AN INCULSION THEOREM FOR DIRICHLET SERIES

BY

DAVID BORWEIN

ABSTRACT. It is shown that under certain conditions the asymptotic relationship

$$\sum_{n=1}^{\infty} a_n s_n e^{-\lambda_n x} \sim l \sum_{n=1}^{\infty} a_n e^{-\lambda_n x} \text{ as } x \to 0+$$

between two Dirichlet series implies the same relationship with λ_n replaced by log λ_n .

1. Introduction. Suppose throughout that $\lambda := \{\lambda_n\}$ is a strictly increasing unbounded sequence of real numbers with $\lambda_1 \ge 0$, and that $a := \{a_n\}$ is a sequence of non-negative numbers such that

$$\sum_{n=1}^{\infty} a_n = \infty, \text{ and } \phi(x) := \sum_{n=1}^{\infty} a_n e^{-\lambda_n x} < \infty \text{ for all } x > 0.$$

Let $\{s_n\}$ be a sequence of complex numbers with $s_0 = 0$. The Abelian summability method A_{λ} (see [3, p. 71]) and the Dirichlet series method $D_{\lambda,a}$ (see [12]) are defined as follows:

$$s_n \rightarrow l(A_\lambda)$$
 if $\sum_{n=1}^{\infty} (s_n - s_{n-1})e^{-\lambda_n x}$

is convergent for all x > 0 and tends to l as $x \rightarrow 0+$;

$$s_n \to l(D_{\lambda,a})$$
 if $\sum_{n=1}^{\infty} a_n s_n e^{-\lambda_n x}$
is convergent for all $x > 0$ and $\frac{1}{\phi(x)} \sum_{n=1}^{\infty} a_n s_n e^{-\lambda_n x} \to l$ as $x \to 0+$.

When $\lambda_n := n$, the method A_{λ} reduces to the Abel method A, and the method $D_{\lambda,a}$ reduces to the power series method J_a (as defined in [1], for example). Denote by

Received by the editors March 15, 1988.

¹⁹⁸⁰ AMS Subject Classification 40D25, 40G10.

This research was supported in part by the natural Sciences and Engineering Research Council of Canada.

[©] Canadian Mathematical Society 1988.

DIRICHLET SERIES

 A_{λ}^* the method $D_{\lambda,a}$ with $a_1 := \lambda_1, a_n := \lambda_n - \lambda_{n-1}$ for $n \ge 2$. The method A_{λ}^* also reduces to A when $\lambda_n := n$. Further, it is known (see [2, Lemma 2]) that, under the additional hypothesis $\lambda_{n+1} \sim \lambda_n$,

$$x \sum_{n=2}^{\infty} (\lambda_n - \lambda_{n-1}) e^{-\lambda_n x} \to 1 \text{ as } x \to 0+.$$

Thus, when $\lambda_{n+1} \sim \lambda_n$,

$$s_n \to l(A^*_{\lambda})$$
 if and only if $x \sum_{n=2}^{\infty} (\lambda_n - \lambda_{n-1}) s_n e^{-\lambda_n x}$

is convergent for all x > 0 and tends to l as $x \rightarrow 0+$.

The exact relationship between A_{λ} and A_{λ}^* for general λ remains to be investigated.

From now on we assume that $\lambda_1 \ge 1$ and that $\mu := {\mu_n}$ where $\mu_n := \log \lambda_n$. The following inclusion theorem for Abelian methods is known [3, Theorem 28]:

THEOREM A. If $s_n \to l(A_{\lambda})$, and $\sum_{n=1}^{\infty} (s_n - s_{n-1})\lambda_n^{-x}$ is convergent for all x > 0, then $s_n \to l(A_{\mu})$.

The purpose of this note is to prove the following analogous theorem for Dirichlet series methods:

THEOREM D. Suppose that $s_n \to l(D_{\lambda,a})$, and that $\sum_{n=1}^{\infty} a_n \lambda_n^{-x}$ and $\sum_{n=1}^{\infty} a_n s_n \lambda_n^{-x}$ are convergent for all x > 0. Then $s_n \to l(D_{\mu,a})$.

2. **Proof of Theorem D.** Suppose that x > 0, and let

$$\phi_s(x) := \sum_{n=1}^{\infty} a_n s_n e^{-\lambda_n x}, \quad \psi(x) := \sum_{n=1}^{\infty} a_n \lambda_n^{-x}, \quad \text{and} \quad \psi_s(x) := \sum_{n=1}^{\infty} a_n s_n \lambda_n^{-x}.$$

Then the hypotheses of Theorem D imply [3, Theorem 30] that

$$\psi(x) = \frac{1}{\Gamma(x)} \int_0^\infty t^{x-1} \phi(t) dt \text{ and } \psi_s(x) = \frac{1}{\Gamma(x)} \int_0^\infty t^{x-1} \phi_s(t) dt.$$

Hence

$$\frac{\psi_s(x)}{\psi(x)} = \frac{1}{F(x)} \int_0^\infty t^{x-1} \phi(t) \sigma(t) dt,$$

where

$$F(x) := \int_0^\infty t^{x-1} \phi(t) dt \text{ and } \sigma(t) := \frac{\phi_s(t)}{\phi(t)}.$$

Suppose without loss of generality that l = 0, i.e., that $\sigma(t) \to 0$ as $t \to 0+$. Since $\sum_{n=1}^{\infty} a_n = \infty$, we have that $\phi(t) \to \infty$ as $t \to 0+$ and hence that $F(x) \to \infty$ as $x \to 0+$. Further, $\sum_{n=1}^{\infty} a_n s_n e^{-(\lambda_n - \lambda_1)t}$ is uniformly convergent for $t \ge \delta > 0$ (see

[December

[3, p. 76]); so that $|\phi_s(t)| \leq H_{\delta}e^{-\lambda_1 t}$ for $t \geq \delta > 0$, where H_{δ} is a positive number

.

$$\limsup_{x \to 0+} \left| \frac{\psi_s(x)}{\psi(x)} \right| = \limsup_{x \to 0+} \frac{1}{F(x)} \left(\int_0^\delta t^{x-1} \phi(t) \sigma(t) dt + \int_\delta^\infty t^{x-1} \phi_s(t) dt \right)$$
$$\leq \sup_{0 < t < \delta} |\sigma(t)| + \limsup_{x \to 0+} \frac{H_\delta}{\delta^{1-x} F(x)} \int_\delta^\infty e^{-\lambda_1 t} dt$$
$$= \sup_{0 < t < \delta} |\sigma(t)| \to 0 \text{ as } \delta \to 0+,$$

and hence that $\psi_s(x)/\psi(x) \rightarrow 0$ as $x \rightarrow 0+$.

independent of t. It follows that

EXAMPLE. With $\lambda_n := n, a_n := 1/n$, Theorem D yields the following interesting result concerning the Riemann zeta function:

if
$$\frac{1}{-\log(1-y)} \sum_{n=1}^{\infty} \frac{s_n}{n} y^n \to l \text{ as } y \to 1-$$

and $\sum_{n=1}^{\infty} \frac{s_n}{n^w}$ is convergent for all $w > 1$, then $\frac{1}{\zeta(w)} \sum_{n=1}^{\infty} \frac{s_n}{n^w} \to l \text{ as } w \to 1+.$

The first of the above hypotheses can be stated as $s_n \rightarrow l(L)$, where L is the logarithmic power series method of summability; and, because of the familiar result that $(w-1)\zeta(w) \rightarrow 1$ as $w \rightarrow 1+$, the conclusion can be simplified to

$$(w-1)\sum_{n=1}^{\infty}\frac{s_n}{n^w} \to l \text{ as } w \to 1+.$$

REFERENCES

1. D. Borwein, Tauberian conditions for the equivalence of weighted mean and power series methods of summability, Canad. Math. Bull., 24 (1981), 309–316.

2. —, Tauberian and other theorems concerning Dirichlet's series with non-negative coefficients, Math. Proc. Camb. Phil. Soc., **102** (1987), 517–532.

3. G. H. Hardy, Divergent Series (Oxford University Press, 1949).

Department of Mathematics The University of Western Ontario London, Ontario, Canada N6A 5B7

1989]