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T H E purpose of the present work is to give, as a continuation of the writer's 
study of Galois theory for general rings ([8], [9], [10]), a kind of Galois theory 
for general, non-commutative and non-semisimple rings, which includes, at 
least in its main features, the Kaloujnine-Jacobson Galois theory of non-normal 
fields ([3]; cf. [4], [5]). To deal with the non-commutativity we bring to the 
fore certain double-moduli rather than self-composites, while the non-semi-
simplicity is manipulated by the method and idea used in the writer's above 
mentioned study on (normal) Galois theory and commuter systems of non-
semisimple rings. (For the normal Galois theory of rings cf. [1], [2], [6], [7], [11], 
besides the above.) Some of our arguments may even serve to make some 
simplification in Jacobson's treatment of ordinary fields. 

1. Galois ring and Galois system of module-endomorphisms of a ring. 
Throughout this paper a ring means a ring with unit element and its module, 
right or left, one for which the unit element is the identity operator. 

Let A be a semiprimary ring. An A -right-, say, module m is called regular 
when a direct sum of a certain (finite) number, say v, of its copies is {A-) 
isomorphic to the direct sum of a certain number, say w, of copies of the A-
right-module A. The A-endomorphism ring A* of m is nothing but the com­
muter ring of A in the absolute endomorphism ring of m. We have 

LEMMA. The number u/v, called the (A-) rank of the regular module m, is 
determined uniquely and characterizes the structure of m. A* is semiprimary and 
m is also regular with respect to A*. The A*-rank of m is inverse to the A-rank. 
The A*-endomorphism ring of m coincides with A. 

If m is also regular with respect to a (semiprimary) subring B, then any 
other regular A -right-module n is regular with respect to B too and the ratio of 
the A -ranks of m, n is equal to that of their 23-ranks. 

We note further that if A satisfies the minimum condition for right-ideals 
then ^4* satisfies the same for left-ideals. 

Throughout this paper, R will denote a ring satisfying the minimum con-
Received December 1, 1949, revised March 17, 1950. Addendum in revision. After the 

submission of the present paper to the Journal, the writer had access to a paper by G. Hochs-

child, entitled "Double vector spaces over division rings" (Amer. Jour. Math., vol.71 (1949)), 

closely related to the present one. The idea of considering in the non-commutative case certain 

double-moduli, rather than self-composites, has been exploited there already. However, in the 

present work we dealt with non-division rings, in fact with general non-semisimple rings. 
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dition for left-ideals.1 Let A be its absolute endomorphism ring, that is, the 
endomorphism ring of R as module without operator domain. Denote by 
Ri, Rr, or generally Xu Xr with a subset X of R, the set of left-, right-multipli­
cations of R, or X, upon R. Let B be a subring of A, i.e. a certain ring of 
(module-)endomorphisms of R, which contains Ri. When further the direct 
sum of a certain number, say s, of copies of R is (B-) isomorphic to the B-
right-module B itself, i.e., when R is B-regular with s - 1 as rank, we call B a 
Galois ring of module-endomorphisms of R. Here B satisfies the minimum 
condition for i^rright-submoduli, whence certainly that for its right-ideals. 
The commuter ring V(B) of B in A, i.e. the B-endomorphism ring of R, is 
contained in V(Ri) = Rr, and so has a form Sr with a subring S of R. R is 
Sr-regular with rank s, that is, R has an independent S-right-basis of s terms. 
Moreover, V(Sr) = B. 

If conversely 5 is a subring of R such that R possesses an independent 
(finite) ^-right-basis, of 5 terms, say, then 5 certainly satisfies, together with 
R, the minimum condition for left-ideals2 and V(Sr) — B is a Galois ring in 
the above sense. And Sr = V(B). Thus 

THEOREM 1. Galois rings B of module-endomorphisms and subrings S such 
that R has independent right-basis over S are in 1-1 dual correspondence, byV{B) 
= Sr, B = V(Sr). The B-rank of R is inverse to the Sr- (that is, S-right-) of 
R. 

Further, by the Lemma, applied to the B-, and i?rniodule B, instead of A-, 
and ^-module n, we see that B is Rt (right-) regular and the Ri-mnk of B is 
equal to the S-rank 5 of R. Hence 

THEOREM 2. The Galois ring B has an independent right-basis of s terms 
over its subring Ru where \/s is the B-rank of R (that is, s is the Sr-rank of R) : 

B = fcRi e fcRi e . . . e psRh 

We call such an independent right-basis of a Galois ring over R a Galois 
system of module-endomorphisms of R. Our next task will then be the con­
struction of such a Galois system. 

2. Construction of Galois system. Let m be a right-module of R and n be a 
left-module of R. By their direct product m X n = m XRU we mean, as 
usual, a module generated (freely) by symbols uv (u Ç m, v Ç n) with relations 

(U\ + U2)V = U\V + UtV, u(Vi + Vz) = UVi + UV2i 

(uz)v = u(zv) (z G R)-

W e can develop our whole theory also under the assumpton that R, B, S (see below) are 
semiprimary rings, or even under a much weaker assumption as G. Azumaya has kindly 
pointed out. However, the writer prefers to present the theory in the form below where R 
(and then S) satisfies the minimum condition, since the assumption does not spoil the essential 
feature of the theory. 

2Consider Ri with left-ideals I of 5 . 
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If n is an i?-double-module the product m X n is, in a natural manner, an 
.R-right-module, and if both m, n are jR-double-modules then m X n becomes 
an jR-double-module. In case m possesses an independent i?-right-basis 
(«i, u2i . . . , um) we have m X n = «in© u2n® . . . © umn. If also n 
possesses an independent jR-left-basis (vi, v2} . . . , vn), then m X n = 

Now, let 5 be a subring of R such that R has an independent S-right-basis 
of s, say, terms. We consider R as S-right-, and 5-left-module, and we want 
to construct the direct self-product R X R over S. However, to avoid am­
biguity in notation, we introduce two (ring-) isomorphisms <r, T of R. Putting 
zxa = (zx)ffy x°z = (xz)ff, xTz = (xz)T> zxT = (zx)T (x, z Ç R) we consider 1?*, JRT 

as 2?-double-moduli. We then construct 

(1) R* XRT = -R' XsRT = xiffRT® x2°Rr® . . . © x8'R
r, 

where (xi, x2, . . . , xs) is an independent S-right-basis of R. 
According to (1) we have, for each z £ R} 

(2) s ' l ' = *i*j8i(*)' + x2*fa(zY + . . . + */j8.(*) ' , /S*(s) € * . 

/3A(S) are determined uniquely by z, and /S^: z—>Ph(z) (h = 1, 2, . . . , 5) are 
module-endomorphisms of i?. Moreover, for a 6 5 we have (za)<rlT = 2ffaT = 
£*#A<r(0*(s)a)r. Thus &h(z)a = fa(za), or faar = ar0A, and so ph are 5 r -
endomorphisms of R, and /?& Ç VX^r) = B. We assert that they form a 
Galois system belonging to S. Observe first that 

Xi'V = xx'friixiY + x2*p2(xi) + . . . + x9*pt(xi) 

and so Ph(x%) = &hi (Kronecker 6). 

Therefore fihju with y 6 R, maps Xi upon y5A», and YLhPhJhi (jh £ -R) maps 
#» upon ;y». It follows that fa, fa, . . . , 0a are i?rright-independent. More­
over, since y h may be taken arbitrarily, the totality of ^h&hjhi coincides with 
the whole V(Sr) = B; 

(3) V(Sr) = B = /SiJRi © faRi © . . . © ptRlm 

If z = LAX/^A (a ̂  Ç 5) then /SAOS) = a A- Thus 

THEOREM 3. 77*e 5 (module-endomorphisms fih of R defined in (2) form a 
Galois system belonging to the subring S. Here fih(R) — S for each h. Moreover 
fa(z) = 0 (h = 1, 2, . . . , 5) ( / to is, z*lT = 0) impies 2 = 0. 

3. Double-moduli and their relation moduli. Although Theorems 1, 2, 3 
already give the main features of our Galois theory, it is useful as well as 
important to extend the above construction of a Galois system to the case of 
general double-moduli of a certain type and thus obtain a characterization of 
a Galois ring (Theorem 7). It is our purpose to generalize Jacobson's theory of 
self-composites of (commutative) fields, but we have to adopt a somewhat 
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different formulation and method, because of the non-commutativity and the 
non-semisimplicity of R. 

Let ffl be a double-module of R having an independent i?-right-basis, and 
let Wo be an element of 2)?. Let («i, w2, . . . , um) be an independent jR-right-
basis of 2W, and put 

( 4 ) ZU0 = Uim(z) + W2M2W + . . . . + UmUmiz) 

for 2 Ç R; JUI, /12, • . . » /im are module-endomorphisms of R. 
Consider further a second i?-double-module 9t with an independent i?-right-

basis (vi, V2, . . . , fln), and its element vo. Introduce module-endomorphisms 
vu V2, . . . , vn of R correspondingly by 

(5) zve = vivi(z) + v2v2{z) + . . . + vnvn(z). 

Suppose that there exists an (R-two-sided) homomorphic mapping tp of 2ft in 2Î 
which maps UQ on z;oî Wo* = VQ. Put 

(6) ***» = YtkVkXkh (xkh € # ) 

Then <p maps 2W0 = ]C UhHh(z) on £ vkXkhP>h(z), while (z^o)* = s^o* = £*>• 
= ]£ ^vjt(z) too. So v*(z) = X) Xkht*h(z), or 

(7) v* = iLUhXkhi-
h 

Thus 

(8) Viî i + *,£« + . . . + VnRl C /ufl, + / i ^ + . . . + Mm#,. 

If we consider, firstly, the case that SDÎ = 91 and v> is the identity mapping, 
our observation shows that the module 

(9) £ MA#* = VlRl + H2R1 + ...+ HmRl 
h 

does not depend on the special choice of the independent basis («1, u^ . . . , wm). 
We call the module (9) the relation module of u0 in SDÎ. 

If we consider secondly the case that 9K C 91 and <p is again the identity 
mapping, we find that the relation module of u0 in a module 91 containing 2)? 
(and having an independent i£-right-basis) is contained in that of u0 in 9W. If 
here 2)? is a direct summand in 91 as i£-right-module, then the relation moduli 
of Uo in 2)? and 9Ï coincide. This last remark, which is rather useful, we see 
readily by observing that 2t/2ft is regular with integral rank and so 21 has an 
independent jR-right-basis which contains a basis for 2)?; in fact, every inde­
pendent JR-right-basis of 2)? may be extended to one of 21. 

Now, if in particular Ru0 contains an independent i?-right-basis of 2)?, then 
the m module-endomorphisms m, /z2, . . . , Mm of R are i?z-nght-independent, 
and moreover any independent i^-right-basis of the relation module is obtained 
from suitable choice of independent .R-right-basis of 2W. Let namely 

(IS) U{ = t{U« (U € R). 
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Then 

(11) iih(ti) = 6hi 

and ti is mapped on y{ by YsVhJhu which implies the right-independence of 
Mi» M2, . . . , Mm over Ri. 

Further, under the same assumption also the converse of the above re­
lationship between the inclusion (8) and homomorphism is valid. Assuming 
(8), where M and v are given in (4), (5), and also (7), we define (p as i?-right-
homomorphic mapping of 93Î into 9Î by virtue of (6). Then 

uf = ( E uhiih{l)y = E vkxkhiih(l) = E vkvk(l) = v0. 

More generally 

(zuo)* = ( E UhUhiz))* = T,vkxkhV>h(z) = E 0*^(2) = s»0. 

Our purpose is to show that <p is also jR-left-homomorphic, and we may, 
for that purpose, assume uh u2f . . . , wm G l?tto. On putting w^ = thUo(th € 2?), 
as in (10), we have 

«A* = (**«<>) * = hvo = E »*?*(**)• 

Comparing this with (6) we obtain 

Xkh = Vk(th). 

Therefore 

(SM*)* = (zthUo)* = (YLuiixi{zth))« = Y,VkXkiin{zth) 
= E VkVk(zth) = Z**Vo = Z(E VkVk(th)) = Z(E »*#**) = 2«fĉ . 

This shows that the mapping is i£-left-homomorphic, as is desired. 
On returning to the case of general UQ which may not, necessarily, even 

generate 90?, we show further that its relation module E P-hRi in 2ft is Ri-leît-
allowable too. For, if we put 

(12) zuh = E Ujpjh(z) 

then E Ujpjizy) = z;ywo = 2 E uhnh(y) = E Ujpjh(z)nh(y) and 

(13) zzM; = Vh(pjh(z))i, 

which proves our assertion. 
Here 

(14) 2 - (pyA(s)) 

is a self-representation of R, i.e. a (matric) representation of R in i£. Consider 
the relation module of a basis element, say Uo = U{. Then JU& = Phi, and the 
relation module E Mfĉ J is nothing but the 7?/-right-module generated by 
Pit, pu, • • • , Pmi\ this module may thus be called the i-column module of the 
representation (14). 
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THEOREM 4. Let 9ft be an R-double-module possessing an independent 
R-right-basis. The relation module YlvhRi in (9) of an element u0 in 9ft, with 
m given as in (4), is independent of the special choice of the independent R-right-
basis (uh) of 9ft, and is a double-module of Rt. If in particular Ru0 contains 
an independent R-right-basis, then jui, /x2, • . . , Mm are Ri-right-independent. 
Let SSI be a second R-double-module with an independent R-right-basis. If ip is 
an R-two-sided homomorphic mapping of 9ft into 9Î, then the relation module 
Y^vkRi of VQ = u^ in 9i is contained in the relation module Y^VhRi of w0 in 9ft 
{see (8)). In particular, ifSSJlQSSl then the Yelation module of u0in 9Î is contained 
in that of u0 in 9ft. If 9ft is direct summand in SSI as R-right-module, then these 
relation moduli coincide. In case Ru0 contains an independent R-right-basis of 
9ft the inclusion YLvkRi Q Jl VhRi is also sufficient in order that there exist an 
R-two-sided homomorphic mapping of 9ft into 9Ï which maps u0 upon VQ. Thus 
the structure of an R-double-module which has an independent R-right-basis 
contained in Ru0, with an element u0 of the module, is uniquely determined by its 
relation module of the element u0. 

The last statement means that, if two self-representations of R are defined 
by J^-double-moduli possessing independent jR-right-bases contained in the 
i?-left-moduli generated, respectively, by their first, say, basis elements and 
if their 1-column moduli coincide, then the representations are equivalent 
(in the usual sense of equivalence of representations). 

Further we obtain readily 

THEOREM 5. Let 9ft, SSI be R-double-moduli, with independent R-right-bases, 
and let u0 £ 9ft, v0 € 91. Consider the direct sum 9ft © 9Î and its element w0 = 
«o + vo> Then the relation module of w0 in 9ft © 91 is the sum, not necessarily 
direct, ]£ VhRi + H^kRi of the relation moduli J^uhRi, ÏL^kRi of u0, v0in 9ft, 9?. 

We next consider the direct product 9ft X SSI = 2» X* 91 of 2», 91 and its 
element w0 = UQV0. We have 

THEOREM 6. The relation module of w0 — u0vo in 9 f tX9î = 9ftX/?9l 
coincides with the product module ÇEuhRi) Œ,vkRi) = S v-hvuRi of the relation 
moduli £ nhRh Z) nRi of u0, v0 in 9ft, SSI. 

For, 9ft X 91 = uxSSl © u2SSl © . . . © umSR = uxviR © uxv2R © . . . © umvnR, 
and UiVi, UiV2, . . . , umvn are i£-right-independent. And 

ZWQ = ZUQVQ = Z UhlJLk(z)Vo = T,UhVkVk(flh(z)). 

This showrs that the relation module of w0 in 9ft X 91 is really £ iinVkRi- But 
this is the product module ÇEphRi) (]C vkRi), since J2vkRi is Ri-left-allowable 
too. 

Now, let S be the totality of elements a in R such that au0 = uoa. S is a 
subring of R. If a 6 5 then 

zauo = ZUQQ, = uiin{z)a + ui\x2{z)a + . . . + umjjLm(z)a, 
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whence Hh(za) = Vh(z)a, or arHh = Mfc#r. Thus the relation module J^HhRi is 
contained in V(Sr). If conversely a is an element of R such that /u are ar-
endomorphisms, then 

zau0 = ]T uhfjik(za) = Z uhnh(z)a = zwoa (z Ç B), 

in particular aw0 = Uoa, and so a 6 5. Thus 

(15) S = {a G R; au0 = w0a} = {a G i?; fj,har = arnh(h = 1, 2, . . . , m)}. 

Suppose now that i£#o contains an independent i£-right-basis of S0Î and that 
our relation module J^nhRi forms a ring. If 9Ï = Rv0R is a second i£-double-
module which is isomorphic to 9JÎ by u0 <-» u0, then the ring assumption of 
YttPhRi means, by Theorems 4, 6, that w0 —> Wo gives an (J?-two-sided) 
homomorphic mapping of 2D? into the direct product SDÎ X*5ft. Let our basis 
(u-h) of SDÎ be taken from JR#0; put Uh = thU0 (th G R), as in (10). Let (t/A) be 
the corresponding basis of -ft. By our mapping of Wl into 3K X 51 zu0 should 
be mapped upon 

ZUQVO = Y,UhPh(z)Vo = Y<UhVk»k(v>h{z))y 

while zu9 = Y,UhVh(z) = ]£ffc«o/u(s) and this should be mapped on 

XthUoVoHhiz) = X>/H>OM*0&) = Huhvknk(l)nh(z). 

We have, since w f̂c are i£-right-independent, nkinhiz)) = ^(1)^(2;) . Then 

M*(«)«o = £tt*MJb(M*(*)) = 2>*/**(1)MA(«) = UoHh(z), 

hence /^(z) 6 5. Let (w\) be a second independent .R-right-basis of 3W and 
let /LI'̂  be the corresponding endomorphisms. Put Uh = Ylu'kXkh- Then 
M'A(Z) = £ XhMikiz) and in particular M'/*(*;) = E ***$*» = *hi. Thus 
n'h(R) Q*S (h = 1, 2, . . . , m) if and only if a; M G S. This last means that 
yhk 6 5 for the inverse matrix (y^) of (x/^). Thus the condition amounts to 

u'h G UiS® u2S® . . . 0 umS = RUQS. 

Here we have, as a matter of fact, y!h{R) = S, since the S-right-module 
generated by Xh% (i = 1, 2, . . . , m) eertainly exhausts S. 

Conversely, if every /u maps R in 5, then 

V>k(v>h(z)) = fJLk(lfJLh(z)) = /Xfc(l)MA(2), 

whence /z/tM* € Mfĉ z, and £ M * ^ Z forms a ring. 
Further, again under the assumption that £ / Z A ^ is a ring and u\ = £*#o 

G RUQ, we have 

HthHh(z)Uo = J^thUofihiz) = Y,UhHh(z) = Ztt0 

and z — Y,thHh(z) is, for every 2 G J?, in the left-ideal I = [z G R, zu0 = 0}. 
Here th(h = 1, 2, . . . , m) are S-right-independent mod I, as we see readily from 
ii^th) = &%h> Thus (th) forms an independent S-right-basis of R mod t. If 
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in particular I = 0, that is, if (the single element) UQ is i?-left-independent, 
then (th) forms an independent S-right-basis of R. Since the i?j-rank m is in 
that case equal to the Sr-rank of R, our relation module J^HhRi must then 
exhaust the whole Galois ringF(5 r), here we may also argue as in §2 without 
appealing to the rank relation. So we have 

THEOREM 7. Let 2)? = RuoR have an independent R-right-basis contained in 
Ru$. The relation module of u0 in 93Î forms a ring ifz and only if we may choose 
such a basis (un) so that iJLh(R) ^ S for every h, where S is the subring (15) of 
R] as matter of fact iin{R) = *5 then. This last is the case, under the ring assump­
tion of the relation module, if and only if {uh\ Q Ru0S. Provided that zu0 

(z Ç R) vanishes only when 2 = 0, our ring assumption implies also that R has 
an independent S-right-basis ; in fact (th) (h = 1, 2, . . . , m) forms such a basis 
when (thUo) forms an independent R-right-basis of 5DÎ, and moreover the homo-
morphic mapping 1*1r —> u0 of the self-product R Xs R = R* Xs RT of R over 
S (§2) upon 9JÎ becomes an isomorphism. In short, our relation module is a 
Galois ring if and only if it is a ring and zu0 = 0 implies z = 0. 

4. Relationship between relation moduli over R and its subring. Let S 
be a subring of R and let R possess an independent S-right-basis ; R = XiS® 
X2S® . . . © xsS. Then an jR-double-module 9W with an independent ^-right-
basis («i, u2, . . . , um) is certainly an S-double-module with independent 
S-right-basis (UhXi). Let u0 be an element of 9K and let its relation module in 
9K, as -R-module, be given by S M ^ Z - We now consider the relation module of 
UQ in 99? as S-module. On putting 

(16) z = XiTTiiz) + tf2ir2(s) + . . . +x8Ts(z) {*i{z) £ 5), 

we have zu0 = J^UhUhiz) = J^hUTi(nh(z)). Thus the relation module of u0 in 
the S-module 9W is given by 

(17) Hh,WhTTiSl 

(where HK are considered as homomorphisms of S into R). 
In case u0 is one of the basis elements, say u\, the situation may be described 

also in terms of representation. Namely, on assuming xi = 1, without loss 
of generality, we consider the regular representation (X»/(z)) of R in S, with 
respect to our basis (#»•): 

(18) zxj = Zxi\i3{z) (\<,iz) e S). 

Denote the self-representation of R defined by our basis (wi( = u0), u2, . . . , um) 
of SHI by (phk(z)), as in (12). The S-(right-)basis (uhXi) of SD? defines then the 
representation 

(19) (X«y(p»(s))) 
8 This "if" part is valid without our assumption of existence of an independent -R-right-basis 

of 99? in Ruo, or even without assuming 3)? = RUQR. 
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of degree ms in 5. Restricted to 5, this gives the self-representation of S 
defined by the basis (tihXi) of S-module 3)?. Since here U\X\ = UQ, our relation 
module of w0 in the 5-module S0Î is obtained as the first, i.e. (1, 1)-, column 
module of this representation. 

THEOREM 8. The relation module of u0 in 9)? as S-module is given by (17), 
restricted to S, with TT{ in (16). If in particular u0 = u\ and X\ = 1, it is also 
defined as the (1, 1)-column module of the self-representation (19), restricted to S, 
of S, where (phk) is the self-representation of R defined by the (R-right-)basis (uh) 
of ffl, and (\{j) is the regular representation of R in S defined by the {S-right-)basis 

We supplement the theorem with the following observation: Let m be an 
S-double-module with independent ^-right-basis. Then there always exists an 
2£-double-module Wt with independent j?-right-basis, which contains, as 
^-double-module, m, and which contains in as 5-right-module indeed as direct 
summand. (Then the relation module of UQ (£m) in m coincides with that in 
9K, as S-module. Therefore it is thus obtained from the relation module of #o 
in i^-module 9K by virtue of the above procedure of referring to S in terms of 
*f(in (16)). 

Let (vi, v2, . . . , vn) be an independent S-right-basis of m, 

m = fliS © v2S © . . . © vnS. 

m Xs R is an i?-right-module ViR © v2R © . . . © vnR with v\, v2, . . . , vn 

right-independent over R. Therefore 

R Xs m Xs R = xi(m Xs R) © x2(m XsR)® . . . © xs(m Xs R) 

is an -R-double-module with independent R-right-basis (x#)k)> On assuming 
X\ = 1, it follows that the 5-two-sided submodule xnn = m is its direct 
summand as 5-right-module. 

5. Supplementary remarks. If 2? is a primary-decomposable ring, then a 
regular i^-right-module is always a direct summand in a second regular 
i^-right-module which contains it. If R is a simple ring then a (finite) i?-right-
module is always regular. These remarks are significant in connection with 
the theorems in §3, in particular with Theorems 4, 6. If, moreover, R is a 
quasifield, then any i?-right-module certainly has an independent basis and 
any subring is of course also a quasifield. In dealing with relation moduli 
over a quasifield R we may thus always restrict ourselves to principal jR-double-
moduli which possess jR-right-bases contained in the i^-left-module generated 
by the element in question. Furthermore, the hypergroup formulation of 
our Galois theory can then be given under a certain assumption. 

On the other hand, it may be of some use, in view of the usual Galois theory, 
to observe the case in which each UhR, with a basis element Uh of 2ft, is jR-left-
allowable too. Let an jR-double-module 2)? possess such an independent 
J^-right-basis («i, u2, . . . , um) and let u0 be the sum u0 = U\ + u2 + . . . + um. 
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The relation module of u0 in SEX? is YLvhRi, where we put zuo = YLuhVh{z)-
Since Ru% £ UhR, we have 

ZUh = UhVh(z) 

and each jj,h is simply the self-representation of degree 1, i.e. (ring-) endomor-
phism, of R defined by the representation module UhR = RuhR (with respect 
to the basis element Uh). If 93? has an independent i?-right-basis contained in 
Ruo then these m endomorphisms y h of R are right-independent over Ri. 

In this context we note some sufficient conditions that certain given (ring-) 
endomorphisms, say vi, V<L, . . . , vn, of R be right-independent over Rt. Let 
(R, v)y with a (ring-)endomorphism *> of J?, denote an i?-double-module which 
coincides with R itself as i?-left-module and on which right-operation of 
z Ç R is defined by x ((zR) —> x.z = xv(z). Thus (R, v) may also be looked 
upon as a module Rw with .R-left-independent element w such as ws = v{z)w. 
Now we have, firstly: If each Vi{R) possesses no non-zero left-annihilator in R 
and if 

(*) the R-double-moduli (R, *>;), (R, VJ) with distinct i,j have non-zero (R-two-
sided)) isomorphic submoduli, then v\, v*, . . . , vn are R-right-independent. 

For, from our assumptions we deduce that viXi = 0 implies x — 0, for each 
i, and the i^-double-moduli V{Ri and VjRi with i ^ j have no (i^z-two-sided) 
isomorphic non-zero submoduli. The sum YlviRi is then necessarily direct 
[8, §3, Remark 6]. 

Secondly, if Vi are (ring-)automorphisms and { vi] forms a group which 
induces a Galois group of the residue-ring R/N of R modulo its radical N in 
the sense of [8] (that is, a similar assumption (**) obtained from (*) by re­
placing "submoduli" by "residue-submoduli" is satisfied), then again vi are 
jRz-right-independent [8, Lemma 4 and Remark 5 concerning it]. 

A similar construction can be used to show that a certain i?-double-module 
is principal. Interchanging "left" and "right", in order to be in accord with 
our situation, we consider n elements vi, V2, . . . , vn which are right-inde­
pendent over R and satisfy ZV{ = V{Vi(z), with (ring-)endomorphisms vi of 
R. Suppose that the (left-right-)symmetric counterpart of (**), mentioned 
above, is satisfied. Then if v0 is an element in the (direct) sum 9? = X ViR of a 
form v0 — v\Z\ + v&2 + . . . + vnzn with regular elements z-i of R, we have 

9? = RvoR. 

For, under our assumption, RvoR exhausts the whole 9Î mod Y,viN firstly, 
wher'è N denotes the radical of R, and then actually, since £i/»iV is (whence is 
contained in) the intersection of all maximal jR-right-submoduli of 9t. 

Of course all these assumptions are covered by the assumption that G = { v»} 
forms a Galois group of Ry under which in [8] the complete correspondence of 
between-rings, over which R has independent right-basis, with subgroups of G 
(not only with certain subrings of J2v*Ri) w a s established. 

Let S be a subring of R such that R has not only an independent 5-right-basis 
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of 5 terms but also an independent 5-left-basis of the same number 5 of terms. 
Suppose further that B = V(Sr) contains an independent i?/-right-basis 
(0i, 02, . . . , 0,s) (i.e. a Galois system belonging to 5) which forms also an 
independent ^/-left-basis of B, and that 0i5/ ® 025/ ® . . . © 0S5/ forms a ring 
O l ) and moreover it equals 5/01 © 5/02 © . . . © 5/0S. Then there exists an 
element x in R such that 0i(x), p2(x), . . . , 0«(#) form an independent 5-left-
basis of R. 

To show this, we observe that R is B-regular with rank 1/s, or, what is the 
same, the direct sum R8 ol s copies of R is B-isomorphic to the B-right-module 
B. Hence naturally R8 is (5/0i© 5/02© . . . © 5/0,)-isomorphic to B. On 
the other hand 

B = Rfa © 2?/02 © . . . © Rtf. = yutStfi © . . . © 5/0 8) © . . . 
®yai(Si0i® . . . © 5/0.), 

where (yi, 3/2, • • • , y«) is an independent 5-left-basis of R. Hence B is a 
regular (5/0i© . . . © 5/0s)-right-module of rank 5. It follows that R is 
(5/0i© . . . © 5/0,)-(right-)isomorphic to 5/i0i© . . . © 5/0 8 = 0X5/ © . . . 
©0S5/. Let x be the element of R which is mapped on the unit element of 
0i5/ © . . . © 0S5/ in such an isomorphism. Then (x^i, x^, . . . , xi0s) forms 
an independent 5/-right-basis, that is, 5-left-basis of R. This statement, 
though complicated, may be regarded as a generalization of the theorem of 
normal basis. 

If here 0^ are (ring-)automorphisms of R, then 0 ^ / = RifSh and moreover 
each 0A is elementwise commutative with 5/. Hence the left-symmetric half 
of the assumption concerning fih follows automatically. 

REFERENCES 

[1] G. Azumaya, Galois theory of uni-serial rings, J. Math. Soc. Japan, vol. 1 (1949). 
[2] N. Jacobson, The fundamental theorem of Galois theory for quasifields, Ann. Math., vol. 41 

(1940). 
[3] f An extension of Galois theory to non-normal and non-separable fields, Amer. J. 

Math., vol. 66 (1944). 
[4j __ f Relations between the composites of a field and those of a subfield, Amer. J. Math. , 

vol. 66 (1944). 
[51 , Galois theory of purely inseparable fields of exponent one, Amer. J. Math., vol. 66 

(1944). 
[5] 1 ]$0ie on division rings, Amer. J. Math., vol. 69 (1947). 
[7] T. Nakayama, Semilinear normal basis for quasifields, Amer. J. Math., vol. 71 (1949). 
[gj f Galois theory for general rings with minimum condition, J . Math. Soc. Japan, 

vol. 1 (1949). 
[9] f Commuter systems in a ring with radical, Duke Math. J., vol. 16 (1949). 

[10] , Generalized Galois theory for rings with minimum condition, in Amer. J. Math. 
[11] T. Nakayama and G. Azumaya, On irreducible rings, Ann. Math., vol. 48 (1947). 

Nagoya University 

https://doi.org/10.4153/CJM-1951-025-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-025-5

