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AN INCULSION THEOREM FOR DIRICHLET SERIES 

BY 

DAVID BORWEIN 

ABSTRACT. It is shown that under certain conditions the asymptotic 
relationship 

oo oo 

]T] ansne~XnX ~ / J2 ane~XnX as x -> 0+ 

between two Dirichlet series implies the same relationship with \n re­
placed by log Xn. 

1. Introduction. Suppose throughout that À := {A„} is a strictly increasing un­
bounded sequence of real numbers with Ai ^ 0, and that a := {an} is a sequence of 
non-negative numbers such that 

CO OO 

y_]an = oo, and <j>{x) := y^]ane~x"x < oo for all x > 0. 
n=\ n=\ 

Let {sn} be a sequence of complex numbers with so = 0. The Abelian summability 
method A\ (see [3, p. 71]) and the Dirichlet series method D\a (see [12]) are defined 
as follows: 

oo 

Sn-^l(AX) if J2(Sn-Sn-l)e~X"X 

7 1 = 1 

is convergent for all x > 0 and tends to / as x —> 0+; 

sn-+l(Dx,a)iï^2anSne
 X"x 

1 oo 

is convergent for all x > 0 and - — > ansne"XnX —> / as x —> 0+. 
</>(*) ^ 

When A„ := n, the method A A reduces to the Abel method A, and the method D\a 

reduces to the power series method Ja (as defined in [1], for example). Denote by 
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A*x the method DA,a with a\ := \\,an := A„ — \n-\ for n ^ 2. The method A^ also 
reduces to A when A„ := n. Further, it is known (see [2, Lemma 2]) that, under the 
additional hypothesis A„+i ~ Xn, 

x X ^ A " ~ ^n-\)e~XnX —> 1 as x —> 0+. 

Thus, when An+i ^ A„, 

oo 

s„ —» l(A*x) if and only if x ^ ( A „ - Xn-\)sne~XnX 

is convergent for all x > 0 and tends to / as * —> 0+. 

The exact relationship between A A and A^ for general A remains to be investigated. 
From now on we assume that X\ ^ 1 and that \x \— {/i„} where \in :— logA„. The 

following inclusion theorem for Abelian methods is known [3, Theorem 28]: 

THEOREM A. If sn —> l(A\), and Y^\(sn — Sn-\)X~X is convergent for all x > 0, 
then sn —-• l(Ap). 

The purpose of this note is to prove the following analogous theorem for Dirichlet 
series methods: 

THEOREM D. Suppose that sn —> l{D\^a), and that Y1T=\ anKiX and Y^=\ anSnX~x 

are convergent for all x > 0. Then sn —• l(P^a). 

2. Proof of Theorem D. Suppose that x > 0, and let 

OO CO OO 

<M*) : = ^ansne~x"x^(x) := ^ ^ A " * , and i/)s(x) := ^ansnX~x. 
n=\ n—\ n=\ 

Then the hypotheses of Theorem D imply [3, Theorem 30] that 

*w< n 
— / f~x<j>{t)dt and $s{x) = - — / f-{<t>s(t)dt. 
(•*) Jo r(jc) Jo 

Hence 
/*oo 

/ f~x<l>(t)(j(t)dt, 
Jo 

where 

^ ( * ) 1 
- - I i q>yi)(jyi)a> 

) Jo 

(j)(t)dt and a(t) := - . 
o 0(0 

r°° 6 (t) 
F(x) := / f-x(j)(t)dt and a(t) : - ^ 

Suppose without loss of generality that / = 0, i.e., that a(t) —*• 0 as t —• 0+. Since 
Z ^ i a« = °°' w e n a v e m a t 0(0 —> oo as r —> 0+ and hence that F(x) —> oo as 
x —> 0+. Further, J2^L\ anSne~~(<Xn~Xx)t is uniformly convergent for t è 6 > 0 (see 
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[3, p. 76]); so that |<^(0| = Hse Xlt for t ^ 8 > 0, where Hs is a positive number 
independent of t. It follows that 

lim sup 
* - > 0 + 

^sit) 

1>(X) 
= lim s u p - — - / f 1<\>(f)o(t)dt + / f xès(t)dt 

*-+o+ F(x) yj0 Js j 

IT roo 

^ sup | a ( 0 | + l i m s u p - — — - / e'^dt 

= sup \cr(t)\ —> 0 as 6 —• 0+, 
0<t<6 

and hence that %IJS(X)/\IJ(X) —• 0 as x —> 0+. • 

EXAMPLE. With A„ := «,#„ := 1/AZ, Theorem D yields the following interesting 

result concerning the Riemann zeta function: 

1 oo 

if —r—^ - V V ^ / a s j - l -
- l o g ( l - j ) ^ ny 

OO . OO 

and > — is convergent for all w > 1, then > — —-» / as w —• 1+. 

The first of the above hypotheses can be stated as sn —• /(L), where L is the loga­

rithmic power series method of summability; and, because of the familiar result that 

(w — l)C(w) —> 1 as w —> 1+, the conclusion can be simplified to 

Sn 
as w 

nw 
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