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FIXED-POINT-FREE AUTOMORPHISM 

F L E T C H E R GROSS 

1. Introduction. A finite group G is said to be a fixed-point-free-group 
(an FPF-group) if there exists an automorphism a which fixes only the identity 
element of G. The principal open question in connection with these groups is 
whether non-solvable FPF-groups exist. One of the results of the present 
paper is that if a Sylow/>-group of the FPF-group G is the direct product of 
any number of mutually non-isomorphic cyclic groups, then G has a normal 
^-complement. As a consequence of this, the conjecture that all FPF-groups 
are solvable would be true if it were true that every finite simple group has 
a non-trivial SylowT subgroup of the kind just described. Here it should be 
noted that all the known simple groups satisfy this property. 

In §§ 4 and 5, conditions for abelian groups and regular ^-groups to be 
FPF-groups are considered. Typical of the results obtained are the following. 
(1) A finite abelian group G is not an FPF-group if, and only if, there are 
fully invariant subgroups H and K in G such that H > K and \H/K\ = 2. 
(2) If P is a finite group of exponent p, where p is a prime > 3 , and of class 
2, then P is an FPF-group. 

If the order, N, of a is specified, various necessary conditions for G to be 
an FPF-group are known. A well-known result of Thompson (7) states that 
G must be nilpotent if N is prime. For more general N and under the added 
hypothesis that G is solvable, various conditions that must be satisfied by the 
nilpotent length and ^-length of G are derived in (5), (6), and (2). (The 
results in (6) hold for any N, while in the other two papers it is assumed 
that TV is a power of a prime.) 

2. Preliminaries. The notation is the same as in (1) with the addition 
that A(G) and 0(G) denote the automorphism group and outer automor
phism group, respectively, of the group G. All groups are assumed to be 
finite. The following propositions are all well known and will be assumed 
without proof. 

2.1. If G is abelian of odd order, then G is an FPF-group. 

2.2 If G is an elementary abelian 2-group, then G is an FPF-group if, and 
only if, \G\ ^ 4. 
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2.3 If a Ç A (G), N <d G, and iV admits a, then a is fixed-point-free on G if, 
and only if, the automorphisms of N and G/N induced by a are both fixed-point-
free. 

2.4. If H and K are both FPF-groups, then H X K is an FP F-group. Con
versely, if H X K is an FPF-group and either H or K is a characteristic sub
group of H X K, then H and K are both FPF-groups. 

2.5. If a is a fixed-point-free automorphism of G and p\ \G\, then there is a 
Sylow p-subgroup of G which admits a. 

2.6. If G is a p-group, \G\ > 1, and a is in a Sylow p-subgroup of A(G), 
then a is not fixed-point-free on G. 

An immediate consequence of 2.6 is the following. 

2.7. If G is an FPF p-group, then there exists a fixed-point-free automor
phism a of G such that p does not divide the order of a. 

3. Normal £-complements of FPF-groups. 

3.1. LEMMA. Let G be a nilpotent group, H a non-trivial subgroup of G, and 
g an element of G which normalizes H. Then the automorphism of H induced by 
conjugation by g is not fixed-point-free. 

Proof. G is the direct product of its Sylow subgroups, St, i = 1, 2, . . . , n. 
Let g = ITi^igi, where gt £ St and let Ht = St C\ H. For some i, i = 1 say, 
\Ht\ > 1. But [gj, Hi] = 1 if j 7^ 1 since G is nilpotent. Thus, the automor
phism of H\ induced by g is just conjugation by g\. Since g\ Ç Si, it follows 
from 2.6 that conjugation by gi is not fixed-point-free on Hi. 

3.2. LEMMA. Suppose that a is a fixed-point-free automorphism of G and that 
H is a normal subgroup of G which admits a. Assume further that 0(H) is nil-
potent. Then G = HCG(H). If, in addition, A(H) is nilpotent, then H S Z(G). 

Proof. Let G be the normal product of G by (a) and let C = CQ(H). Clearly, 
G/C is isomorphic to a subgroup of A(H). HC/C is a normal subgroup of 
G/C and G/HC is isomorphic to a subgroup of 0(H). Since GC/C is certainly 
normal in G/C, it follows from the lemma that the automorphism of G/CG(H)H 
induced by a cannot be fixed-point-free unless \G/CG(H)H\ = 1. This proves 
the first part of the theorem, and if A (H) is nilpotent, the same reasoning 
yields that the automorphism of G/CG(H) induced by a is not fixed-point-
free unless \G/CG(H)\ = 1. 

3.3. COROLLARY. Suppose that a is a fixed-point-free automorphism of G, and 
H is a normal cyclic subgroup of G which admits a. Then H ^ Z(G). 

Proof. If H is cyclic, then A(H) is abelian. 
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3.4. COROLLARY. Let G be an FPF-group and suppose that P, a Sylow p-
subgroup of G, has a chain 

l=H0<H1<H2<...<Hn = P 

such that Hi char P and HJHi-i is cyclic for i = 1, 2, . . . , m. Then 

NG{P) = PCG{P). 

Proof. Let a- be a fixed-point-free automorphism of G. Without loss of 
generality we may assume that P admits or. Then NG(P) certainly admits a. 
From 3.3, it follows that HJH^ ^ Z(NG(P)/Hi^1) for i = 1, . . . , m. Thus, 
if g is an element of NG{P) whose order is not divisible by p, then [g, H^^H^i 
foralH. Since gis a ^/-element, this implies that [g, P] = 1. Thus, NG(P)/CG(P) 
must be a p-group, which proves the corollary. 

3.5. THEOREM. Let G be an FPF-group and suppose that P , a Sylow p-sub-
group of G, is of the form 

P = Pi X P 2 X . . . X Pm, 

where Pi is cyclic of order pni, i = 1, 2, . . . , m, and n\ < n2 < . . . < nm. Then 
G has a normal p-complement. 

Proof. We shall show that the hypothesis of 3.4 is satisfied. Since P is 
abelian, this will imply that P rg Z(NG(P)). As is well known, this implies 
that G has a normal ^-complement. 

Now, P/12i(P) is isomorphic to 

Pi/tt^P) X P2/Qi(P2) X . . . X PJMPm) 

and Pi/Qi(P) is cyclic of order pni~l. Thus, using induction on \P\, we may 
assume that there is a series 

Qi(P) = Ho < Hx < . . . < Hr = P 

such that HjclmrP and Hj/H^i is cyclic for j = 1, 2, . . . , r. Now let 
Ki=V*i-1(P)niSl1(P) for i = l,2,...,m and let Km+1 = 1. Clearly, 
KiCharP, and it is easy to verify that 

1 = Km+1 < Km < Km_x < . . . < K, = Qx(P) 

and KJKi+\ is cyclic of order p for i = 1, 2, . . . , m. Thus, the hypothesis 
of 3.4 is satisfied and therefore the theorem is proved. 

3.6. Conjecture. If G is a simple group, then there is a prime p dividing \G\ 
such that a Sylow ^-subgroup of G has the structure described in the hypo
thesis of 3.5. 

All of the known simple groups satisfy this conjecture. For example, if 
G = An, n è 5, then let p be a prime such that n/2 < p ^ n. I t follows 
immediately that the SylowT ^-subgroups of An are of order p and thus cyclic. 

https://doi.org/10.4153/CJM-1968-128-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-128-5


FIXED-POINT-FREE AUTOMORPHISM 1303 

T h e verification of the conjecture for the other known simple groups is 
s traightforward b u t somewhat long, and therefore is omit ted. 

3.7. T H E O R E M . Let G be an FPF-group such that every factor in a composi
tion series of G satisfies 3.6. Then G is solvable. 

Proof. Le t G be a minimal counter-example and let a be a fixed-point-free 
au tomorphism of G. Suppose t h a t there is a non-trivial normal subgroup N 
in G which admi ts a. Then both N and G/N are FPF-groups . By induction on 
\G\, this implies t h a t N and G/N are solvable, and thus G is solvable. 

Now, suppose t h a t G and 1 are the only normal subgroups which admi t a. 
T h e n G mus t be the direct product 

G = Hx X H2 X . . . X Hn 

of isomorphic simple groups Hi, . . . , Hn. If the Ht are abelian, then the proof 
is complete. If the Hi are not abelian, then a must permute the Ht t ransit ively. 
I t follows from this t h a t H± admi ts an and an mus t be fixed-point-free on Hi. 
Since Hi o G, Hi satisfies 3.6. B u t then 3.5 would imply t h a t either Hi is 
a ^>-group or Hi is not simple. T h u s the theorem is proved. 

4. Abe l ian F P F - g r o u p s . Because of 2.4, a nilpotent group is an F P F -
group if, and only if, the Sylow subgroups are FPF-groups . Then , using 2.1, 
we see t h a t the problem of characterizing abelian FPF-groups is equivalent 
to characterizing abelian F P F 2-groups. 

4 .1 . L E M M A . Let P be an abelian p-group whose invariants are 

n 

(m, m, . . . , m). 

If T 6 A(P/D(P)), then there exists a £ A(P) such that the automorphism of 
P/D(P) induced by a is identical with r. Furthermore, a is fixed-point-free on 
P if, and only if, r is fixed-point-free on P/D(P). 

T h e proof of this is easy and is left to the reader. 

4.2. T H E O R E M . Let P be an abelian 2-group whose invariants are 

ni n2 nr 

{mi, . . . ,mi, mi, . . . ,~WH, . . . , mr, . . . , mr), 

where 0 < Wi < m2 < . . . > mr and nt > 0 for i = 1,2, . . . ,r. Then P is 
an FPF-group if, and only if, nt> 1 for all i. 

Proof. T h e "if" pa r t follows from 2.2, 2.4, and 4 .1 . Now let Hi = ^mi(P)D(P) 
for i = 1, 2, . . . , r, and let H0 = D(P). Now D(P) = ^(P). Thus , Ht is 
generated by D(P) together with those elements of a basis whose orders are 
a t most 2mi' (here m0 = 0) . I t follows from this t h a t Hi/H^i (obviously 
Hi ^ Ht_i) is elementary abelian of order 2ni for i = 1, 2, . . . , r. Since a 
group of order 2 cannot be an FPF-group , the "only if" pa r t is proved. 
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Since 13k(P) and ^ ( P ) are fully invariant subgroups of P for all k, we have 
also proved the following result. 

4.3. COROLLARY. Let G be an abelian group. Then G is not an FP F-group 
if, and only if, there exist fully invariant subgroups H and K in G such that 
H> K and \H/K\ = 2. 

5. Regular FPF ^-groups. We now wish to consider non-abelian p-
groups, but we shall restrict ourselves to regular ^-groups in the sense of (4). 
Since a regular 2-group must be abelian, we shall assume that p is odd. In 
particular, if p is odd, then any />~group of class 2 is regular. A simple result 
for such groups is the following theorem. 

5.1. THEOREM. Let G be a p-group of class 2 for p > 3. Let N be a subgroup 
of G and elements of G such that 
* (a) Z(G) ^ N^G', 

(b) {Nxi\ i = 1, 2, . . . , n\ is a basis for the abelian group G/N, 
(c) (xt) H N = 1 for i = 1, 2, . . . , n. 

Then G is an FPF-group. 

Proof. First we remark that without (c) this theorem would be false. As 
will be seen later, there are ^-groups of class 2 which are not FPF-groups. 

To prove the theorem, note that the hypothesis implies that any element 
y in G can be written uniquely in the form y = y±y2 . . . ynu, where yt 6 (xt) 
and it G N. Now let a be any integer such that 

0 fâ a ^ ± 1 (mod p) 

(for example, a = 2 will suffice). Then define a on G by 

<r a a a a2 

y = 3;i yi • • • y a u . 

To prove that this is a homomorphism, suppose that z = z±z2 . . . znv, where 
Zi G (x^ and v £ N. Now yizù = z^^y^Zj]. Thus, using the fact that 
Z(G) è N è G', we obtain 

n 

yz = yi . . . ynzi. . . znuv = (yiz1)y2 . . . ynz2 • . . znuv\\ [yh zi] = 

(yizi)(y&2) . . • (ynZn)[uv JJ [yJy z{] ) . 

Thus, 

(yz)' = (yiV)(y»V). . . (^V)(« aV2 I I b* z<f2 

Now y^z* = y\a . . . yn
a Z\ . . . s / wa V2 , and a similar calculation leads to 

yz = (y,V) • •. (ynXlUv* n b/>*<"]) • 

• 
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But since G is of class 2, it is easily proved that [3;/, zt
a] = [yjt zt]

a2. Thus 
y*zff = (yz)ff, and therefore a is at least an endomorphism of G. But from the 
conditions imposed on a, it is now easy to see that a is a fixed-point-free 
automorphism of G. 

5.2. COROLLARY. Let G be of class 2 and exponent p, where p > 3. Then G 
is an FF F-group. 

Proof. Simply let N = G'. 

It is not known whether 5.1 or 5.2 are true for p = 3. 
We now wish to prove a result that will provide some examples of regular 

^-groups which are not FPF-groups. First, however, we need a lemma. 

5.3. LEMMA. Let P be a regular p-group such that xp = 1 for all x in P but 
P does contain elements of order pn and n > 1. Assume that a is a p'-element 
of A(P) and that T is a normal cyclic subgroup of order pn~l in P such that 
T ^ D(P)- Then there is a cyclic subgroup of order pn in P which admits a. 

Proof. If g is of order pn in P, then (gp) = T since P/T is elementary abelian. 
But gv Ç D(P). Thus T = D(P), and therefore T certainly admits a. Now, if 
g and h are both of order pn in P , then we must have (gv) = (hv) = T. Thus, 
hv = gap for some a prime to p. I t follows from this that (gah~1)p = 1 since 
P is regular. Thus, P/fin_i(P) is cyclic of order p. Œn_i(P) certainly admits a-
and Qw_i(P)/P is of index p in P/T. Now, considering P/T as a vector space 
over GF(p) on which a operates, wre can use the theorem of complete reduci-
bility to conclude that there is a cr-admissible complement to S2w_i(P)/P in 
P / P . Thus, there is a subgroup 5 in Psuch that 5^_ i (P) = P , S n o f l _ i ( P ) = P, 
and S admits a. Since S^flw_i and \S/T\ =£ , then 5 must be cyclic of order pn. 

5.4. COROLLARY. Let P be an abelian p-group with invariants (mi, m2, . . . , mn) 
where m\ ^ m2 ^ . . . S mn-\ < mn, and let a be a p'-element of A (P). Then 
there is a cyclic subgroup of order pmn in P which admits a. 

Proof. If mn = 1, then there is nothing to prove. Thus, we assume that 
mn > 1 and use induction on mn. Now l$l(P) has invariants {mi — 1, m2 — 1, 
. . . , mn — 1} and 15l(P) certainly admits a. Thus, by induction, there is a 
cyclic subgroup T of order p™*-1 contained in 0X(P) such that T admits a. 
Now let S = Î2i (P mod P). 5 admits cr, 5 / P is elementary abelian, and, 
since T S U1(P)1 S contains elements of order pmn. Applying the lemma to 
5 completes the proof. 

5.5. THEOREM. Let P be a regular p-group, p > 2, such that 
(a) P = RS, R C\ S = 1, where R and S are subgroups; 
(b) S is cyclic of order pn, R is of exponent pm, and n > m; 
(c) S<^P. 

Then P is an FPF-group if, and only if, S ^ Z{P) and R is an FPF-group. 
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Proof. If 5 ^ Z(P), then P = P X 5 and the "if" pa r t of the theorem 
follows from 2.1 and 2.4. Now suppose t h a t a is a fixed-point-free au tomor
phism whose order is prime to p. 

Firs t suppose t h a t S ^ Z(P). Then P = R X 5 and Z(P) = Z{R) X S. 
From 5.4, there is a cyclic subgroup 5* of order pn in Z ( P ) such t h a t 5* 
admits <r. Now ^n~l{P) = c ^ P ) X G*" 1 ^) = G * - 1 ^ ) since m ^ w - 1. 
Since l$n-l(S*) ^ 1, this implies t h a t 

H»-i(S*) n Z ( P ) = ^ - ! ( 5 * ) H Z ( P ) = 1. 

T h u s P = S* X R, and therefore P/S* = R. Since 5* admi t s a, this implies 
t h a t R is an FPF-group . 

I t now remains to prove t h a t 5 ^ Z ( P ) . If 5 admi t t ed o-, this would follow 
from 3.3. Unfor tunate ly , 5 need not admi t a. W e shall prove t h a t 5 ^ Z(P) 
by induction on \P\. 

First , suppose t h a t {xy)p = 1 îor x £ R, y £ S. Since P is regular, we mus t 
have xp = y~p. Since R C\ S = 1, this implies t h a t xp = yp = 1. Thus , 
î2i(P) = Qi(P)f i i (5) . S2i(P) admi ts o- and therefore P/12i(P) is an FPF-g roup . 
Now, if P = 12i(P), then n = 1, m = 0, and the result is obvious. If P ^ ^ i ( P ) , 
then P / 0 i ( P ) , which equals ( 1 Î Î 2 I ( S ) / Î 2 I ( 1 Î ) Û I ( S ) ) (5S2x(ie)/Oi(i2)î2i(5)) f 

satisfies the hypothesis of the theorem. T h u s , by induction we obta in 
[P,S] ^ 12i(P)12i(5). B u t S<^P. Thus , [P,S] ^ Qi(5). Hence, if x Ç P , 
g 6 S, then 1 = [x, g]* = [x, gp]. Therefore U^S) ^ Z ( P ) . 

Now from 5 < a P we can easily prove t h a t ^ ( P ) = ^ ( P ) ^ 1 ^ ) . F rom this, 
it follows t h a t 

G»-i(P) = 0W-1(^)WW"1(5) = G*" 1 ^) = Ûi(S). 

Thus , 12i(5) is a characterist ic subgroup of P and therefore it certainly admi t s 
a. Now let M = Z ( P mod S2i (5) ). M admi t s <r and 5 ^ ikf since [P, S] ^ ûi (S). 
I t now follows t h a t M = Z(R)S. 

Suppose t h a t there is a cyclic subgroup 5* of order pn contained in ikf 
such t h a t 5* admi ts <r. U^iP) = MS) implies t h a t S* > fii(S*) = Gi(S). 
Thus , 5 * < P since [P, ikf] ^ S2i(S). 3.3 now implies t h a t 5* g Z ( P ) . B u t 
S * H Z ( P ) = 1 since Ûi(S*) H Z ( P ) = 0X(5) C\Z(R) = 1. Thus , M = S*Z(P) 
which implies t h a t [ikf, R] = 1. This certainly implies t h a t 5 ^ Z(P). 

We now complete the proof by showing the existence of such an S*. 
y*(ikf) = U^S^iZiR)) is an abelian group satisfying the hypothesis of 5.4. 
Thus , there is a cyclic subgroup T of order p71-1 in O^ikf) such t h a t T admi t s 
a. Bu t U»-i(P) = QtiS) and T ^ Vl(P). T h u s T ^ Bn-2(T) = Qx(5). Now 
let iV = 121 (ikf mod P ) . iV admi t s a and i V / P is e lementary abelian. N con
tains elements of order pn since T ^ ^ ( i k f ) . Thus , from 5.3, there is a cyclic 
subgroup S* of order £>w contained in N wrhich admi t s a. This completes the 
proof of the theorem. 

Example. Let p be an odd prime, n > 1, and let P be the group with 
generators x, y and relations 
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xy = 3; = l, 3/ X3; = x . 

Then P is a regular />-group since it is of class 2 but P is not an FPF-group 
since (x) ^ Z{P). 

It seems difficult to formulate conditions sufficient for non-abelian 2-groups 
to be FPF-groups. Since a simple non-abelian group must be of even order, 
theorems of this type would be of interest with respect to the conjecture that 
all FPF-groups are solvable. There is some evidence, however, to suggest that 
there are not too many non-abelian FPF 2-groups. For example, of the 311 
non-abelian 2-groups of order at most 64 listed in (3), there are only three 
which are FPF-groups. These three, in the notation of (3), are 64 T$e, 64ri3a1} 

and 64 ri3a5. 
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