Corrigendum to "On Z-modules of Algebraic Integers"

Jason P. Bell and Kevin G. Hare

Abstract. We fix a mistake in the proof of Theorem 1.6 in the paper $O n \mathbb{Z}$-modules of algebraic integers. Canad. J. Math. 61(2009), no. 2, 264-281.

1 Introduction

An algebraic integer q is called a Pisot number if it is a real number greater than one with the property that all of its conjugates (other than itself) lie inside the unit circle. In 【1], we began a study of the rings that arise from adjoining a Pisot number q to \mathbb{Z}. In particular, we claimed to show that if q is a Pisot number, then under general conditions (see [1, Theorems 1.3, 1.5, 1.6]) there are only finitely many Pisot numbers r with the property that $\mathbb{Z}[q]=\mathbb{Z}[r]$. Yann Bugeaud ${ }^{\mathbb{1}}$ has pointed out that our proof of Theorem 1.6 relied on a misstatement of the Schmidt Subspace Theorem in [1]. We restate our Theorem 1.6 here.
Theorem 1.6 Let r be a Pisot number with the property that all of its conjugates lie in the extension $\mathbb{O}(r)$ of $(\mathbb{O}$. Then there are only finitely many Pisot numbers q with the property that $\mathbb{Z}[q]=\mathbb{Z}[r]$.

The purpose of this note is to give a correct proof of Theorem 1.6

2 Correction

We begin with a simple lemma that will allow us to eventually apply the Schmidt Subspace Theorem.
Lemma 2.1 Let K be a number field with $[K: \mathbb{O}]=n$ and $\operatorname{let} c_{1}, \ldots, c_{n} \in K$, not all zero. Then there are only finitely many Pisot numbers $q \in K$ with $(\mathbb{Q}(q)=K$ and with conjugates $q=q_{1}, q_{2}, \ldots, q_{n} \in K$ and such that $\sum_{i=1}^{n} c_{i} q_{i}=0$.
Proof Suppose that c_{i} is nonzero. Then since the Galois group of the splitting field of q acts transitively on the conjugates of q, there is some σ such that $\sigma\left(q_{i}\right)=q$. It follows that

$$
q=-\sigma\left(c_{i}\right)^{-1} \sum_{j \neq i} \sigma\left(c_{j}\right) \sigma\left(q_{j}\right),
$$

[^0]and so
$$
|q|<\sum_{j \neq i}\left|\sigma\left(c_{j} c_{i}^{-1}\right)\right|,
$$
as all conjugates of q other than q are less than one in modulus. Since the Pisot numbers in a number field are discrete, we see that there are only finitely many solutions.

We state the Schmidt Subspace Theorem.
Theorem 2.2 (Schmidt Subspace Theorem [2], Chapter VI]) Let $C, \varepsilon>0$. If L_{1}, \ldots, L_{n} are n linearly independent linear homogeneous functions of $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ with algebraic integer coefficients, then the set of points $\mathbf{x} \in \mathbb{Z}^{n}$ such that

$$
\left|L_{1}(\mathbf{x}) \cdots L_{n}(\mathbf{x})\right|<C\|x\|^{-\varepsilon}
$$

lies on a finite union of proper subspaces of $\left(\mathbb{Q}^{n}\right.$.
We note that in the original proof of Theorem [1.6(see [1]), the flaw in our argument comes from the incorrect assertion that Schmidt's subspace theorem gives that the set of points $\mathbf{x} \in \mathbb{Z}^{n}$ such that $\left|L_{1}(\mathbf{x}) \cdots L_{n}(\mathbf{x})\right|<C\|x\|^{-\varepsilon}$ is finite.

As it turns out, Lemma 2.1 is all we need to deduce finiteness in the statement of Theorem 1.6 once we invoke the Schmidt Subspace Theorem properly.
Proof of Theorem 1.6 Let $d=[\mathbb{Q}(r): \mathbb{O}]$. We let $r=r_{1}, \ldots, r_{d}$ denote the conjugates of r. For each Pisot number q with the property that $\mathbb{Z}[q]=\mathbb{Z}[r]$, we can write $q=c_{0}+c_{1} r+\cdots+c_{d-1} r^{d-1}$ for some unique vector $\left(c_{0}, \ldots, c_{d-1}\right) \in \mathbb{Z}^{d}$.

We note that the original argument in the proof of Theorem 1.6 (see [1, pp. 279280]), combined with the correct statement of the Subspace Theorem, shows that, assuming there are infinitely many Pisot numbers q for which $\mathbb{Z}[q]=\mathbb{Z}[r]$, then there is an infinite set of such q lying in some proper \mathbb{O}-vector subspace W of $\mathbb{O}(r)$. Thus there exists some $m<d$ and linearly independent elements $t^{(1)}, \ldots, t^{(m)} \in \mathbb{O}(r)$ such that $\left\{t^{(1)}, \ldots, t^{(m)}\right\}$ forms a basis for W as a $(\mathbb{O}$-vector space. By assumption, there are infinitely many Pisot numbers q of the form $q=b_{1} t^{(1)}+\cdots+b_{m} t^{(m)}$ with $b_{1}, \ldots, b_{m} \in \mathbb{O}$. For each $i \in\{1, \ldots, m\}$, we let $t^{(i)}=t_{1}^{(i)}, \ldots, t_{d}^{(i)}$ denote the conjugates of $t^{(i)}$.

Observe that if $q=b_{1} t^{(1)}+\cdots+b_{m} t^{(m)}$ is a Pisot number, then the d conjugates $q=q_{1}, \ldots, q_{d}$ of q have a representation

$$
q_{j}=\sum_{i=1}^{m} b_{i} t_{j}^{(i)} .
$$

Consider the $m \times d$ matrix A whose (i, j) entry is $t_{j}^{(i)}$. As $m<d$, the columns of A are linearly dependent. Hence there is a nonzero complex $d \times 1$ vector \mathbf{v} such that $A \mathbf{v}=\mathbf{0}$. By assumption there are infinitely many rational row vectors $\mathbf{b}=\left[b_{1}, \ldots, b_{m}\right]$ for which $\mathbf{b} A=\left[q_{1}, \ldots, q_{d}\right]$, where q_{1} is Pisot and q_{1}, \ldots, q_{d} are the conjugates of q_{1}. Thus $\left[q_{1}, \ldots, q_{d}\right] \mathbf{v}=0$ for infinitely many Pisot numbers $q=q_{1} \in \mathbb{O}(r)$ with conjugates $q=q_{1}, \ldots, q_{d}$. This contradicts Lemma 2.1] The result follows.

3 Additional Corrections

The following typos occur in [1]:
(1) on line 6 of page $279,1 \leq i, j \leq d$ should be $0 \leq i, j \leq d-1$;
(2) on line 12 of page $279, q_{2}$ and q_{d} should be q_{1} and q_{d-1} respectively;
(3) on line 14 of page $279, q_{2}$ should be q_{1}.

Acknowledgments We thank Yann Bugeaud for pointing out the mistake in our original proof of Theorem 1.6 in [1]. We also thank the referee for many helpful comments and for greatly improving the presentation of this note.

References

[1] J. P. Bell and K. G. Hare, On Z-modules of algebraic integers. Canad. J. Math. 61(2009), no. 2, 264-281. http://dx.doi.org/10.4153/CJM-2009-013-9
[2] W. M. Schmidt, Diophantine approximation. Lecture Notes in Mathematics, 785, Springer, Berlin, 1980.

Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6
e-mail: jpb@math.sfu.ca
Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1
e-mail: kghare@math.uwaterloo.ca

[^0]: Received by the editors May 31, 2011.
 Published electronically March 5, 2012.
 The authors thank NSERC for its generous support.
 AMS subject classification: 11R04, 11R06.
 Keywords: Pisot numbers, algebraic integers, number rings, Schmidt Subspace Theorem.
 ${ }^{1}$ Private correspondence.

