Ronkin [2] showed that the necessary and sufficient condition for the existence of such a function g is that each of the classes $C\{M_{j,0,0,\ldots,0}\}$, $C\{M_{0,j,0,\ldots,0}\}$ · · · and $C\{M_{0,0,\ldots,0,j}\}$ is non quasi-analytic (in one variable).

Proof of the Theorem. We consider a class $C\{N_k\}$ of functions in one variable and prove first that there exists $f \in Hol(\Gamma_n)$, $f \neq 0$, s.t.

 $|f(z)| \le N_{j_1}N_{j_2}\cdots N_{j_n}/|z^j| \qquad \forall_j = (j_1, j_2, \dots, j_n)$

if and only if the class $C\{N_k\}$ is non quasi-analytic.

Received by the editors February 9, 1976.

We set $M_{j} = N_{j_1}, N_{j_2}, \ldots, N_{j_n}$.

Since the class $C\{N_k\}$ is non quasi-analytic, there exists $h \in C\{N_k\}$ with compact support. $\psi(x_1, x_2, \ldots, x_n) = h(x_1) h(x_2) \cdots h(x_n)$ is hence a function with compact support in $C\{M_j\}$ and implies that \mathcal{T} converges. The existence of the above function f follows from Lelong's Theorem. Conversely if T converges, the class $C\{M_j\}$ is non quasi-analytic and implies that $C\{N_k\}$ is so too, by Ronkin's results.

Let $\beta \ge 1$. We set $N_k = \beta^{k^2}$ k = 0, 1, 2, ...

By the Denjoy-Carleman Theorem, $C\{N_k\}$ is then non quasi-analytic for $\beta > 1$ and quasi-analytic for $\beta = 1$. Hence for $\beta > 1$, $\exists f \in Hol(\Gamma_n), f \neq 0$

s.t.
$$\forall_{i_1} |z^i f(z)| \leq N_{i_1} \cdots N_{i_n} = \beta^{||j||}$$
.

So, $\lambda_f \leq \beta$.

For $\beta = 1$, the quasi-analyticity of $C\{N_k\}$ implies that for $f \in \operatorname{Hol}(\Gamma_n)$, $f \neq 0$, there exist j_0 and z_0 s.t. $|z_0^{i_0}f(z_0)| > \beta^{||i_0||}$ and so $\lambda_f > 1$. This completes the proof of the Theorem.

REFERENCES

1. P. Lelong, Extension d'un théorème de Carleman, Ann. Inst. Fourier, Grenoble, **12** (1962), pp. 627-641.

2. L. I. Ronkin, Quasi-analytic classes of functions of several variables, Soviet Math. Dokl., 3, 146 (1962), pp. 1360–1363.

3. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966.

Département de Mathématiques Université de Moncton Moncton, New Brunswick, Canada E1A 3E9

506