NON-NORMAL GALOIS THEORY FOR NON-COMMUTATIVE AND NON-SEMISIMPLE RINGS

TADASI NAKAYAMA

THE purpose of the present work is to give, as a continuation of the writer's study of Galois theory for general rings ([8], [9], [10]), a kind of Galois theory for general, non-commutative and non-semisimple rings, which includes, at least in its main features, the Kaloujnine-Jacobson Galois theory of non-normal fields ([3]; cf. [4], [5]). To deal with the non-commutativity we bring to the fore certain double-moduli rather than self-composites, while the non-semi-simplicity is manipulated by the method and idea used in the writer's above mentioned study on (normal) Galois theory and commuter systems of non-semisimple rings. (For the normal Galois theory of rings cf. [1], [2], [6], [7], [11], besides the above.) Some of our arguments may even serve to make some simplification in Jacobson's treatment of ordinary fields.

1. Galois ring and Galois system of module-endomorphisms of a ring. Throughout this paper a ring means a ring with unit element and its module, right or left, one for which the unit element is the identity operator.

Let A be a semiprimary ring. An A-right-, say, module \mathfrak{m} is called regular when a direct sum of a certain (finite) number, say v, of its copies is (A-) isomorphic to the direct sum of a certain number, say u, of copies of the A-right-module A. The A-endomorphism ring A^* of \mathfrak{m} is nothing but the commuter ring of A in the absolute endomorphism ring of \mathfrak{m} . We have

LEMMA. The number u/v, called the (A-) rank of the regular module m, is determined uniquely and characterizes the structure of m. A^* is semiprimary and m is also regular with respect to A^* . The A^* -rank of m is inverse to the A-rank. The A^* -endomorphism ring of m coincides with A.

If m is also regular with respect to a (semiprimary) subring B, then any other regular A-right-module n is regular with respect to B too and the ratio of the A-ranks of m, n is equal to that of their B-ranks.

We note further that if A satisfies the minimum condition for right-ideals then A^* satisfies the same for left-ideals.

Throughout this paper, R will denote a ring satisfying the minimum con-

Received December 1, 1949, revised March 17, 1950. Addendum in revision. After the submission of the present paper to the Journal, the writer had access to a paper by G. Hochschild, entitled "Double vector spaces over division rings" (Amer. Jour. Math., vol. 71 (1949)), closely related to the present one. The idea of considering in the non-commutative case certain double-moduli, rather than self-composites, has been exploited there already. However, in the present work we dealt with non-division rings, in fact with general non-semisimple rings.

dition for left-ideals.¹ Let **A** be its absolute endomorphism ring, that is, the endomorphism ring of R as module without operator domain. Denote by R_l , R_r , or generally X_l , X_r with a subset X of R, the set of left-, right-multiplications of R, or X, upon R. Let **B** be a subring of **A**, i.e. a certain ring of (module-)endomorphisms of R, which contains R_l . When further the direct sum of a certain number, say s, of copies of R is (**B**-) isomorphic to the **B**-right-module **B** itself, i.e., when R is **B**-regular with s^{-1} as rank, we call **B** a Galois ring of module-endomorphisms of R. Here **B** satisfies the minimum condition for R_l -right-submoduli, whence certainly that for its right-ideals. The commuter ring $V(\mathbf{B})$ of **B** in **A**, i.e. the **B**-endomorphism ring of R, is contained in $V(R_l) = R_r$, and so has a form S_r with a subring S of R. R is S_r -regular with rank s, that is, R has an independent S-right-basis of s terms. Moreover, $V(S_r) = \mathbf{B}$.

If conversely S is a subring of R such that R possesses an independent (finite) S-right-basis, of s terms, say, then S certainly satisfies, together with R, the minimum condition for left-ideals² and $V(S_r) = \mathbf{B}$ is a Galois ring in the above sense. And $S_r = V(\mathbf{B})$. Thus

THEOREM 1. Galois rings **B** of module-endomorphisms and subrings S such that R has independent right-basis over S are in 1-1 dual correspondence, by $V(\mathbf{B}) = S_r$, $\mathbf{B} = V(S_r)$. The **B**-rank of R is inverse to the S_r - (that is, S-right-) of R.

Further, by the Lemma, applied to the \mathbf{B} -, and R_l -module \mathbf{B} , instead of A-, and B-module \mathfrak{n} , we see that \mathbf{B} is R_l (right-) regular and the R_l -rank of \mathbf{B} is equal to the S-rank s of R. Hence

THEOREM 2. The Galois ring **B** has an independent right-basis of s terms over its subring R_l , where 1/s is the **B**-rank of R (that is, s is the S_r -rank of R):

$$\mathbf{B} = \beta_1 R_l \oplus \beta_2 R_l \oplus \ldots \oplus \beta_s R_l.$$

We call such an independent right-basis of a Galois ring over R a Galois system of module-endomorphisms of R. Our next task will then be the construction of such a Galois system.

2. Construction of Galois system. Let \mathfrak{m} be a right-module of R and \mathfrak{n} be a left-module of R. By their direct product $\mathfrak{m} \times \mathfrak{n} = \mathfrak{m} \times_R \mathfrak{n}$ we mean, as usual, a module generated (freely) by symbols uv ($u \in \mathfrak{m}$, $v \in \mathfrak{n}$) with relations

$$(u_1 + u_2)v = u_1v + u_2v,$$
 $u(v_1 + v_2) = uv_1 + uv_2,$ $(uz)v = u(zv)$ $(z \in R).$

 $^{^{1}}$ We can develop our whole theory also under the assumpton that R, B, S (see below) are semiprimary rings, or even under a much weaker assumption as G. Azumaya has kindly pointed out. However, the writer prefers to present the theory in the form below where R (and then S) satisfies the minimum condition, since the assumption does not spoil the essential feature of the theory.

²Consider R1 with left-ideals 1 of S.

If n is an R-double-module the product $\mathfrak{m} \times \mathfrak{n}$ is, in a natural manner, an R-right-module, and if both \mathfrak{m} , \mathfrak{n} are R-double-modules then $\mathfrak{m} \times \mathfrak{n}$ becomes an R-double-module. In case \mathfrak{m} possesses an independent R-right-basis (u_1, u_2, \ldots, u_m) we have $\mathfrak{m} \times \mathfrak{n} = u_1\mathfrak{n} \oplus u_2\mathfrak{n} \oplus \ldots \oplus u_m\mathfrak{n}$. If also n possesses an independent R-left-basis (v_1, v_2, \ldots, v_n) , then $\mathfrak{m} \times \mathfrak{n} = \sum_{ij} w_i R v_j$.

Now, let S be a subring of R such that R has an independent S-right-basis of s, say, terms. We consider R as S-right-, and S-left-module, and we want to construct the direct self-product $R \times R$ over S. However, to avoid ambiguity in notation, we introduce two (ring-) isomorphisms σ , τ of R. Putting $zx^{\sigma} = (zx)^{\sigma}$, $x^{\sigma}z = (xz)^{\sigma}$, $x^{\tau}z = (xz)^{\tau}$, $zx^{\tau} = (zx)^{\tau}$ (x, $z \in R$) we consider R^{σ} , R^{τ} as R-double-moduli. We then construct

$$(1) R^{\sigma} \times R^{\tau} = R^{\sigma} \times_{S} R^{\tau} = x_{1}^{\sigma} R^{\tau} \oplus x_{2}^{\sigma} R^{\tau} \oplus \ldots \oplus x_{s}^{\sigma} R^{\tau},$$

where (x_1, x_2, \ldots, x_s) is an independent S-right-basis of R. According to (1) we have, for each $z \in R$,

$$(2) z^{\sigma}1^{\tau} = x_1^{\sigma}\beta_1(z)^{\tau} + x_2^{\sigma}\beta_2(z)^{\tau} + \ldots + x_s^{\sigma}\beta_s(z)^{\tau}, \beta_k(z) \in R.$$

 $\beta_h(z)$ are determined uniquely by z, and $\beta_h: z \to \beta_h(z)$ $(h = 1, 2, \ldots, s)$ are module-endomorphisms of R. Moreover, for $a \in S$ we have $(za)^\sigma 1^\tau = z^\sigma a^\tau = \sum_h x_h^\sigma (\beta_h(z)a)^\tau$. Thus $\beta_h(z)a = \beta_h(za)$, or $\beta_h a_\tau = a_\tau \beta_h$, and so β_h are S_τ -endomorphisms of R, and $\beta_h \in V(S_\tau) = \mathbf{B}$. We assert that they form a Galois system belonging to S. Observe first that

$$x_i{}^\sigma 1^\tau = x_1{}^\sigma \beta_1(x_i)^\tau + x_2{}^\sigma \beta_2(x_i) + \ldots + x_s{}^\sigma \beta_s(x_i)$$
 and so
$$\beta_h(x_i) = \delta_{hi} \qquad (Kronecker \delta).$$

Therefore $\beta_h y_l$, with $y \in R$, maps x_i upon $y \delta_{hi}$, and $\sum_h \beta_h y_{hl}$ ($y_h \in R$) maps x_i upon y_i . It follows that $\beta_1, \beta_2, \ldots, \beta_s$ are R_l -right-independent. Moreover, since y_h may be taken arbitrarily, the totality of $\sum_h \beta_h y_{hl}$ coincides with the whole $V(S_r) = \mathbf{B}$;

(3)
$$V(S_r) = \mathbf{B} = \beta_1 R_l \oplus \beta_2 R_l \oplus \ldots \oplus \beta_s R_l.$$

If $z = \sum_h x_h a_h$ $(a_h \in S)$ then $\beta_h(z) = a_h$. Thus

THEOREM 3. The s (module-)endomorphisms β_h of R defined in (2) form a Galois system belonging to the subring S. Here $\beta_h(R) = S$ for each h. Moreover $\beta_h(z) = 0$ (h = 1, 2, ..., s) (that is, $z^{\sigma}1^{\tau} = 0$) implies z = 0.

3. Double-moduli and their relation moduli. Although Theorems 1, 2, 3 already give the main features of our Galois theory, it is useful as well as important to extend the above construction of a Galois system to the case of general double-moduli of a certain type and thus obtain a characterization of a Galois ring (Theorem 7). It is our purpose to generalize Jacobson's theory of self-composites of (commutative) fields, but we have to adopt a somewhat

different formulation and method, because of the non-commutativity and the non-semisimplicity of R.

Let \mathfrak{M} be a double-module of R having an independent R-right-basis, and let u_0 be an element of \mathfrak{M} . Let (u_1, u_2, \ldots, u_m) be an independent R-right-basis of \mathfrak{M} , and put

(4)
$$zu_0 = u_1\mu_1(z) + u_2\mu_2(z) + \ldots + u_m\mu_m(z)$$

for $z \in R$; $\mu_1, \mu_2, \ldots, \mu_m$ are module-endomorphisms of R.

Consider further a second R-double-module \mathfrak{N} with an independent R-right-basis (v_1, v_2, \ldots, v_n) , and its element v_0 . Introduce module-endomorphisms v_1, v_2, \ldots, v_n of R correspondingly by

(5)
$$zv_{\theta} = v_{1}\nu_{1}(z) + v_{2}\nu_{2}(z) + \ldots + v_{n}\nu_{n}(z).$$

Suppose that there exists an (R-two-sided) homomorphic mapping φ of \mathfrak{M} in \mathfrak{N} which maps u_0 on v_0 ; $u_0^{\varphi} = v_0$. Put

$$(6) u_h^{\varphi} = \sum_k v_k x_{kh} (x_{kh} \in R)$$

Then φ maps $zu_0 = \sum u_h \mu_h(z)$ on $\sum v_k x_{kh} \mu_h(z)$, while $(zu_0)^{\varphi} = zu_0^{\varphi} = zv_0 = \sum v_k \nu_k(z)$ too. So $\nu_k(z) = \sum x_{kh} \mu_h(z)$, or

$$v_k = \sum_{h} \mu_h x_{khl}.$$

Thus

(8)
$$\nu_1 R_l + \nu_2 R_l + \ldots + \nu_n R_l \subseteq \mu_1 R_l + \mu_2 R_l + \ldots + \mu_m R_l$$

If we consider, firstly, the case that $\mathfrak{M}=\mathfrak{N}$ and φ is the identity mapping, our observation shows that the module

(9)
$$\sum_{h} \mu_{h} R_{l} = \mu_{1} R_{l} + \mu_{2} R_{l} + \ldots + \mu_{m} R_{l}$$

does not depend on the special choice of the independent basis (u_1, u_2, \ldots, u_m) . We call the module (9) the relation module of u_0 in \mathfrak{M} .

If we consider secondly the case that $\mathfrak{M} \subseteq \mathfrak{N}$ and φ is again the identity mapping, we find that the relation module of u_0 in a module \mathfrak{N} containing \mathfrak{M} (and having an independent R-right-basis) is contained in that of u_0 in \mathfrak{M} . If here \mathfrak{M} is a direct summand in \mathfrak{N} as R-right-module, then the relation moduli of u_0 in \mathfrak{M} and \mathfrak{N} coincide. This last remark, which is rather useful, we see readily by observing that $\mathfrak{N}/\mathfrak{M}$ is regular with integral rank and so \mathfrak{N} has an independent R-right-basis which contains a basis for \mathfrak{M} ; in fact, every independent R-right-basis of \mathfrak{M} may be extended to one of \mathfrak{N} .

Now, if in particular Ru_0 contains an independent R-right-basis of \mathfrak{M} , then the m module-endomorphisms $\mu_1, \mu_2, \ldots, \mu_m$ of R are R_l -right-independent, and moreover any independent R_l -right-basis of the relation module is obtained from suitable choice of independent R-right-basis of \mathfrak{M} . Let namely

$$u_i = t_i u_0 \qquad (t_i \in R).$$

Then

$$\mu_h(t_i) = \delta_{hi}$$

and t_i is mapped on y_i by $\sum \mu_h y_{hl}$, which implies the right-independence of $\mu_1, \mu_2, \ldots, \mu_m$ over R_l .

Further, under the same assumption also the converse of the above relationship between the inclusion (8) and homomorphism is valid. Assuming (8), where μ and ν are given in (4), (5), and also (7), we define φ as R-right-homomorphic mapping of $\mathfrak M$ into $\mathfrak N$ by virtue of (6). Then

$$u_0^{\varphi} = (\sum u_h \mu_h(1))^{\varphi} = \sum v_k x_{kh} \mu_h(1) = \sum v_k \nu_k(1) = v_0.$$

More generally

$$(zu_0)^{\varphi} = (\sum u_h \mu_h(z))^{\varphi} = \sum v_k x_{kh} \mu_h(z) = \sum v_k \nu_k(z) = zv_0.$$

Our purpose is to show that φ is also R-left-homomorphic, and we may, for that purpose, assume $u_1, u_2, \ldots, u_m \in Ru_0$. On putting $u_h = t_h u_0$ $(t_h \in R)$, as in (10), we have

$$u_h^{\varphi} = (t_h u_0)^{\varphi} = t_h v_0 = \sum v_k v_k(t_h).$$

Comparing this with (6) we obtain

$$x_{kh} = \nu_k(t_h).$$

Therefore

$$(zu_h)^{\varphi} = (zt_h u_0)^{\varphi} = (\sum u_i \mu_i (zt_h))^{\varphi} = \sum v_k x_k i \mu_i (zt_h)$$

= $\sum v_k \nu_k (zt_h) = zt_h v_0 = z(\sum v_k \nu_k (t_h)) = z(\sum v_k x_{kh}) = zu_h^{\varphi}.$

This shows that the mapping is R-left-homomorphic, as is desired.

On returning to the case of general u_0 which may not, necessarily, even generate \mathfrak{M} , we show further that its relation module $\sum \mu_h R_l$ in \mathfrak{M} is R_l -left-allowable too. For, if we put

$$(12) zu_h = \sum u_j \rho_{jh}(z)$$

then
$$\sum u_j \mu_j(zy) = zyu_0 = z \sum u_h \mu_h(y) = \sum u_j \rho_{jh}(z) \mu_h(y)$$
 and

(13)
$$z_l \mu_j = \mu_h(\rho_{jh}(z))_l,$$

which proves our assertion.

Here

$$(14) z \to (\rho_{jh}(z))$$

is a self-representation of R, i.e. a (matric) representation of R in R. Consider the relation module of a basis element, say $u_0 = u_i$. Then $\mu_h = \rho_{hi}$, and the relation module $\sum \mu_h R_l$ is nothing but the R_l -right-module generated by ρ_{1i} , ρ_{2i} , ..., ρ_{mi} ; this module may thus be called the *i-column module* of the representation (14).

THEOREM 4. Let M be an R-double-module possessing an independent R-right-basis. The relation module $\sum \mu_h R_l$ in (9) of an element u_0 in \mathfrak{M} , with μ_i given as in (4), is independent of the special choice of the independent R-rightbasis (u_h) of \mathfrak{M} , and is a double-module of R_l . If in particular Ru_0 contains an independent R-right-basis, then $\mu_1, \mu_2, \ldots, \mu_m$ are R_l -right-independent. Let \mathfrak{N} be a second R-double-module with an independent R-right-basis. If φ is an R-two-sided homomorphic mapping of \mathfrak{M} into \mathfrak{N} , then the relation module $\sum v_k R_l$ of $v_0 = u_0^{\varphi}$ in \Re is contained in the relation module $\sum \mu_h R_l$ of u_0 in \Re (see (8)). In particular, if $\mathfrak{M}\subseteq \mathfrak{N}$ then the relation module of u_0 in \mathfrak{N} is contained in that of u_0 in \mathfrak{M} . If \mathfrak{M} is direct summand in \mathfrak{N} as R-right-module, then these relation moduli coincide. In case Ru₀ contains an independent R-right-basis of \mathfrak{M} the inclusion $\sum \nu_k R_l \subseteq \sum \mu_h R_l$ is also sufficient in order that there exist an R-two-sided homomorphic mapping of \mathfrak{M} into \mathfrak{N} which maps u_0 upon v_0 . Thus the structure of an R-double-module which has an independent R-right-basis contained in Ru_0 , with an element u_0 of the module, is uniquely determined by its relation module of the element u_0 .

The last statement means that, if two self-representations of R are defined by R-double-moduli possessing independent R-right-bases contained in the R-left-moduli generated, respectively, by their first, say, basis elements and if their 1-column moduli coincide, then the representations are equivalent (in the usual sense of equivalence of representations).

Further we obtain readily

THEOREM 5. Let \mathfrak{M} , \mathfrak{N} be R-double-moduli, with independent R-right-bases, and let $u_0 \in \mathfrak{M}$, $v_0 \in \mathfrak{N}$. Consider the direct sum $\mathfrak{M} \oplus \mathfrak{N}$ and its element $w_0 = u_0 + v_0$. Then the relation module of w_0 in $\mathfrak{M} \oplus \mathfrak{N}$ is the sum, not necessarily direct, $\sum \mu_h R_l + \sum \nu_k R_l$ of the relation moduli $\sum \mu_h R_l$, $\sum \nu_k R_l$ of u_0 , v_0 in \mathfrak{M} , \mathfrak{N} .

We next consider the direct product $\mathfrak{M} \times \mathfrak{N} = \mathfrak{M} \times_R \mathfrak{N}$ of \mathfrak{M} , \mathfrak{N} and its element $w_0 = u_0 v_0$. We have

THEOREM 6. The relation module of $w_0 = u_0 v_0$ in $\mathfrak{M} \times \mathfrak{N} = \mathfrak{M} \times_R \mathfrak{N}$ coincides with the product module $(\sum \mu_h R_l)$ $(\sum \nu_k R_l) = \sum \mu_h \nu_k R_l$ of the relation moduli $\sum \mu_h R_l$, $\sum \nu_k R_l$ of u_0 , v_0 in \mathfrak{M} , \mathfrak{N} .

For, $\mathfrak{M} \times \mathfrak{N} = u_1 \mathfrak{N} \oplus u_2 \mathfrak{N} \oplus \ldots \oplus u_m \mathfrak{N} = u_1 v_1 R \oplus u_1 v_2 R \oplus \ldots \oplus u_m v_n R$, and $u_1 v_1, u_1 v_2, \ldots, u_m v_n$ are R-right-independent. And

$$zw_0 = zu_0v_0 = \sum u_h\mu_k(z)v_0 = \sum u_hv_k\nu_k(\mu_h(z)).$$

This shows that the relation module of w_0 in $\mathfrak{M} \times \mathfrak{N}$ is really $\sum \mu_h \nu_k R_l$. But this is the product module $(\sum \mu_h R_l)$ $(\sum \nu_k R_l)$, since $\sum \nu_k R_l$ is R_l -left-allowable too.

Now, let S be the totality of elements a in R such that $au_0 = u_0a$. S is a subring of R. If $a \in S$ then

$$zau_0 = zu_0a = u_1\mu_1(z)a + u_2\mu_2(z)a + \ldots + u_m\mu_m(z)a,$$

whence $\mu_h(za) = \mu_h(z)a$, or $a_r\mu_h = \mu_k a_r$. Thus the relation module $\sum \mu_h R_l$ is contained in $V(S_r)$. If conversely a is an element of R such that μ_h are a_r -endomorphisms, then

$$zau_0 = \sum u_h \mu_h(za) = \sum u_h \mu_h(z)a = zu_0a \qquad (z \in R),$$

in particular $au_0 = u_0a$, and so $a \in S$. Thus

$$(15) S = \{a \in R; au_0 = u_0 a\} = \{a \in R; \mu_h a_r = a_r \mu_h (h = 1, 2, \ldots, m)\}.$$

Suppose now that Ru_0 contains an independent R-right-basis of \mathfrak{M} and that our relation module $\sum \mu_h R_l$ forms a ring. If $\mathfrak{N} = Rv_0R$ is a second R-double-module which is isomorphic to \mathfrak{M} by $u_0 \leftrightarrow v_0$, then the ring assumption of $\sum \mu_h R_l$ means, by Theorems 4, 6, that $u_0 \to u_0 v_0$ gives an (R-two-sided) homomorphic mapping of \mathfrak{M} into the direct product $\mathfrak{M} \times_R \mathfrak{N}$. Let our basis (u_h) of \mathfrak{M} be taken from Ru_0 ; put $u_h = t_h u_0$ $(t_h \in R)$, as in (10). Let (v_h) be the corresponding basis of \mathfrak{N} . By our mapping of \mathfrak{M} into $\mathfrak{M} \times \mathfrak{N}$ zu_0 should be mapped upon

$$zu_0v_0 = \sum u_h\mu_h(z)v_0 = \sum u_hv_k\mu_k(\mu_h(z)),$$

while $zu_0 = \sum u_h \mu_h(z) = \sum t_h u_0 \mu_h(z)$ and this should be mapped on

$$\sum t_h u_0 v_0 \mu_h(z) = \sum u_h v_0 \mu_h(z) = \sum u_h v_k \mu_k(1) \mu_h(z).$$

We have, since $u_h v_k$ are R-right-independent, $\mu_k(\mu_h(z)) = \mu_k(1)\mu_h(z)$. Then

$$\mu_h(z)u_0 = \sum u_k \mu_k(\mu_h(z)) = \sum u_k \mu_k(1)\mu_h(z) = u_0 \mu_h(z),$$

hence $\mu_h(z) \in S$. Let (u'_h) be a second independent R-right-basis of \mathfrak{M} and let μ'_h be the corresponding endomorphisms. Put $u_h = \sum u'_k x_{kh}$. Then $\mu'_h(z) = \sum x_{hk}\mu_k(z)$ and in particular $\mu'_h(t_i) = \sum x_{hk}\delta_{ki} = x_{hi}$. Thus $\mu'_h(R) \subseteq S$ $(h = 1, 2, \ldots, m)$ if and only if $x_{hk} \in S$. This last means that $y_{hk} \in S$ for the inverse matrix (y_{hk}) of (x_{hk}) . Thus the condition amounts to

$$u'_h \in u_1 S \oplus u_2 S \oplus \ldots \oplus u_m S = Ru_0 S.$$

Here we have, as a matter of fact, $\mu'_h(R) = S$, since the S-right-module generated by x_{hi} (i = 1, 2, ..., m) certainly exhausts S.

Conversely, if every μ_h maps R in S, then

$$\mu_k(\mu_k(z)) = \mu_k(1\mu_k(z)) = \mu_k(1)\mu_k(z).$$

whence $\mu_h \mu_k \in \mu_h R_l$, and $\sum \mu_h R_l$ forms a ring.

Further, again under the assumption that $\sum \mu_h R_l$ is a ring and $u_h = t_h u_0 \in Ru_0$, we have

$$\sum t_h \mu_h(z) u_0 = \sum t_h u_0 \mu_h(z) = \sum u_h \mu_h(z) = z u_0$$

and $z - \sum t_h \mu_h(z)$ is, for every $z \in R$, in the left-ideal $l = \{z \in R, zu_0 = 0\}$. Here $t_h(h=1, 2, \ldots, m)$ are S-right-independent mod l, as we see readily from $\mu_l(t_h) = \delta_{lh}$. Thus (t_h) forms an independent S-right-basis of R mod l. If

in particular l = 0, that is, if (the single element) u_0 is R-left-independent, then (t_h) forms an independent S-right-basis of R. Since the R_l -rank m is in that case equal to the S_r -rank of R, our relation module $\sum \mu_h R_l$ must then exhaust the whole Galois ring $V(S_r)$, here we may also argue as in §2 without appealing to the rank relation. So we have

THEOREM 7. Let $\mathfrak{M}=Ru_0R$ have an independent R-right-basis contained in Ru_0 . The relation module of u_0 in \mathfrak{M} forms a ring if and only if we may choose such a basis (u_h) so that $\mu_h(R) \subseteq S$ for every h, where S is the subring (15) of R; as matter of fact $\mu_h(R)=S$ then. This last is the case, under the ring assumption of the relation module, if and only if $\{u_h\}\subseteq Ru_0S$. Provided that zu_0 $(z\in R)$ vanishes only when z=0, our ring assumption implies also that R has an independent S-right-basis; in fact (t_h) $(h=1,2,\ldots,m)$ forms such a basis when (t_hu_0) forms an independent R-right-basis of \mathfrak{M} , and moreover the homomorphic mapping $1^{\sigma}1^{\tau} \to u_0$ of the self-product $R \times_S R = R^{\sigma} \times_S R^{\tau}$ of R over S (§2) upon \mathfrak{M} becomes an isomorphism. In short, our relation module is a Galois ring if and only if it is a ring and $zu_0=0$ implies z=0.

4. Relationship between relation moduli over R and its subring. Let S be a subring of R and let R possess an independent S-right-basis; $R = x_1S \oplus x_2S \oplus \ldots \oplus x_sS$. Then an R-double-module \mathfrak{M} with an independent R-right-basis (u_1, u_2, \ldots, u_m) is certainly an S-double-module with independent S-right-basis (u_hx_i) . Let u_0 be an element of \mathfrak{M} and let its relation module in \mathfrak{M} , as R-module, be given by $\sum \mu_h R_l$. We now consider the relation module of u_0 in \mathfrak{M} as S-module. On putting

(16)
$$z = x_1\pi_1(z) + x_2\pi_2(z) + \ldots + x_s\pi_s(z) \qquad (\pi_i(z) \in S),$$

we have $zu_0 = \sum u_h \mu_h(z) = \sum_h u \pi_i(\mu_h(z))$. Thus the relation module of u_0 in the S-module \mathfrak{M} is given by

$$\sum_{h,i}\mu_h\pi_iS_l$$

(where μ_h are considered as homomorphisms of S into R).

In case u_0 is one of the basis elements, say u_1 , the situation may be described also in terms of representation. Namely, on assuming $x_1 = 1$, without loss of generality, we consider the regular representation $(\lambda_{ij}(z))$ of R in S, with respect to our basis (x_i) :

(18)
$$zx_j = \sum x_i \lambda_{ij}(z) \qquad (\lambda_{ij}(z) \in S).$$

Denote the self-representation of R defined by our basis $(u_1(=u_0), u_2, \ldots, u_m)$ of \mathfrak{M} by $(\rho_{hk}(z))$, as in (12). The S-(right-)basis (u_hx_i) of \mathfrak{M} defines then the representation

$$(19) \qquad (\lambda_{ij}(\rho_{hk}(z)))$$

³This "if" part is valid without our assumption of existence of an independent R-right-basis of \mathfrak{M} in Ru_0 , or even without assuming $\mathfrak{M} = Ru_0R$.

of degree ms in S. Restricted to S, this gives the self-representation of S defined by the basis $(u_h x_i)$ of S-module \mathfrak{M} . Since here $u_1 x_1 = u_0$, our relation module of u_0 in the S-module \mathfrak{M} is obtained as the first, i.e. (1, 1)-, column module of this representation.

THEOREM 8. The relation module of u_0 in \mathfrak{M} as S-module is given by (17), restricted to S, with π_i in (16). If in particular $u_0 = u_1$ and $x_1 = 1$, it is also defined as the (1, 1)-column module of the self-representation (19), restricted to S, of S, where (ρ_{hk}) is the self-representation of R defined by the (R-right-)basis (u_h) of \mathfrak{M} and (λ_{ij}) is the regular representation of R in S defined by the (S-right-)basis (x_i) .

We supplement the theorem with the following observation: Let \mathfrak{m} be an S-double-module with independent S-right-basis. Then there always exists an R-double-module \mathfrak{M} with independent R-right-basis, which contains, as S-double-module, \mathfrak{m} , and which contains \mathfrak{m} as S-right-module indeed as direct summand. (Then the relation module of u_0 ($\in \mathfrak{m}$) in \mathfrak{m} coincides with that in \mathfrak{M} , as S-module. Therefore it is thus obtained from the relation module of u_0 in R-module \mathfrak{M} by virtue of the above procedure of referring to S in terms of π_i (in (16)).

Let (v_1, v_2, \ldots, v_n) be an independent S-right-basis of \mathfrak{m} ,

$$\mathbf{m} = v_1 S \oplus v_2 S \oplus \ldots \oplus v_n S.$$

 $\mathfrak{m} \times_S R$ is an R-right-module $v_1 R \oplus v_2 R \oplus \ldots \oplus v_n R$ with v_1, v_2, \ldots, v_n right-independent over R. Therefore

$$R \times_S \mathfrak{m} \times_S R = x_1(\mathfrak{m} \times_S R) \oplus x_2(\mathfrak{m} \times_S R) \oplus \ldots \oplus x_s(\mathfrak{m} \times_S R)$$

is an R-double-module with independent R-right-basis (x_iv_k) . On assuming $x_1 = 1$, it follows that the S-two-sided submodule $x_1\mathfrak{m} = \mathfrak{m}$ is its direct summand as S-right-module.

5. Supplementary remarks. If R is a primary-decomposable ring, then a regular R-right-module is always a direct summand in a second regular R-right-module which contains it. If R is a simple ring then a (finite) R-right-module is always regular. These remarks are significant in connection with the theorems in §3, in particular with Theorems 4, 6. If, moreover, R is a quasifield, then any R-right-module certainly has an independent basis and any subring is of course also a quasifield. In dealing with relation moduli over a quasifield R we may thus always restrict ourselves to principal R-double-moduli which possess R-right-bases contained in the R-left-module generated by the element in question. Furthermore, the hypergroup formulation of our Galois theory can then be given under a certain assumption.

On the other hand, it may be of some use, in view of the usual Galois theory, to observe the case in which each $u_h R$, with a basis element u_h of \mathfrak{M} , is R-left-allowable too. Let an R-double-module \mathfrak{M} possess such an independent R-right-basis (u_1, u_2, \ldots, u_m) and let u_0 be the sum $u_0 = u_1 + u_2 + \ldots + u_m$.

The relation module of u_0 in \mathfrak{M} is $\sum \mu_h R_l$, where we put $zu_0 = \sum u_h \mu_h(z)$. Since $Ru_h \subseteq u_h R$, we have

$$zu_h = u_h \mu_h(z)$$

and each μ_h is simply the self-representation of degree 1, i.e. (ring-) endomorphism, of R defined by the representation module $u_h R = R u_h R$ (with respect to the basis element u_h). If \mathfrak{M} has an independent R-right-basis contained in Ru_0 then these m endomorphisms μ_h of R are right-independent over R_l .

In this context we note some sufficient conditions that certain given (ring-) endomorphisms, say $\nu_1, \nu_2, \ldots, \nu_n$, of R be right-independent over R_l . Let (R, ν) , with a (ring-)endomorphism ν of R, denote an R-double-module which coincides with R itself as R-left-module and on which right-operation of $z \in R$ is defined by $x \in R$ is defined by $x \in R$. Thus (R, ν) may also be looked upon as a module Rw with R-left-independent element w such as $wz = \nu(z)w$. Now we have, firstly: If each $\nu_i(R)$ possesses no non-zero left-annihilator in R and if

(*) the R-double-moduli (R, ν_i) , (R, ν_j) with distinct i, j have non-zero (R-two-sided)) isomorphic submoduli, then $\nu_1, \nu_2, \ldots, \nu_n$ are R-right-independent.

For, from our assumptions we deduce that $\nu_i x_l = 0$ implies x = 0, for each i, and the R_l -double-moduli $\nu_i R_l$ and $\nu_j R_l$ with $i \neq j$ have no $(R_l$ -two-sided) isomorphic non-zero submoduli. The sum $\sum \nu_i R_l$ is then necessarily direct [8, §3, Remark 6].

Secondly, if ν_i are (ring-)automorphisms and $\{\nu_i\}$ forms a group which induces a Galois group of the residue-ring R/N of R modulo its radical N in the sense of [8] (that is, a similar assumption (**) obtained from (*) by replacing "submoduli" by "residue-submoduli" is satisfied), then again ν_i are R_l -right-independent [8, Lemma 4 and Remark 5 concerning it].

A similar construction can be used to show that a certain R-double-module is principal. Interchanging "left" and "right", in order to be in accord with our situation, we consider n elements v_1, v_2, \ldots, v_n which are right-independent over R and satisfy $zv_i = v_iv_i(z)$, with (ring-)endomorphisms v_i of R. Suppose that the (left-right-)symmetric counterpart of (**), mentioned above, is satisfied. Then if v_0 is an element in the (direct) sum $\mathfrak{N} = \sum v_i R$ of a form $v_0 = v_1 z_1 + v_2 z_2 + \ldots + v_n z_n$ with regular elements z_i of R, we have

$$\mathfrak{N} = Rv_0R.$$

For, under our assumption, Rv_0R exhausts the whole \mathfrak{N} mod $\sum v_iN$ firstly, where N denotes the radical of R, and then actually, since $\sum v_iN$ is (whence is contained in) the intersection of all maximal R-right-submoduli of \mathfrak{N} .

Of course all these assumptions are covered by the assumption that $G = \{\nu_i\}$ forms a Galois group of R, under which in [8] the complete correspondence of between-rings, over which R has independent right-basis, with subgroups of G (not only with certain subrings of $\sum \nu_i R_i$) was established.

Let S be a subring of R such that R has not only an independent S-right-basis

of s terms but also an independent S-left-basis of the same number s of terms. Suppose further that $\mathbf{B} = V(S_r)$ contains an independent R_l -right-basis $(\beta_1, \beta_2, \ldots, \beta_s)$ (i.e. a Galois system belonging to S) which forms also an independent R_l -left-basis of \mathbf{B} , and that $\beta_1 S_l \oplus \beta_2 S_l \oplus \ldots \oplus \beta_s S_l$ forms a ring $(\exists 1)$ and moreover it equals $S_l \beta_1 \oplus S_l \beta_2 \oplus \ldots \oplus S_l \beta_s$. Then there exists an element x in R such that $\beta_1(x), \beta_2(x), \ldots, \beta_s(x)$ form an independent S-left-basis of R.

To show this, we observe that R is B-regular with rank 1/s, or, what is the same, the direct sum R^s of s copies of R is B-isomorphic to the B-right-module B. Hence naturally R^s is $(S_l\beta_1 \oplus S_l\beta_2 \oplus \ldots \oplus S_l\beta_s)$ -isomorphic to B. On the other hand

$$\mathbf{B} = R_l \beta_1 \oplus R_l \beta_2 \oplus \ldots \oplus R_l \beta_s = y_{1l} (S_l \beta_1 \oplus \ldots \oplus S_l \beta_s) \oplus \ldots \oplus y_{sl} (S_l \beta_1 \oplus \ldots \oplus S_l \beta_s),$$

where (y_1, y_2, \ldots, y_s) is an independent S-left-basis of R. Hence **B** is a regular $(S_l\beta_1 \oplus \ldots \oplus S_l\beta_s)$ -right-module of rank s. It follows that R is $(S_l\beta_1 \oplus \ldots \oplus S_l\beta_s)$ -(right-)isomorphic to $S_{l1}\beta_1 \oplus \ldots \oplus S_l\beta_s = \beta_1S_l \oplus \ldots \oplus \beta_sS_l$. Let x be the element of R which is mapped on the unit element of $\beta_1S_l \oplus \ldots \oplus \beta_sS_l$ in such an isomorphism. Then $(x^{\beta_1}, x^{\beta_2}, \ldots, x_1^{\beta_s})$ forms an independent S_l -right-basis, that is, S-left-basis of R. This statement, though complicated, may be regarded as a generalization of the theorem of normal basis.

If here β_h are (ring-)automorphisms of R, then $\beta_h R_l = R_l \beta_h$ and moreover each β_h is elementwise commutative with S_l . Hence the left-symmetric half of the assumption concerning β_h follows automatically.

REFERENCES

- [1] G. Azumaya, Galois theory of uni-serial rings, J. Math. Soc. Japan, vol. 1 (1949).
- [2] N. Jacobson, The fundamental theorem of Galois theory for quasifields, Ann. Math., vol. 41 (1940).
- [3] ——, An extension of Galois theory to non-normal and non-separable fields, Amer. J. Math., vol. 66 (1944).
- [4] ——, Relations between the composites of a field and those of a subfield, Amer. J. Math., vol. 66 (1944).
- [5] ——, Galois theory of purely inseparable fields of exponent one, Amer. J. Math., vol. 66 (1944).
- [6] Note on division rings, Amer. J. Math., vol. 69 (1947).
- [7] T. Nakayama, Semilinear normal basis for quasifields, Amer. J. Math., vol. 71 (1949).
- [8] —, Galois theory for general rings with minimum condition, J. Math. Soc. Japan, vol. 1 (1949).
- [9] ——, Commuter systems in a ring with radical, Duke Math. J., vol. 16 (1949).
- [10] —, Generalized Galois theory for rings with minimum condition, in Amer. J. Math.
- [11] T. Nakayama and G. Azumaya, On irreducible rings, Ann. Math., vol. 48 (1947).

Nagoya University