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QUANTIZATIONS OF THE MODULE OF TENSOR FIELDS 
OVER THE WITT ALGEBRA 

KE-QIN LIU 

ABSTRACT. After introducing the ^-analogue of the enveloping algebra of the Witt 
algebra, we construct ^-analogues of the module of tensor fields over the Witt alge­
bra and prove a partial ^-analogue of Kaplansky's Theorem concerning this module of 
tensor fields. 

0. Introduction. The representation Vap of the Witt algebra on the space of "the 
tensor fields" of the form P(z)za (dz)® is usually called the module of tensor fields over 
the Witt algebra. Here a and f3 are complex numbers and P(z) is an arbitrary polynomial 
in z and z_1. The module Vap over the Witt algebra plays a very important role in the 
representation theory of the Virasoro algebra. In 1982,1. Kaplansky proved in [3] that 
if V — ®nez Cvn is a Z-graded module of the Witt algebra W = ®nez &dn and d±\ are 
injective operators on V, then V is isomorphic to the module Vap of tensor fields for some 
a,j3 6 C . We call this result Kaplansky's Theorem. The main purpose of this paper is to 
prove a partial ^-analogue of Kaplansky's Theorem. 

Throughout the paper, we assume that 

• All vector spaces are the vector spaces over complex number field C; 

• C* := {xeC | J C ^ O } ; 

• q is a complex number satisfying q2 ^ 0,1; 

• ln(z) is the principal value of the function ln(z); 

• qa := e"*^ for a e C; 
• [<*]:= 2-±ÇforaeC. 

L J q _ q 1 

In Section 1, after defining ^-analogue U(Wq) of the enveloping algebra of the Witt 
algebra, we will construct two kinds of U(W^-modules A(A, a, (3) and B(X, a, (3) by us­
ing a version of the operations over Z-graded modules of the Witt algebra introduced by 
B. L. Feigin and D. B. Fuchs [1], where (A,a,/3) G C* x C x C. Both A(l,a,/3) and 
Z?(l, a, (3) become the module of tensor fields over the Witt algebra when q —+ 1. In Sec­
tion 2, we will find the necessary and sufficient conditions for X(A, a, (3) ^ Y(\f, af, (3') 
(where X, Y G {A, B}) and study the reducibility and unitarity of X(A, a, j3). In Section 3, 
we will prove a partial ^-analogue of Kaplansky's Theorem. 
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1. The constructions of U(Wq)-modu\es X(X,a,/?). Based on Proposition 1.1 in 
[5], we introduce the following définition: 

DEFINITION 1.1. The ^-analogue U(Wq) of the enveloping algebra of the Witt al­
gebra is defined as the associative algebra with generators {J±l,dm \ m G Z} and the 
following relations: 

(1. 1) JJ~X = J~]J = 1, Jdmrl = qmdm, 

(1.2) qmdmdnJ - qndndmJ =[m- n]dm+n, 

where m, n G Z. 

DEFINITION 1.2. A U(Wq)-modu\e V is called a 1-graded module if V = ©„GZ Vn 

and dm(vn) G Vm+n for m,n G Z. 
For every À G C*, we define an algebra isomorphism <̂ (A) of U(Wq) as follows: 

^ (A) :^ 1 h - ^ 1 ^ 1 , dm*-+\-ldm formel. 

If V = ©nGz Vn ls a Z-graded module of U(Wq)-module with /(v„) = qnvn for all 
n G Z and vn G K, then we can construct three more modules from V: contragra­
dient module V := ®nei(V)n, adjoint module V* := ©nez(^*)« a nd inverted module 

V° := ©„Gz(V°)n, where 

(V)„ := Hom(Vn, C), /|(V)„ := qn • id; 

(V*)n := Hom(K_„, C), 7|(V*)W := q~n • id; 

(V°)n :=V_„, J\(V°)n:=q-n-id 

and the definitions of the operators dm on V, V* and V° are the same as in [1]. 
It is easy to check that V is a Z-graded U(Wq)-modu\e and V*, as well as V°, is a 

Z-graded C/(W^-.)-module. As [/(Wy-modules, (V*)° ~ V. 
In particular, if V = ®kez &vk is a Z-graded U(Wq)-modu\e with the natural Z-grading 

and the following module action on V: 

(1.3) J(vk) := qkvk, dn(vk) := a(q,n,k)vn+h 

where n,k G.Z and #(g,«,fc) G C, then we can describe the contragradient module V, the 
adjoint module V* and the inverted module V° as follows: 

V=0Cv*, 
(1.4) ^ z 

J(vk) = qkvk, dn(vk) = a(q, -n, n + k)vn+k\ 

V*=©Cv,, 
(1.5) k^i 

Avid = q~\, dn(yk) = -a(q, n9 -n - k)vn+k; 
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(1.6) keI 

For a,/3 G C, set 

J(Vk) = 4 *Vjk, dnCVjfe) = - f l ( # , - / l , - f c K + f c . 

(1.7) a(q9n9k) := - ( [ * + a]<f + [n + 1][/3]<T*), 

where n9k £ Z. Then (1.3) and (1.7) define a t/(W<7)-module action on V(a,/3) : = 

®kei &vk-
Let us check (1.2), i.e. 

(1. 8) qmdmdn(vk) - qndndm(vk) = [m - n]dm+nJ~l(yk) for m,n,k G Z. 

Let qmdmdn(vk) = Am/lJcvm+n+k, then qndndm(yk) = An,m^,vm+^. By (1.7), we have 

Am,,a = <?m+2ûU + <*][* + * + a] + q^n^a[k + a ] [ m + 1 ] [ / ? ] 

+ ^m+n+/:+a[n+l][/3][n + ^ + a] 

+ ^+ 2 n + 2*[n+l][m+l][ /3]2 . 

It follows that 

qmdmdn(vk) - qndndm(vk) 

= ([it + a](qm+2a[n + k + a] - ^n+2a[m + A: + a]) 

+ qm+n+k[f3]((qm+a[k + a][m + 1] + ̂ a[n + l][n + it + a]) 

- (<f+a[fc + a][n + 1] + ̂ a[m + l][m + /c + a]))vm+n+* 

= ([fc + a ] ( - ç - V N - n ] ) 

+ qm+n+k[f3](-q-k[m - n][m + n + l]))vm+„+* 

- - [m - n]([fc+ a]<f + [m + * + l][/?km+n+*)^Vm+^ 

= [m-n]dm+nJ~[(vk)9 

so (1.8) is true. 
By the discussion above, (1.4) defines a Z-graded £/(W9)-module V(a,/3). If we re­

place g by q~x in (1.5), then (1.5) also defines a Z-graded Lr(W(?)-module V(a,/3)(1) as 
follows: 

V(a,/3)(1):=0Cv,, 
A:GZ 

J(Vk) '-= qkVk, dn(yk) := -a(q~l,n, -n - k)vn+k. 

After replacing q by q~x in (1.6), we get the following Z-graded (/(V^-module 
V(a,/3)(2): 

V(a,/3) (2 ):=©Cv*, 
(1.9) ^ z 

-/(Vit) := ^*v* dn(v*) := -a(q~\-n, -k)vn+k. 
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By (1.7), we know that 

a(q~\-n, -k) = [k - a]q~a + [n- l][(3]qn+k 

qk {-q~2k + q-lW]q2n + (q~2a - qW))-
q-q l 

Choose a', ft G C such that 

qlP'] = q'la ~ q[0] and q2a' - <T V l = ^ L 

Then we get 

aiq-\ -n, -*) - - ~ r ( - < T 2 * + ( ^ - ^ V + q[ft]) 

= [fi + ifc + a V W + [1 - n][/î V 4 * -

A direct computation shows that 

V(a,f3) ~ V(a',ft){2) and V(a,/3)(1) ~ V(a\ft') 

for some a.', ft, a", ft' G C. Therefore, the construction which produces the modules 
V(a, /3) (resp. V(a, (3)(l)) does not take us out of the class of the Z-graded U(Wq)-module 
V(a,/3)(2)(resp. V(a,/3)). 

Hence, for any (A, a, ft) G C* x C x C, we can construct two kinds of Z-graded U(Wq)-
module A(X,a,(5) and£(A,ar,/?) by using (1.3), (1.7), (1.9), (1.10) and </?(A) as follows 
(where n,k G Z): 

(1.11) A(A,a, /?) :=0Cv*, 
Â:GZ 

/(Vit) : = A^vjfc, 

4i(v*) := -A-!([A: + a]<f + [1 + rc][/?]<7n+Â>„+* 

A"Y 
q-q l 

[-q^ + qmq^ + {q^-q-\p]))vn+k 

and 

(1.12) fi(A,or,/?):=®Cvt, 
*ez 

7(vt) := Ag*v*. 

dn(vk) := -A- '([« + 1 + a ] ? " + a + [1 - n][/%"+*K+* 

= - ^ ^ r ( - < T 2 * + (<?2" - ^ V ] ) ^ " +qlfl)vn+k-

Let X be A or Z?, we define 

cl(X) := {X(A,a,/3) | (A, a,/?) G C* x C x C}. 

A U(Wq)-module V is said to be in c£(X) if V ~ X(A, a, /?) (as £/( W^-modules) for some 
X(\,a,/3) ecl(X). 

REMARK. For any fixed h G Z, X(A, a, /3) ~ Z(A^, a + h, ft) as £/( W^-modules, 
where ft G C with [ft] = [f3]q2h. 
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2. The properties of U(Wq)-modu\es X(A, a, (3). In this section, we assume that q 
is not a root of unity. 

If q is in the real number field R, then U(Wq) has an antilinear anti-involution 9 such 
that 9(J±l) := J±l and 9(dn) := </_„ for all n G Z. 

DEFINITION 2.1. Let g G R. A U(Wq)-modu\e V is unitary with respect to 0 if there 
is an Hermitian form (-| •) on V such that 

(v|v) > 0 f o r v G V and v T^O, 

(*) (x(u)\v) = (u\0(x)v) for w,v GVandxG £/(Wy. 

An Hermitian form (-| •) satisfying (*) is called a contravariantform. 
Let X(a, (3) := X(l, a, /?); then the following proposition is clear: 

PROPOSITION 2.1. For (A, a,/3) G C* x C x c, we have 
(1) X(A, a, f3) is reducible if and only ifX{a, (3) is reducible. 
(2) Ifq G R, then X(A, a,/3) is unitary with respect to 9 if and only ifX G R, A ̂  0 

an J X(a, f3) is unitary with respect to 9. m 

Now we prove 

PROPOSITION 2.2. Let X, F G {A, B}. Then 
(1) X(A,a, f3) — y(Ai,ai,/?i) <=4> f/zere exist some h G Z s«c/z that \ = X\qh and 

some Z-grading preserving isomorphism p such that p : X(a,/3) — Y{oc',(3'), 
where af = ct\+h and [(3'] = [f3\]q2h. 

(2) Every submodule ofX(X, a, (3) respects the Z-grading ofX(X, a, (3). 

PROOF. ( l )=> :Le t 

X(A,a,/3) = ©Cv, , Y{\uauPi) = 0Ci** 

ip : X(A, a,/?) ~ 7(Ai, <*i, f3\), Î/;(V*) = a/,«[/,+••• + a/rH/r 
where a^ G C* and/? ^ yV if s ^ t. That ipJ(vk) — J^(yk) gives that A = X\qjs~k for all 
1 < ^ < r. Because q is not a root of unity, r — 1. It follows that 

Î/;(V*) = amum, where/(fc) G Z. 

Since ^(*>-* = ^ , f(k) -k= f{k') - k for all k, k! G Z. Let /z := /(*) - A; for A: G Z. 
Then 

V<v*) = ak+huk+h for /: G Z. 

By the remark in Section 1, r\ : Y(X\,cc\,(3\) ~ Y(X\qh,a',f3'\ where a7 = ai + /z 
and [f3f] = [(3\]q2h. Let (/? := 77 ;̂ then (/? preserves the Z-grading and p : X(A, a,(3) — 
F(A, a', (3'). Using the automorphism y?(A) of U(Wq), we get that p : X(a, /?) ~ Y(a\ f3'). 

4=: If X(a,/3) ~ y(a',/3'), then 

X(A,a,/3)~y(A,a',/3') = y(Ai?\ai + /z,/3') ~ y(Ai,ai,/?i). 

(2) follows from the application of the operator J. m 
The proposition above tells us that if q is not a root of unity, then in order to study 

the properties of the U(Wq)-modu\e X(A, a, /3), it suffices to study the properties of the 
U(Wq)-moduleX(a,(3). 
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PROPOSITION 2.3. Let (<*,/3) G C x C. Then B(a,f3) G ci(A) <=> q2a+l + 
(eq4 - l)[/3] ^ 0. 

PROOF. « = : Since q2a+l + (q4 - 1)[/J] ^ 0, we can find (a'(3f) G C x C such that 

q2a' ~ <T V ] = ?[/?] and q[(3'} = q2a - ^ [ / J ] . 

Hence, £(<*,/?) = A(a',/?') G c£(A) by (1.11) and (1.12). 
= > : If #(a, /3) G c£(A), then, by Proposition 2.2, there exists a Z-grading preserving 

isomorphism if such that 

V? : A(a\f3f) ~ £(a,/3) for some (or',/?') G C x C. 

Set 

A(a', /?') - 0 Cv£, Z?(a, /3) = 0 C v*. 

<̂ (v*) = ^Vjt, where ^ £ C 

and 

(2.1) aaP:=q2a, baS:=aa^-\, cp:=q[f3]-\. 

Using (1.11), (1.12) and v?d„(v£) = dnip(y'k), we have 

(2.2) (-x + #[/?'])> + aa>p>)an+k = (-x + aaf3y + q[(3])ak, 

where 
x:=q~2kmdy:=q2n. 

It follows from (2.2) that 

(2. 3) (ba'px + gt/^JjK-Ht = (c/?* + aa0y)ao, 

(2.4) (&«'/?'* + qWf])ak = (cpx + aag)a0. 

Multiplying both sides of (2.2) by 

(ba,px + q[p']y)(ba,px + q[l3']), 

we get by using (2.3) and (2.4) 

( -* + q[/3']y + aa>0,)(cpx + aa0y){ba>0,x + #[/?']) 

= (-x + aa(3y + #[/3])(Zv/3'-* + q[fi']y)(CpX + 0ttjg). 

Comparing the coefficients of x2y and xy2 gives us the following identities: 

(2.5) -aapbafp + q[(3']c0ba>p> = -q[f3f]c0 + aa0ba,0<c0\ 
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(2.6) [fîteapba'F = [fàcpClap. 

Let n = 0 in (2.2); we have 

(2.7) qW'] + aa,p>=q[f3] + aap. 

• lfaa0 = 0, then [/?] = ^2or+1 by (2.1). Hence, 

• Ifaap ^ 0 and [/?'] ^ 0, then, by (2.1) and (2.6), we get 

(2.8) q2a'-q'lWf] = qWl 

It follows from (2.7) and (2.8) that 

(2.9) q2a-q-l[(3]=qW'l 

Using (2.8) and (2.9), we have that 

0^q2a' =q~lWf]+q[f3] 

= q~2(q2a-q-l[(3]+q[(3]) 

= q-3{<?a+l+(q4-W]), 

soq2a+l + (q4- l )[ /3]^0. 
• If aap ^ 0 and [/?'] = 0, then ba>^> ^ 0 by (2.4). It follows from (2.5) that c0 = - 1 , 

Le. [f3] = 0. Hence, 

A similar argument can prove the following proposition: 

PROPOSITION 2.4. Let ip be a 1.-grading preserving linear map and a, (3, oc' (3f G C. 
We have 

(1) ip : A(a, (3) ^ A(a\ fj') if and only if one of the following conditions holds: 
• (q2a - l)(q2a' - 1 ) ^ 0 and [j3] = [(3'] = 0; 
• ^2a = q2a' and [f3] = \J3']; 
• q2a+l = [0] = q2a'-\ [(3'] = 0 andq2a' g {q2k \ k G Z}; 
• ^2a'+1 = [pf] = ly2""1, [/3] = 0 am/*?2* £ { ^ | k G Z}. 

(2) y? : B(a, (3) — B(a\ /?') if and only if one of the following conditions holds: 

• 42 a = q~lWl q2a' = q-lWf] and (q[f3] - l)(q[f3f] - 1) ^ 0; 
• q2<* = q

2a' and \J3] = [/?']; 
. q

2a+x = [f3] = q2a'-\ [(3'} = 0 andq2a' g {q2k \ k G Z}; 
• q2a'+l = [(3] = q2a~\ [0] = 0 andq2a g {q2k \ k G Z}. • 

PROPOSITION 2.5. For (a, (3) G C x C, we have 
(1) A(a,(3) is reducible if and only if either q2a - q2t =[/?] = 0 or q2a+l = [f3] = 

q~2t~l for some t G Z. 
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N 3 dm_k(vk) = 

N 3 dn_k(vk) = 

q-q l 

qk 

q-q~l 

(2) IfB(a, (3) g c£(A), then B(a, (3) is irreducible. 

PROOF. The arguments of proving (1) and (2) are similar. Let us explain them by 
proving 2. 

If B(a9 0) g c£(A), then, by Proposition 2.3, 

(2.10) q2a+l + (q4-l)[0] = O. 

Assume that N ^ 0 is a submodule of B(a,/3); it follows from Proposition 2.2 that 
N = (Bkes ^vk for some non-empty subset S of Z. 

• If there exists vm $ N and vn $ N with m =£ n, then by (1.12), 

(-q~2k + (q2a - q~l [f3])q2(m-k) + q[/3])vm 

(-q'2k + (q2a - q-l[(3])q2(n-k) + q[f3])vn 

where v̂  G N. So the coefficients of vm and v„ have to be zero. This implies that q2a — 
q-{[(3] = 0. Going back to (2.10), we get that [/?] = 0, which contradicts to (2.10). 

• If Z\S — {s}, then we can choose vm G N and vn G N with m ^ n. As above, it 
follows from ds-m(vm) G N and ds-n(vn) G N that [/?] = 0, which is impossible. • 

For t G Z, we define 

f^ff l , i f ^ - ^ = [ / 3 ] = 0; 
A,(or,/3) = 0 ^ z C y ^ i f ^ + i = [/3] = q-»-im 

I Mr 

Then, At(a, (3) is an irreducible U(Wq)-module. 

PROPOSITION 2.6. Le/1 q G IR, //left VWY/I respect to the antilinear anti-involution 6 of 
U(Wq), _ 

(1) A(a,/3) w wwtary ^=^ q > 0 andq2a = q~l[(3] + q[(3]. 
(2) At(a, f3) and B(a, (3) are not unitary, where B(a, (3) $ c£(A). 

PROOF. ( 1 ) = > : Assume that A(a, (3) — ®kei &vk is unitary and (• | • ) the contravari-
ant form on V. So 

(dm(yk)\ve) = (vk\d-m(vi)) form, M G Z. 

Let n := I := m + k, then we have by (1.11) 

qk(-q-2k+qW]q2"-2k+(q2a - ^'[/î]))(v„|yn) 
(2 11) 

= <f H " 2 " + <7[/3k"2"+2* + (<72a - <T'[/?])) <v*h), 

where n,k GZ. Let fc = 0 in (2.11), we get 

(2.12) (rtj3to2B + M<v»lv»> = 9"(^9_ 2" + ô^<wo|vo). 
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where aa^, ba^ and cp are defined by (2.1). 

It follows from (2.11) and (2.12) that 

(-x + q[0]xy + aaf3)(ba(3x + q\J3])(â^y + c£) 

= (-x + â^3*y + qiPJKcjjx + â~^)(q[(3]y + baP\ 

where x := q~2k and y :— q2n. Comparing the coefficients of x2^, xy and y, we get 

(2.14) - â^bap + q[(3]c^ba(5 = -q[/3]cjj + cja~^ba^ 

(2.15) q2[0]2cjl + aapâ^ba(5 = â^2bap + <?2[/3][/3]c ;̂ 

(2.16) W]aapâ^ = qmffla^. 

Suppose that [/3] = 0, then aa/? = g2a ^ 0, c^ = - 1 and ba$ ^ 0 by (2.1) and (2.12). 
It follows from (2.15) that aap = ~cQ$. So (2.12) becomes that 

(q2a - l)(vn\vn) = qn(q2a - q-2n)(v0\v0) for n G Z. 

2a__ 4n 

This implies that/(«) := ^ 2a_! > 0 for all n G Z, which is impossible because 
f(n)f(—n) < 0 for large « > 0. Therefore, we have proved that [0] ^ 0. 

Similarly, we can prove that aap ^ 0 by using (2.14). 
Going back to (2.16), we have aap = qW\, i.e. q2a = q~l[(3] + qJM. 

Finally, choose an odd no G Z such that q[(3]q2n° + baf3 ^ 0, then (2.12) gives that 

(v„0|v„0) = 4-no(vo|v0), 

which implies that q > 0. 

<^=: Define an Hermitian form (• | •) on V by 

(vn|vm) := hnmq~n for all n,m G Z. 

It is easy to check that ( | •) is a contravariant form. 

(2) Use the same argument as above. • 

3. A partial ^/-analogue of Kaplansky's Theorem. 

LEMMA 3.1. Let q be not a root of unity, then for all integers n and all positive 
integers s, we have in U(Wq) 

dndtn = q-2nsdLndn + q-m[^Ç^ds-n
ldoJ'1 + [sn][(s - l)n]ds_-n

lr2. 
L«J 
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PROOF. We use induction on s. It is clear that the Lemma is true for s — 1. Now we 

assume that the Lemma is true for s, then 

dnd
sl\ = (dnd

s_n)d-n 

- [4 d_ndn + q ———d_n d0J 

+ [sn][{s-mdsIn
xr2y„n 

= q-2nsds_n(q~2nd-ndn + q-n[2n]doJ-1) 

+ [sn][(s- l)n]q2ndtnJ~2 

+ q-sn[^^ds-n
lqn(q-nd^d0 + [n]d-^l)Tl 

= q-2n(s+l)ds^dn + q-W(q-m[n] + q[sn\)[^ds_nd0r
X 

+ (q-{s-l)tt[2n] +q2n[(s - l)n])[sn]ds_nr
2 

= q~2n^ds+xdn + g - ( ^ ) " K J + 1 > ^ 2 i i ] d f ! 
[n] 

This proves the Lemma. • 
Now we begin to prove the following partial ^-analogue of Kaplansky's Theorem: 

THEOREM 3.2. Let q be not a root of unity and V = (Bkez &vk a T-graded U(Wq)-

module withJ(yk) G Cvkfork £Z.Ifd\ andd-\ are injective operators on V and 

(Jdid-iJ - Jd-id\J)(v0) ^ rv0, 
q-q~x 

thenV~A(\,a,f3)orV~B(\,a,(3)forsome(\,a,(J) G C* x C x C. 

PROOF. Since J(yk) G Cv^, d\(yk) ^ 0 and Jd\J~x = qd(vk), there exists some 

À G C* such that J(vk) = \qkvk for all k G Z. Using the automorphism (f(X~l), we can 

assume that A = 1, in which case, we will prove that either V ~ A(a, (5) or V ~ B(ay (5) 

for some (a,/3) G C x C. 

Set 

d0(v0) = av0, d\d-\(vj) = XjVJ9 d-Xdx(vj) = yjVh 

where a,Xj,yj G C and y G Z. We consider the system (i) with respect to a and (3: 

(3.2) -([a]qa + [[3]) = a; 

(3.3) [<x]qa([a-l]qa + [2]ffl)=xo 

and the system (ii) with respect to a and f3\ 

- ( [ a ] < f + [/?]) = a; 

(3.4) [ a + l ] ^ ( [ a ] ^ + [ 2 ] [ ^ ) = j 0 
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First, we assume that there exist a and (3 such that (i) holds. Using induction on j and 

(3.2) gives us 

(3.5) d0(vj) = -([a +j]qa + [p]4)vj for; G Z. 

Since (qd\d-\J — q~ld-\d\J)(vj) = [2]doVj, we have by (3.5) 

(3.6) j+lXj - j - l
y j = -[2][a +j]qa - [2][/?tf for; G Z. 

Furthermore, computing d\d-\d\(vj-\) in two ways produces the following relation 

between Xj and y,: 

(3.7) XJ =yj-\ forj G Z. 

Going back to (3.6), we get 

(3. 8) qj+lxj - j-lxj+l = -[2][a +j]qa - [2][0]q> forj G Z. 

Now we claim that 

(3.9) xj = [a+flqa([a+j-l]qa + [2][P]qi)f0TJ G Z. 

By (3.3), (3.9) is true forj = 0. Assume that (3.9) is true forj, then (3.9) is also true 

forj ± 1. For example, let us prove that (3.9) is true forj + 1. By (3.8), 

xJ+l = q2Xj + [2][a+j]qa-J+l + [2][(3]q 

= q\cc+j]qa{[a+j- 1 ] ^ + [ 2 ] [ ^ ) + [ 2 ] [ a + j ] ^ + 1 + [2][/3]q 

= [a +j]q2a(q2[a + j - 1] + [ 2 ] ^ " ^ + 1 ) 

+ [2][/3]^([a+7V+ 7" + ^ " a ) 

= [a +j]q2a[a +j + 1] + [ 2 ] [ / % V + 1 [<* +7 + 1] 

= [a + j + l]qa([a +j]qa + [2][/3tf+1). 

Hence, (3.9) is true for all j G Z by induction. 

Let j = 1 in (3.9), we get (3.4). So we have proved that if a and (3 satisfy (i), then a 

and (3 also satisfy (ii). 

Similarly, we can prove that if a and (3 satisfy (ii), then a and (3 also satisfy (i). 

A direct calculation shows that either (i) has a solution or (ii) has a solution. Therefore 

there exists (a, (3) G C x C such that (i) holds. 

Using (3.5) and (3.9), we can choose a basis of V, say {v^ | k G Z}, such that 

(3.10) dn(vj) = - ( [ a +j]qa + [n + l ] [ /%" + >„ + , , 

where « = 0, ± 1 andj G Z. 

Forj G Z, set 

di(vj) := e(j)vj+2, d-2(vj) := g(j)vj-2, 
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(3.12) e(j) :=/(/') -(\J + ct]qa + mm<f+\ 

(3.13) g(j) := h(j) - ([/ + a]qa - [p]^2), 

where e(j),g(j),f(j), h(j) G C. 
Using (3.10) and following identities: 

{q1d2d.,J-q-xd-Xd1J){vj) = [3]di(rç), 

(q-2d-2d\J•- qdid-2J)(vj) = -md-i(vj), 

we get 

q«M-1 [ a +j + 2 ] e ( / ) _ ^ 2 [ a + ; > ( / . _ i) = _ [ 3 ] ( [ a + y ] ^ + [2][/3]^+l ), 

^ + 1 ( [ a + y - 2 ] ^ + [ 2 ] [ W ) g ( / ) - ^ 2 ( [ a + y V + [2][/3V+l)g(/'+ 1) = [3][a+j]qa. 

It follows from (3.12) and (3.13) that 

[a+j + 2]fV) = qi[a+jlfV-l), 

([a+j]qa+[2][(3]</+l)h(j + 1) = q\[a+j- 2]qa + [2][0]<f-l)h(j). 

These identities imply that 

(3..4, /»vI'r;r/!>>' 
[ a+y+l ] [a+y + 2] 

G 1 5 , , n = q*j(l<* ~ l]qa + [2]L3])([or ~ 2]g" + PJtflg-1) 
V ( [ a + 7 - 2 ] ^ + [ 2 ] [ i 8 V - 1 ) ( [ a + y - l ] ^ + [2][)f3V) J ' 

wherej G Z. Note, that denominators in (3.14) and (3.15) are non-zero follows from that 
(3.10) and d±{(vj) ^ 0 for all; G Z. 

Let z := q~j[j]' We can rewrite (3.12)—(3.15) as follows: 

q~je(j - 2) = <T'/(/ - 2) - ^ + t a - 2 ^ + W^ 

q~jg(j) = q~jh(j) - (z + [a]<f - [/%~2), 

^-2[a-r-l][a + 2]/-(0) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

q Je(j-

( 

q-jf(J-2) 

q-jh(j) = 

(qi~az+[a + 1] - [2]ql-a)(q2-az + [a + 2] - [2]q-ay 

([a -\}qa + [2][/3])([a - 2]qa + [2][flg-'yi(0) 

(qz + [a - 1 ] ^ + [2][0])(qh + [a - 2 ] ^ + [2][/?]ç-')' 

where y 6 Z. 
By Lemma 3.1 and a direct computation, we can get 

(3.20) q~Je(j - 2) • q~Jg(j) = q2z2 + c{z + c2 for large eveny, 
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where c\ 
Using 

(3.21) 

where 

and c C2 are complex numbers, which 
(3.16)-(3.19),wehave 

R\ 

Ri 

r, 

q-je(j - 2) = 

:= (z + [a - 2]qa'2 4 

X (z + [a + 2]qa 

:=(z + [ a + l ] ^ 3 -

:=(.z + [a](f-W]q-

2/?i 

• mm-2 

~2 - [2]q~ 

[2]q-2)(z 

~2)(z + [a-

are independent of j . 

-J ^ T] 

12 

! ) ( z + [ a + l ] 9
a - 3 - [ 2 ] 9 - 2 ) 

2)-q2a-\a+\][a + 2]f{Q), 

+ [a + 2 ] ^ - 2 - [ 2 ] ^ 2 ) , 

-\]qa-x+mmq-x) 
x(z + [a -2]<f" 2 + [2][/%-3) 

- q-\[a - \}qa + [2][/3])([a - 2]qa + [2][p]q~l)h(0l 

T2 := (Z + [a - lte*"1 + m ^ ] ^ - 1 ) ^ + [a - 2]^ a " 2 + [2][/3]<T3). 

(3.20) implies that as the polynomials with respect to z, we have 

(3.22) R2T2 divides RxTi. 

Now we have two cases to discuss: 

• CASE 1. /(0)g(0) = 0, in which case, either/(0) = 0 or g(0) = 0. If /(0) = 0, 
then (3.22) becomes 

72 divides (z + [a - 2]<f~2 + [3][/3]<T2)ri. 

It follows that 

3 2 3 ) ^3([a - l]g" + [2][/?])([« - 2]g" + [fltflg-'WO) 

?2 

is a polynomial of z, hence, it is zero. Since d\(v-\) ^ 0 and di(v_2) ^ 0, the coefficient 
of h(0) in (3.23) is not zero. So we have to have h(0) = 0. 

Similarly, if h(0) = 0, then we also have/(0) = 0. 
Therefore,/(0)g(0) = 0 implies that/(0) = g(0) = 0. By (3.12)-(3.15), (3.10) is also 

true for n = ±2 andj G Z. This proves that V = A(a, /?) because U(Wq) is generated by 

{J±1,db,d±i,rf±2>-

• CASE 2. /(0)g(0) ^ 0. Since d±\(vj) ^ 0 for ally G Z, the coefficients of/(0) and 
g(0) in R\ and Ti are non-zero. It follows from (3.22) that R2 divides T\ and T2 divides 
Rule. 

Tx = (z + [a + l t e a - 3 - [2]q~2)(z + [a + 2]<f "2 - [2]<T2)(z + G), 

^ = (z + [a - lfo*"1 + ra^]^1)^ + [a - 2 K ~ 2 + [2][(3]q-3)(z + / /) , 

where G, H G C. Comparing the coefficients of z2, we get 

G - [ a - 2 ] ^ - 2 + [ 3 ] [ ^ - 2 , H = qa[a]-[p]q-2. 
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Going back to (3.21), we have 

-j n = (z+[a + 2]qa+2 - W]g2)(z+ [a+ l]qa+l + [2][/J]g3) 
(3.24) q e[J) (z+[a+l]qa+i)(z+[a + 2]qa+2) 

X(z + [a]qa + [2][l3]q\ 

q-jg<j) 
(z + [a + 1 ]qa-" - [2]q~2)(z + [a + 2]qa-2 - [2]q-2) 

(3.25) "* o v / (z + [a-l]q"-l + [2][0](r1)(z+[a-2]q«-2 + [2][l3]q-3) 

x(z+[a -2 ]<7 a - 2 + [3][/3]<T2) 

for large even y. In particular, the rational function q~^e{j) of z and the rational function 
of the right side of (3.24) take the same values at infinite different points: 

{q~j\j] | for large even j}. 

It follows that (3.24) is true for ally G Z. 
Similarly, (3.25) is also true for ally G Z. 
Now we choose QQ = 1 and a}• G C* for y G Z such that 

t-x o ^ flM z + [ a + £+l]<?^+ 1 . . _ _ 
( 3 - 2 6 ) ^ = z + [ a + ^ - + [ 2 ] [ / 3 V - f ° r ^ G Z ' 

Set K,- := a7Vj, we get 

d„(uj) = -cf(z + [a + n]qa+n + [1 - n]W]q")un+j 

= -([a + n +j]qa+n + [1 - «][/3]<r>« 
(3.27) 

forrc = 0 ,±l ,±2andy G Z. 
For example, let us check that (3.27) is true for n = 2 and ally G Z. By (3.26), we 

have 

OJ_ = (z + [ a + l ] ^ + 1 ) ( z + [ a + 2]^+ 2) 

fl/+2 (z + [ a ] ^ + [ 2 ] [ ^ ) ( z + [ a + l ] ^ + 1 + [2][/3V)' 

(3.24) and (3.28) imply that 

d2(w/) = aj(vj) = aje(j)vj+2 = qi-J-q~Je(j)uj+2 

= -<f 

aj+2 

(z + [a+l]qa+l)(z+[a + 2]qa+2) 

(z + [a]q* + [2][/%)(z + [a + 1 ]^ + 1 + [2][/%3) 

(z + [a + 2]q«+2 - [(3]q2)(z + [a + 1 ]^ + 1 + [2][/%3) 
(z + [a + l]<7a+1)(z + [a + 2]4a+2) 

x ( z + [ a ] ^ + [ 2 ] [ ^ H + 2 

- - ^ ' ( z + [ a + 2 ]^ + 2 - [ / 3 ]^H + 2 . 

Therefore, V = ©nGZ Cw„ = B(a, /?) by (3.27). • 
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