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OSCILLATIONS OF CERTAIN PARTIAL DIFFERENTIAL
EQUATIONS WITH DEVIATING ARGUMENTS

B.S. LALLI, Y.H. YU AND B.T. CUI

Sufficient conditions are established for the oscillation of solutions of hyperbolic
equations of neutral type of the form

(x , ( ) e f i x R+ = G,

where R+ = {0, oo) , 0 is a bounded domain in Rn with a piecewise smooth
boundary d(l.

Recently there has been much interest in studying the oscillatory behavior of solu-
tions of partial differential equations with deviating arguments. We refer the reader to
the papers by Georgiou and Kreith [1], Mishev and Bainov [3, 4], and Yoshida [6].

The purpose of this paper is to obtain the sufficient conditions for the oscillation
of the solutions of hyperbolic equations of neutral type of the form

(1) W [«(*•')

(x,t) £SlxR+ = G,

where R+ — [0, oo) , fl is a bounded domain in Rn with a piecewise smooth bounded

an.
Suppose that the following conditions (A) hold:

(Ai) T = const > 0, a(t) is a continuous function in R+ such that lim <r(t) =
oo, <r(t)<*;

(Ai) a(t) is a nonnegative continuous function on iZ+, f(u) G C(R, R) are
convex in (0,oo) and uf(u) > 0 for u / 0 ] and

(A,) «(<)eC([0,oo)) andp(*)eC([0,oo),[0,l]).
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Consider first the boundary condition

(2) | ^ + /xu = o, (*,<) e do. x R+,

where fi is a continuous, nonnegative function on dd x R+, and n denotes the unit
exterior normal vector to 9fi.

DEFINITION: The solution u(u,t) of the problem (1), (2) is called oscillatory in G
if u[x,t) has zero in f2 x [to,oo) for each to > 0.

THEOREM 1. Let the conditions (A) hold and suppose there exists a positive
constant a such that

(3) ^^- > a for u ^ 0, a'(i) ~£ 0 for every t ^ 0.

If

(4) j q(s)[l-p(<r(8))]d8 = oO,

then every solution u(x,t) of the problem (1), (2) is oscillatory.

PROOF: Suppose to the contrary that there is a nonoscillatory solution u(x,t) of
the problem (1), (2) which has no zero in f2 x [to,oo). Without loss of generality we
may assume that u(x,t) > 0 in fl x [<o,oo). From condition (Ai) there exists a ti > to
such that u(x,t) > 0, u(x,cr(t)') > 0 and u(x, t — T) > 0 in Ox [ti,oo). We integrate
(1) with respect to x over the domain (1 and obtain for t ^ t\

^- \ f u(x,t)dx + p(t) I u{x, t - r)dx]
(5) dt U(i Jn J

= a(t) I Au(x,t)dx - q(t) f f(u(x,a{t))\dx.

Green's formula yields

(6) / Audx = I —ds = - f finds ^ 0.
Jn Jan on Jg(1

Moreover, from (Ai ) and using Jensen's inequality it follows that

(7)

Then from (5), (6) and (7) it follows that for t ^ h

(8) ^[V(t)+p(t)V{t-r)}+q(t)f(v(a(t))) < 0,
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where V(t) — Jnu(x,t)dx, t ^ to. Thus V(t) is a positive solution of the inequal-
ity (8). Set Z(t) = V(t) + p(t)V(t - T) . Obviously Z(t) > 0 for t^ <i and

(9) Z"(t)^0 for i^h.

Hence Z'{t) is a decreasing function. We claim that Z'{t) > 0 for t ^ tx. If Z'(t) < 0
for O h, then there exists a t2 ^ U such that Z'(t2) < 0. Then

'(t2)ds = Z'(t2)(t-t2) for t^i2

and h'm Z(t) — —oo, which contradicts the fact that Z(t) > 0. In view of (3), we have

Z"(t) + aq(t)V(v(t)) ^ 0, for t > tu

or Z"(t) + ctq(t)^Z(a(t))-p(a{t))V(a{t)-r)'\ < 0, t>tx.

Since Z(t) ̂  V(t) and Z(<) is nondecreasing, it follows that

(10) Z"(

L e t

We obtain for t^t\

w'it\ - at'-i z ' w ,

From this it follows that

) [ ( ) ] for

Thus we have

lim
t—>oo tp

which leads to a contradiction.
If u(x,t) ^ 0 for (x,t) E f t x [t0,oo), then the proof follows from the fact that

—u(x,t) is a positive solution of the problem (1), (2). This completes the proof of the
theorem. D
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REMARK. If u(x,t) = u(t), f(u) = u and a = t — a, then Theorem 1 and the Theorem
in [2] are the same.

We consider now the boundary condition

(11) u = 0, on dfix[0,oo),

and we consider the following Dirichlet problem in the domain f2

Av + av = 0, in fl
(12) v\m = 0,

where a is a constant. It is well-known that the smallest eigenvalue ao of the problem

(12) is positive and the corresponding eigenfunction ip(x) ^ 0 for x £ Cl.

With a solution u(x,t) of the problem (1), (11) we associate the function

fo u(x,t)tl)(x)dx

THEOREM 2 . If all conditions of Theorem 1 hold, then every solution of the

problem (1), (11) is oscillatory in G.

PROOF: Let u(x,t) be a positive solution of the problem (1), (11) in fi x [to,oo)
for some to. By condition (Ai) there exists a ti ^ to such that U(X,<T(<)) ^ 0 and
u(x, t — T) > 0 in Qx[ti, oo). Multiply both sides of equation (1) by the eigenfunction
i/>(x) ^ 0, and integrate with respect to x over the domain f2; then we have

— \J u(x, t)^{x)dx + p(t) J u(x, t - T

(14) = a(t)J Aui>(x)dx -q(t)J f(u(x,

From the divergence theorem it follows that

(15) / Aui/i{x)dx = - a 0 / urj>(x)dx, t ^ t u

Jn Ja

where ao is the smallest eigenvalue of the problem (12).

Using condition (Ai ) and Jensen's inequality it follows that

J
(16)
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Using (13), (15) and (16), we obtain

(17) ^

Since, for t > h H(t) ^ 0 and H(a(t)) ^ 0, then by (17)

The remainder of the proof is similar to that of Theorem 1; we omit it. D

We need the following lemma [5].

LEMMA . Consider the differential inequality

(18) x'(t) + b{t)x(g{t))^0, t>t0,

where b(t) e C(R, [0,oo)), g(t) 6 C(R,R), g{t) ^ t and g(t) is a non decreasing
function with lim g(t) = oo. If

t-»oo

f* 1
liminf / b(s)ds ^ - ,
<-"» Jn(t) ehi*)

then the inequality (18) has no ultimately positive solutions.

THEOREM 3 . Let conditions (A) and (3) hold. IS

(19)
/"* 1

liminf / Q(s)ds > -,
*->o° Ja(t) e

wAere Q(t) - aO£Oq{t)<T(t)\l -p((r(t))] exp / aO£oa(8)s[l -p(s)]ds\ ,

for all large T, eo G (0,1) is a constant, t ien every solution u(x,t) of the problem (1),

(11) is oscillatory in G.

PROOF: Let u(x,t) be a positive solution of the problem (1)—(11). As in the proof
of Theorem 2 we get (17). From (17) and (3) it follows that

- ^ [H(t) + p(t)H(t - T)} + aoa(t)H(t) + aq(t)H(a(t)) ^ 0, t>h.

Moreover,

Z"(t) + aoa(t) [Z(t) - p(t)B(t - r)] + aq(t) [z(a(t)) - p(*(t))H(a(t) - r)] < 0,
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Since Z(t) ^ H(t) and Z(t) is nondecreasing, we have

(20) Z"{t)

Obviously, Z(t) ̂  0, Z"(t) ^ 0 and Z1 ̂  0 for t ^ h (as in the proof of Theorem 1).
By Lemma 1 in [5] there exists a T ̂  t\ such that

Z(t) > eotZ\t) and Z(a(t)) > ea{t)Z'(a(t)) for t^T.

Hence, from (20) we have

(21)

Z"(t) + aoeoTa(t)[l -p(t)]Z'{t) + aeoq(t)v{t)[l -p(<r(t))]z'(<r(t)) ^ 0, t > T.

Set Y ( t ) = Z ' ( t ) e x p [ / a0e08a(s) [l - p(aj\ ] ds, t ^ T

and using (21) we obtain

(22) Y'(t) + Q(t)Y(a(i))^0, t>T,

where Q(t) = aoeo^O^C*) U ~ p{trW) exP / ao£oa{s)s[l — p(s)] Ids.

Thus (22) has a positive solution Y(t), which contradicts the conclusion of the
lemma. D

THEOREM 4 . Let conditions (A) and (3) hold. If

Urn sup / aog(<)<r(«) fl - p(a{t))]dt > 1,
t-»<» yCT(t)

 L J

then every solution u(x,t) of the problem (1), (11) is oscillatory.

PROOF: AS in the proof of Theorem 3, we obtain (21). Thus

(23) Y'(t) + o.0eoq(t)<r(t) [l - P(a(t))] Y(<r(t)) ̂ 0 , t> T,

where Y(t) = Z'{t), e0 E (0,1), such that

(24) limsup / aQ£Oq(s)cr(s) 1 — p(a(s)) \ds ^ 1.

Integrating (23) from <r(t) to t, we have

- Y(a(t)) + aoeo I q{s)a{s) [l - p{a{s))\ Y(a(s))ds ^ 0 ,
Ja{t) L J
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Since Y(t) is decreasing and (r'(t) ^ 0, it follows that

Y(t)-Y(<T(t))+aoeoY(<r(t)) f q(s)*(s) fl - p(a{s))]d3 < 0, t^T,
•MO L J
f
MO

Hence limsup / aoeoq(s)cr(s)\l — p(a(s)) \ds ^ 1,
t—*ao J L J

which contradicts (24). Thus the proof of Theorem 4 is complete.

EXAMPLE 1. Consider the equation

(25) =wI X(z,<)--«(*, < - | ) , (x,i)e(0,ir)x[0,oo)>

with a boundary condition

(26) ti>(0,<) = «, (» ,* ) = 0, i ^ O .

It is easy to check the functions: f[u) = u, q(t) = 1/2 = p(t), a(t) — 1, r = 7r/2
and a = 1. Moreover, w = 0 on 90 x [0,oo) where Q = (0,7r), and

J °° q(s) [l - p(*{s)j\ da = Je°±[l- i ] d, - oo.

Hence the conditions of Theorem 1 are satisfied. Thus all solutions of the problem (25),
(26) oscillate in G = (0,n) X [0,oo). For instance the function u(x,t) = sin t cos x is
such a solution.

EXAMPLE 2. Consider the equation

d2

•^ [u(z,t) + e-*u(x,t - nj\ = uxx(x,t) - e~vu(x,t - w),

(27) (x,0e(0,7r)x[0,oo),

with a boundary condition

(28) u{0,t) = u(ir,t) = 0, t^O.

It is easily verified that the functions

p(t) = e~n, q(t) = e"* , a(t) = 1, a(t) = t - n and f(u) = u

satisfy the conditions of Theorem 4. Hence all solutions of the problem (27), (28)
oscillate in G = (0,7r) X [0,oo). For instance, the function u(x,i) = sintsinx is such a
solution.
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