NON-NORMAL GALOIS THEORY FOR
NON-COMMUTATIVE AND NON-SEMISIMPLE RINGS

TADASI NAKAYAMA

THE purpose of the present work is to give, as a continuation of the writer’s
study of Galois theory for general rings ([8], [9], [10]), a kind of Galois theory
for general, non-commutative and non-semisimple rings, which includes, at
least in its main features, the Kaloujnine-Jacobson Galois theory of non-normal
fields ([3]; cf. [4], [5]). To deal with the non-commutativity we bring to the
fore certain double-moduli rather than self-composites, while the non-semi-
simplicity is manipulated by the method and idea used in the writer's above
mentioned study on (normal) Galois theory and commuter systems of non-
semisimple rings. (For the normal Galois theory of rings cf. [1], [2], [6], [7], [11],
besides the above.) Some of our arguments may even serve to make some
simplification in Jacobson's treatment of ordinary fields.

1. Galois ring and Galois system of module-endomorphisms of a ring.
Throughout this paper a ring means a ring with unit element and its module,
right or left, one for which the unit element is the identity operator.

Let A be a semiprimary ring. An A-right-, say, module m is called regular
when a direct sum of a certain (finite) number, say v, of its copies is (4-)
isomorphic to the direct sum of a certain number, say u, of copies of the 4-
right-module 4. The A-endomorphism ring 4* of m is nothing but the com-
muter ring of 4 in the absolute endomorphism ring of m. We have

LeEmMMA. The number u/v, called the (4-) rank of the regular module m, s
determined uniquely and characterizes the structure of m. A* is semiprimary and
m is also regular with respect to A*. The A*-rank of m is inverse to the A-rank.
The A*-endomorphism ring of m coincides with A.

If m is also regular with respect to a (semiprimary) subring B, then any
other regular 4-right-module n is regular with respect to B too and the ratio of
the A-ranks of m, n is equal to that of their B-ranks.

We note further that if 4 satisfies the minimum condition for right-ideals
then A* satisfies the same for left-ideals.

Throughout this paper, R will denote a ring satisfying the minimum con-

Received December 1, 1949, revised March 17, 1950. Addendum in revision. After the
submission of the present paper to the Journal, the writer had access to a paper by G. Hochs-
child, entitled ‘“Double vector spaces over division rings’” (Amer. Jour. Math., vol. 71 (1949)),
closely related to the present one. The idea of considering in the non-commutative case certain
double-moduli, rather than self-composites, has been exploited there already. However, in the
present work we dealt with non-division rings, in fact with general non-semisimple rings.
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dition for left-ideals.! Let A be its absolute endomorphism ring, that is, the
endomorphism ring of R as module without operator domain. Denote by
Ry, R,, or generally X;, X, with a subset X of R, the set of left-, right-multipli-
cations of R, or X, upon R. Let B be a subring of A, i.e. a certain ring of
(module-)endomorphisms of R, which contains R;. When further the direct
sum of a certain number, say s, of copies of R is (B-) isomorphic to the B-
right-module B itself, i.e., when R is B-regular with s™! as rank, we call B a
Galots ring of module-endomorphisms of R. Here B satisfies the minimum
condition for R;-right-submoduli, whence certainly that for its right-ideals.
The commuter ring V(B) of B in A, i.e. the B-endomorphism ring of R, is
contained in V(R;) = R,, and so has a form S, with a subring Sof R. R is
Sr-regular with rank s, that is, R has an independent S-right-basis of s terms.
Moreover, V(S;) = B.

If conversely S is a subring of R such that R possesses an independent
(finite) S-right-basis, of s terms, say, then S certainly satisfies, together with
R, the minimum condition for left-ideals? and V(S,) = B is a Galois ring in
the above sense. And S, = V(B). Thus

TuroreM 1. Galois rings B of module-endomorphisms and subrings S such
that R has independent right-basis over S are in 1-1 dual correspondence, by V(B)
= S,, B = V(S,). The B-rank of R is inverse to the S,- (that is, S-right-) of
R.

Further, by the Lemma, applied to the B-, and R;-module B, instead of 4-,
and B-module 11, we see that B is R, (right-) regular and the R;-rank of B is
equal to the S-rank s of R. Hence

THEOREM 2. The Galois ring B has an independent right-basts of s terms
over its subring R,, where 1/s is the B-rank of R (that is, s is the S,-rank of R):

B = ﬁlRl@ ﬁle@ “ e @ 6SR1.

We call such an independent right-basis of a Galois ring over R a Galois
system of module-endomorphisms of R. Our next task will then be the con-
struction of such a Galois system.

2. Construction of Galois system. Let m be a right-module of R and 1 be a
left-module of R. By their direct product m X n = m Xgn we mean, as
usual, a module generated (freely) by symbols uv (¥ € m, v € n) with relations

(u1 + u2)v = uw + usy, u(v; + v2) = uvy + uv,,
(uz)v = u(zv) (2 € R).

1We can develop our whole theory also under the assumpton that R, B, S (see below) are
semiprimary rings, or even under a much weaker assumption as G. Azumaya has kindly
pointed out. However, the writer prefers to present the theory in the form below where R
(and then S) satisfies the minimum condition, since the assumption does not spoil the essential
feature of the theory.

2Consider R[ with left-ideals [ of S.
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If n is an R-double-module the product m X n is, in a natural manner, an
K-right-module, and if both m, n are R-double-modules then m X n becomes
an R-double-module. In case m possesses an independent R-right-basis

(wy, #2,..., n) we have m X n=unm@ uan® ...dD u,n. If also n
possesses an independent R-left-basis (vy, 3, ..., v), then m X n =
2. °wiRv;.

Now, let S be a subring of R such that R has an independent S-right-basis
of s, say, terms. We consider R as S-right-, and S-left-module, and we want
to construct the direct self-product R X R over S. However, to avoid am-
biguity in notation, we introduce two (ring-) isomorphisms ¢, 7 of R. Putting
2x° = (3x)°, x°2 = (x2)%, x"2 = (x2)7, 2x" = (2x)7 (x, 2 € R) we consider R?, R”
as R-double-moduli. We then construct

(1) R X R = R° XsR" = 2;R"® x2°R"® ... ® x,°R",

where (x1, x3, ..., %,) is an independent S-right-basis of R.
According to (1) we have, for each z € R,

@) 2717 = x,°B1(2) 7 + x2°B2(2)" 4+ . . . + x,°B.(2)7, Bir(2) € R.

Bx(z) are determined uniquely by z, and B4: 2—8x(2) (=1, 2,..., s) are
module-endomorphisms of R. Moreover, for a € S we have (za)?17 = z%a" =
2 wxa’(Br(2)a)”. Thus Bi(z)a = Ba(za), or Baar = a.Bx, and so B, are S,-
endomorphisms of R, and Bi € V(S,) = B. We assert that they form a
Galois system belonging to S. Observe first that

%717 = x21°B1(x4) " + x27Ba(xi) + ... + x,°B4(x0)
and so Bu(x;) = Ons (Kronecker 3).

Therefore 85y, with y € R, maps x; upon ¥éx;, and 2_xBsyn (¥» € R) maps
x; upon ¥;. It follows that By, Bs, . . . , B, are Ri-right-independent. More-
over, since y, may be taken arbitrarily, the totality of 3 s8xys: coincides with
the whole V(S,) = B;

(3) V(Sr) =B = ﬁle@ ﬂle@ ) BsRI.
If z = X pxnan (an € S) then B4(2) = as. Thus

THEOREM 3. The s (module-)endomorphisms B, of R defined in (2) form a
Galois system belonging to the subring S. Here Ba(R) = S for each h. Moreover
Br(z) =0 (h=1,2,...,5) (that is, 2°17 = 0) implies z = 0.

3. Double-moduli and their relation moduli. = Although Theorems 1, 2, 3
already give the main features of our Galois theory, it is useful as well as
important to extend the above construction of a Galois system to the case of
general double-moduli of a certain type and thus obtain a characterization of
a Galois ring (Theorem 7). It is our purpose to generalize Jacobson’s theory of
self-composites of (commutative) fields, but we have to adopt a somewhat
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different formulation and method, because of the non-commutativity and the
non-semisimplicity of R.
Let I be a double-module of R having an independent R-right-basis, and

let uo be an element of M. Let (uy, %2, . . ., #n) be an independent R-right-
basis of M, and put
4) 2o = u1p1(2) + wuepa(z) + . . .+ Unpm(2)

for 2 € R; pi, M2, - - - » Um are module-endomorphisms of R.
Consider further a second R-double-module 9 with an independent R-right-

basis (1, v2, . . . , ?s), and its element v,. Introduce module-endomorphisms
¥1, ¥2 - . . , ¥n Of R correspondingly by
(5) 20 = v1v1(2) + vor2(2) + ... + vava(3).

Suppose that there exists an (R-two-sided) homomorphic mapping ¢ of M in N
which maps %o on vo; #* = vo. Put

(6) UR® = 2 VkXEA (xx» € R)

Then ¢ maps zug = X usun(z) on X vixraus(z), while (zu0)? = zue® = zv,
= Y vvi(z) too. So wi(z) = X xxama(z), or

Q) vy = hZ#hxkhl-
Thus
) R+ veRi 4 ...+ R C R 4 peRi + ... + unRy

If we consider, firstly, the case that I = N and ¢ is the identity mapping,
our observation shows that the module

9) 2Ry = mRi + paRi 4. .+ paRy

h

does not depend on the special choice of the independent basis (%1, %3, . . . , %m).
We call the module (9) the relation module of n,in IN.

If we consider secondly the case that It € M and ¢ is again the identity
mapping, we find that the relation module of %, in a module N containing IMN
(and having an independent R-right-basis) is contained in that of %, in M. 1If
here M is a direct summand in N as R-right-module, then the relation moduli
of uo in M and N coincide. This last remark, which is rather useful, we see
readily by observing that 0t/ is regular with integral rank and so 9 has an
independent R-right-basis which contains a basis for I; in fact, every inde-
pendent R-right-basis of It may be extended to one of N.

Now, if in particular Ru, contains an independent R-right-basis of I, then
the m module-endomorphisms pi, ps, . . ., um of R are R;-right-independent,
and moreover any independent R;-right-basis of the relation module is obtained
from suitable choice of independent R-right-basis of I?. Let namely

(10) u; = itk (ti € R).
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Then

(1) pa(ts) = Oni

and ¢; is mapped on y; by Y usyn;, which implies the right:independence of
B, M2, - . ., Bm OVer Ry

Further, under the same assumption also the converse of the above re-
lationship between the inclusion (8) and homomorphism is valid. Assuming
(8), where p and v are given in (4), (5), and also (7), we define ¢ as R-right-
homomorphic mapping of N into N by virtue of (6). Then

ue® = (L unun(1))? = 2 vxpann(l) = 2 veve(l) = v,.
More generally
(zu0)® = (X2 unpn(2))? = Zurxpnun(z) = 2 vevi(z) = 2vo.

Our purpose is to show that ¢ is also R-left-homomorphic, and we may,
for that purpose, assume %y, #s, . . . , %m € Ruo. On putting up, = frue (¢n € R),
as in (10), we have

un? = (trtho)® = tavo = 2 vevi(tn).
Comparing this with (6) we obtain
Xrn = vi(tp).
Therefore

(zun)? = (stano)® = (Cuui(2tn))® = 2 vixpiu:(2ta)
= > vewvi(2tn) = ztave = 3(X vevi(tn)) = 2(3 vixrn) = zup®.

This shows that the mapping is R-left-homomorphic, as is desired.

On returning to the case of general #, which may not, necessarily, even
generate M, we show further that its relation module X usR; in M is R;-left-
allowable too. For, if we put

(12) sup = 2 u;pjn(2)
then 3° w;u;(2y) = zyuo = 2 2 unun(y) = 2 #;pin(z)un(y) and
(13) zi; = wr(pjn(2))1,
which proves our assertion.
Here
(14) z— (pjn(2))

is a self-representation of R, i.e. a (matric) representation of R in R. Consider
the relation module of a basis element, say %o = #;. Then us = ps;, and the
relation module . uaR; is nothing but the R;-right-module generated by
p1i, P2iy « - - , Pm4; this module may thus be called the i-column module of the
representation (14).

https://doi.org/10.4153/CJM-1951-025-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1951-025-5

NON-NORMAL GALOIS THEORY 213

THEOREM 4. Let M be an R-double-module possessing an independent
R-right-basis. The relation module 3 unR; in (9) of an element u, in IR, with
wi given as in (4),1s independent of the special choice of the independeni R-right-
basis (ur) of M, and is a double-module of R;. If in particular Ru, contains
an independent R-right-basis, then ui, Me, ..., um are R-right-independent.
Let N be a second R-double-module with an independent R-right-basis. If ¢ s
an R-two-sided homomorphic mapping of M into N, then the relation module
S virR; of vo = uo? tn M is contained in the relation module S urR; of uo in W
(see (8)). In particular, if M N then the relation module of uoin N is contained
in that of ue in M. If M is direct summand in N as R-right-module, then these
relation moduli coincide. In case Ru, contains an independent R-right-basis of
M the inclusion Y viR, C 3 unR; is also sufficient in order that there exist an
R-two-sided homomorphic mapping of M into N which maps o upon vo. Thus
the structure of an R-double-module which has an independent R-right-basis
contained in Ru,, with an element u, of the module, is uniquely determined by its
relation module of the element u,.

The last statement means that, if two self-representations of R are defined
by R-double-moduli possessing independent R-right-bases contained in the
R-left-moduli generated, respectively, by their first, say, basis elements and
if their l-column moduli coincide, then the representations are equivalent
(in the usual sense of equivalence of representations).

Further we obtain readily

THEOREM 5. Let M, N be R-double-moduli, with independent R-right-bases,
and let ug € M, vo € N. Consider the direct sum M D N and its element wy =
o + vo. Then the relation module of wy in M ® N 1s the sum, not necessarily
direct, 3~ unR; + 3 viR; of the relation moduli 3" unR:, > viR; of o, voin M, N.

We next consider the direct product ¢ X N = M Xr N of MW, N and its
element wy = uwo. We have

THEOREM 6. The relation module of wo = ugwe in PWX N = M Xz N
coincides with the product module (3_urR)) (viRy) = Y upveR; of the relation
moduli 3 unRi, 2. viRy of ug, vo in M, N.

For, M XN =uND usND...0 upN = iR u10:R® ... D U, uR,
and v, Uy, . . ., UmVs are R-right-independent. And

2w = 2UWe = 2 Upur(2)ve = L urvevi(un(2)).

This shows that the relation module of wy in It X N is really > urviR;. But
this is the product module (3-uzR;) (3_ »R)), since > wiR; is R;-left-allowable
too.

Now, let .S be the totality of elements ¢ in R such that auy = uea. Sisa
subring of R. If @ € S then

zauy = sued = ui(2z)a + uswa(z)a + . .. + Unun(z)a,

https://doi.org/10.4153/CJM-1951-025-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1951-025-5

214 TADASI NAKAYAMA

whence px(za) = pn(z)a, or arun = pra,. Thus the relation module Y usR; is
contained in V(S,). If conversely a is an element of R such that u; are a,-
endomorphisms, then

zaug = . upun(za) = Y urun(s)a = zuc (s € R),
in particular auy = uea, and so @ € S. Thus
(15) S = {a € R; auy = uoa} = {a € R; ppar = amp(h =1,2,... ,m)}.

Suppose now that Ru, contains an independent R-right-basis of It and that
our relation module > uiR; forms a ring. If M = RueR is a second R-double-
module which is isomorphic to I by u, > v, then the ring assumption of
> unR; means, by Theorems 4, 6, that uo— uw, gives an (R-two-sided)
homomorphic mapping of I into the direct product M XzN. Let our basis
(us) of M be taken from Ru,; put up = txuo ((x € R), as in (10). Let (v;) be
the corresponding basis of . By our mapping of M into M X N zu, should
be mapped upon

zuwo = 2 urnn(2)vo = L unVimur(ua(2)),

while zuy = Y- usun(z) = X2 truour(z) and this should be mapped on
2tauevopn(z) = Lunvoun(s) = Lunveur(1)pa(2).

We have, since upvy are R-right-independent, ux(un(z)) = pe(1)un(z). Then

pr(2)uo = Luwme(ua(z)) = Zurne(Dua(z) = soun(2),
hence un(z) € S. Let (4';) be a second independent R-right-basis of I and
let u's be the corresponding endomorphisms. Put up = > #’yxxs. Then
,u';.(z) = Z x;.k,uk(z) and in particular #,h(ti) = Z Xhxdrs = Xni. Thus
WiRYCS(h=1,2,...,m)if and only if xz; € S. This last means that
yax € S for the inverse matrix (yax) of (xax). Thus the condition amounts to

Wy € urS® usS® ... D unS = Ru,S.

Here we have, as a matter of fact, y'n(R) = S, since the S-right-module
generated by xx; (4 = 1, 2, ..., m) eertainly exhausts S.
Conversely, if every u maps R in S, then

we(pr(2) = pe(1pr(2)) = ue(Dpa(2),

whence ppur € paRy, and X uiR, forms a ring.
Further, again under the assumption that 3 uaR; is a ring and us = tas
€ Ru,, we have

Ytaun(2)uo = Ltnuoun(z) = Lunpn(z) = 2uo

and z— Y trur(2) is, for every z € R, in the left-ideal [ = {z € R, zuy = 0}.
Here t4(h=1, 2, . . ., m) are S-right-independent mod [, as we see readily from
wi(ts) = 8:n. Thus (¢2) forms an independent S-right-basis of R mod [. If
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in particular [ = 0, that is, if (the single element) %, is R-left-independent,
then (¢) forms an independent S-right-basis of R. Since the R;-rank m is in
that case equal to the S,-rank of R, our relation module Y uzR; must then
exhaust the whole Galois ring V(S,), here we may also argue as in §2 without
appealing to the rank relation. So we have

THEOREM 7. Let M = RuoR have an independent R-right-basts contained in
Ruo. The relation module of ug in M forms a ring if* and only if we may choose
such a basis (up) so that up(R) C S for every h, where S is the subring (15) of
R; as matter of fact up(R) = Sthen. This last is the case, under the ring assump-
tion of the relation module, if and only if {uh} C RuoS. Provided that zu,
(z € R) vanishes only when z = 0, our ring assumption implies also that R has
an independent S-right-basis; in fact (tx) (h = 1,2, ..., m) forms such a basis
when (tyuo) forms an independent R-right-basis of M, and moreover the homo-
morphic mapping 1°17 — u, of the self-product R Xs R = R° Xs R* of R over
S (§2) upon M becomes an isomorphism. In short, our relation module is a
Galois ring if and only if it is a ring and zuy = 0 implies z = 0.

4. Relationship between relation moduli over R and its subring. Let S
be a subring of R and let R possess an independent S-right-basis; R = xS ®
2:S® ...® x,S. Then an R-double-module I with an independent R-right-
basis (u#1, %2, . . ., #m) is certainly an S-double-module with independent
S-right-basis (#sx;). Let %o be an element of I and let its relation module in
M, as R-module, be given by >_urR;. We now consider the relation module of
uo in M as S-module. On putting

(16) g = x1m1(2) + xom2(z) + . . . +x,7,(2) (ri(2) € 9),

we have zug = Yunun(z) = X auri(un(z)). Thus the relation module of %, in
the S-module I is given by

(17) 2o b kAT S

(where pj are considered as homomorphisms of .S into R).

In case u, is one of the basis elements, say u,, the situation may be described
also in terms of representation. Namely, on assuming x; = 1, without loss
of generality, we consider the regular representation (A;;(z)) of R in S, with
respect to our basis (x;):

(18) 2x; = 2 x%ihiji(2) (i(2) € °95).
Denote the self-representation of R defined by our basis (#1(= %), %2, . . . , Um)
of M by (pri(2)), as in (12). The S-(right-)basis (uxx;) of M defines then the
representation

(19) (Aii(pa(2)))

3This “if"’ part is valid without our assumption of existence of an independent R-right-basis
of P in Ruq, or even without assuming MM = RaoR.
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of degree ms in S. Restricted to S, this gives the self-representation of S
defined by the basis (#3x;) of S-module . Since here u1x; = u,, our relation
module of u, in the S-module M is obtained as the first, i.e. (1, 1)-, column
module of this representation.

THEOREM 8. The relation module of uo tn M as S-module is given by (17),
restricted to S, with w; in (16). If in particular uy = 1y and x, = 1, it is also
defined as the (1, 1)-column niodule of the self-representation (19), resiricted to S,
of S, where (pni) s the self-representiation of R defined by the (R-right-)basis (un)
of M and (\;)) is the regular representation of R in S defined by the (S-right-)basis
(x2).

We supplement the theorem with the following observation: Let m be an
S-double-module with independent S-right-basis. Then there always exists an
R-double-module 9 with independent R-right-basis, which contains, as
S-double-module, m, and which contains m as S-right-module indeed as direct
summand. (Then the relation module of %o (€m) in m coincides with that in
M, as .S-module. Therefore it is thus obtained from the relation module of %,
in R-module M by virtue of the above procedure of referring to S in terms of
m;(in (16)).

Let (1, v, . . ., v,) be an independent S-right-basis of m,
m=nS@®.5®...@ z,S5.
m Xs R is an R-right-module ::R® vaR® ... ® 9,R with vy, 2o, ..., v,

right-independent over R. Therefore
R Xsm XsR=ux1(mXsR)® x;(im XsR)® ...® x,(in XsR)

is an R-double-module with independent R-right-basis (x ;). On assuming
x1 = 1, it follows that the S-two-sided submodule x;mm = m is its direct
summand as S-right-module.

5. Supplementary remarks. If R is a primary-decomposable ring, then a
regular R-right-module is always a direct summand in a second regular
R-right-module which contains it. If R is a simple ring then a (finite) R-right-
module is always regular. These remarks are significant in connection with
the theorems in §3, in particular with Theorems 4, 6. If, moreover, R is a
quasifield, then any R-right-module certainly has an independent basis and
any subring is of course also a quasifield. In dealing with relation moduli
over a quasifield R we may thus always restrict ourselves to principal R-double-
moduli which possess R-right-bases contained in the R-left-module generated
by the element in question. Furthermore, the hypergroup formulation of
our Galois theory can then be given under a certain assumption.

On the other hand, it may be of some use, in view of the usual Galois theory,
to observe the case in which each %R, with a basis element u; of M, is R-left-
allowable too. Let an R-double-module 9t possess such an independent
R-right-basis (u1, %2, . . . , %) and let usbe thesum ug = uy + us + . . . + Um.
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The relation module of uy in M is >_usR;, where we put zu, = >_uppr(z).
Since Rujy C uzR, we have

zip = uppn(z)

and each pj is simply the self-representation of degree 1, i.e. (ring-) endomor-
phism, of R defined by the representation module #3R = Ru;R (with respect
to the basis element #;). If I has an independent R-right-basis contained in
Ru, then these m endomorphisms u; of R are right-independent over R;.

In this context we note some sufficient conditions that certain given (ring-)
endomorphisms, say »1, vs, ..., vs, of R be right-independent over R;. Let
(R, v), with a (ring-)endomorphism » of R, denote an R-double-module which
coincides with R itself as R-left-module and on which right-operation of
2 € R is defined by x (€R) — x.2 = x»(z). Thus (R, ») may also be looked
upon as a module Rw with R-left-independent element w such as wz= v(z)w.
Now we have, firstly: If each v;(R) possesses no non-zero left-annthilator in R

and if
(*) the R-double-moduli (R, v;), (R, v;) with distinct 1, j have non-zero (R-two-
sided)) isomorphic submoduli, then vy, v, . . . , v, are R-right-independent.

For, from our assumptions we deduce that v;x; = 0 implies x = (J, for each
1, and the R;-double-moduli »;R; and »;R; with 7 # j have no (R;-two-sided)
isomorphic non-zero submoduli. The sum Y »;R; is then necessarily direct
[8, §3, Remark 6].

Secondly, if »; are (ring-)automorphisms and {vz} forms a group which
induces a Galois group of the residue-ring R/N of R modulo its radical N in
the sense of [8] (that is, a similar assumption (**) obtained from (*) by re-
placing “submoduli” by “‘residue-submoduli” is satisfied), then again »; are
R;-right-independent [8, Lemma 4 and Remark 5 concerning it].

A similar construction can be used to show that a certain R-double-module
is principal. Interchanging “left” and “right”, in order to be in accord with
our situation, we consider n elements ©v;, #s, ..., v, which are right-inde-
pendent over R and satisfy zv; = 9,v:(3), with (ring-)endomorphisms »; of
R. Suppose that the (left-right-)symmetric counterpart of (**), mentioned
above, is satisfied. Then if v is an element in the (direct) sum %t = 3> »,Rof a
form vo = 0121 + ve22 + ... + vaz. with regular elements z; of R, we have

N = RyR.

For, under our assumption, RvoR exhausts the whole M mod > »;N firstly,
where N denotes the radical of R, and then actually, since Y v;V is (whence is
contained in) the intersection of all maximal R-right-submoduli of 9.

Of course all these assumptions are covered by the assumption that G = {».}
forms a Galois group of R, under which in [8] the complete correspondence of
between-rings, over which R has independent right-basis, with subgroups of G
(not only with certain subrings of 3_»;R;) was established.

Let S be a subring of R such that R has not only an independent S-right-basis
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of s terms but also an independent S-left-basis of the same number s of terms.
Suppose further that B = V(S,) contains an independent R,-right-basis
(81, B2, . .., B8, (ie. a Galois system belonging to S) which forms also an
independent R;-left-basis of B, and that 8.5, ® .5, @ ... ® B85S, forms a ring
(31) and moreover it equals $;8:® SiB:® ...® S8;. Then there exists an
element x in R such that B81(x), B82(x), ..., B:(x) form an independent S-left-
basis of R.

To show this, we observe that R is B-regular with rank 1/s, or, what is the
same, the direct sum R*® of s copies of R is B-isomorphic to the B-right-module
B. Hence naturally R®is (Si81® SiB:® ...® SiB,)-isomorphic to B. On
the other hand

B=RBi®RBD...@RB, =yu(SB1®... ®SB)D...
@ ya(Si/1® ... ® SiB,),

where (y1, y2,...,ys) is an independent S-left-basis of R. Hence B is a
regular (5;8:1® ...® Si8,)-right-module of rank s. It follows that R is
(Slﬁle L. ® S[Bs)-(right-)isomorphic to SllBl@ PN (‘B SLBQ = Blsz @ PR
@B,S:;. Let x be the element of R which is mapped on the unit element of
B1S:® ...® B,S; in such an isomorphism. Then (xf1, xf2, ..., x/%) forms
an independent S;-right-basis, that is, S-left-basis of R. This statement,
though complicated, may be regarded as a generalization of the theorem of
normal basis.

If here 8, are (ring-)automorphisms of R, then 8xR; = R,8: and moreover
each B is elementwise commutative with S;. Hence the left-symmetric half
of the assumption concerning 8; follows automatically.
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