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QUANTIZATIONS OF THE MODULE OF TENSOR FIELDS
OVER THE WITT ALGEBRA

KE-QIN LIU

ABSTRACT  After introducing the ¢ analogue of the enveloping algebra of the Witt
algebra we construct ¢ analogues of the module of tensor fields over the Witt alge
bra and prove a partial g analogue of Kaplansky s Theorem concerning this module of
tensor fields

0 Introduction. The representation V,4 of the Witt algebra on the space of “the
tensor fields” of the form P(z)z%(dz)’ 1s usually called the module of tensor fields over
the Witt algebra Here o and 3 are complex numbers and P(z) 1s an arbitrary polynomial
in zand z~' The module Vs over the Witt algebra plays a very important role in the
representation theory of the Virasoro algebra In 1982, 1 Kaplansky proved 1n [3] that
if V= @,c7 Cv, 1s a Z-graded module of the Witt algebra W = @,z Cd, and d.., are
mjective operators on V, then V 1s isomorphic to the module V5 of tensor fields for some
o, 3 € C We call this result Kaplansky’s Theorem The main purpose of this paper 1s to
prove a partial g-analogue of Kaplansky’s Theorem

Throughout the paper, we assume that

o All vector spaces are the vector spaces over complex number field C,
o C* ={xeC|x#0},
e g1s a complex number satisfying ¢> # 0, 1,

In(z) 1s the principal value of the function In(z),

o ¢ =% fora e C,

o [o] :%—;foraec

In Section 1, after defining g-analogue U(W,) of the enveloping algebra of the Witt

algebra, we will construct two kinds of U(W,)-modules A(), «, 5) and B(\, «, 3) by us-
ng a version of the operations over Z-graded modules of the Witt algebra introduced by
B L Feigin and D B Fuchs [1], where (A, o, 3) € C* x C x C Both A(l, o, 3) and
B(1, a, 3) become the module of tensor fields over the Witt algebra when ¢ — 1 In Sec-
tion 2, we will find the necessary and sufficient conditions for X(\, &, 3) ~ Y(\, o, 3))
(where X, Y € {A, B}) and study the reducibility and unitarity of X()\, «, 3) In Section 3,
we will prove a partial g-analogue of Kaplansky’s Theorem
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QUANTIZATIONS OF THE MODULE OF TENSOR FIELDS 821
1. The constructions of U(W,)-modules X()\, «r, 3). Based on Proposition 1.1 in
[5], we introduce the following definition:

DEFINITION 1.1. The g-analogue U(W,) of the enveloping algebra of the Witt al-
gebra is defined as the associative algebra with generators {J*!,d,, | m € Z} and the

following relations:
(1.1 I =s"=1, Jd, " =q"d,,
(1.2) q"dnd,J — q"dndnd = [m — nldpin,

where m,n € 7.

DEFINITION 1.2. A U(W,)-module V is called a Z-graded module if V = @,¢z Vi,
and d,,(v,) € Vypyn form,n € 7.
For every A € C*, we define an algebra isomorphism ¢(\) of U(W,) as follows:

e\ = AEUEL g, A, form € 7.

If V= @,z V, is a Z-graded module of U(W,)-module with J(v,) = ¢"v, for all
n € Z and v, € V,, then we can construct three more modules from V: contragra-
dient module V 1= @,c7(V),, adjoint module V* := @,c7(V*), and inverted module
V¢ i= @,ez(V°),, where

(V), := Hom(V,,,C), J|(V), :=q" -id;
(V) := Hom(V_,,C), J|(V*),:=q "-id;
V=V, J(V)p:i=qg"-id

and the definitions of the operators d,, on V, V* and V° are the same as in [1].

It is easy to check that Visa Z-graded U(W,)-module and V*, as well as V°, is a
Z-graded U(W,-1)-module. As U(W,)-modules, (V*)° ~ V.

In particular, if V = @z Cvy is a Z-graded U(W,)-module with the natural Z-grading
and the following module action on V:

(1.3) Jvo) = gve,  du(vi) == alq, n, k)

where n,k € Z and a(q, n, k) € C, then we can describe the contragradient module V, the
adjoint module V* and the inverted module V° as follows:

‘_/ = @ CV/(,
(1.4) kez
J) = gve,  du(vi) = alq, —n,n+ kv

V= @Cvk,
(1‘ 5) kez
JoR) = q v, dum) = —alg,n,—n — k)
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Ve = @ Cvk,
(1.6) ket
J) = g v, du(v) = —alg, —n, —k)Vnui.

For o, 5 € C, set

(1.7) a(g,n,k) := —((k + alg® + [n + 11[81g"),
where n,k € Z. Then (1.3) and (1.7) define a U(W,)-module action on V(«,3) :=
Drez Cvi.

Let us check (1.2), i.e.
(1.8) q"dmdn(v) — " Andm(vi) = [m — n)dpind ' () for m,n, k € 7.
Let ¢"dpdn(vi) = Am,n,kvm+n+k, then g"dndm(vi) = An,m,k, Vman+k- By (1.7), we have

Apnk = "2k + a[n +k + o] + @™k + al[m + 1][6]
+ " 1B n+ k+ o)
+ @722 4 1 [m+ 1][81%
It follows that
q"dnd, (Vi) — q"dpdpm(vi)
= (Amnk — Anmi)Vimentk
= (lk+ al(@™*[n+k+a] — " *[m+k +al)
+q™ " BI((g™ Tk + allm+ 1]+ ¢%[n+ 1][n+k + )
— (@™ Tk + al[n+ 1]+ g%[m+ 1[m + k + &) Vysnsk
= (lk+ al(—¢ *q*m —nl)
+ ™" B)(—g [ — nllm+n+ 11))Vanenek
= —[m — n)(lk+ alg® + Im+n+ 11[Blg™" )G  Vpenei
= [m— n)dmnd ' (W),
so (1.8) is true. i
By the discussion above, (1.4) defines a Z-graded U(W,)-module V(a, 3). If we re-

place g by g7! in (1.5), then (1.5) also defines a Z-graded U(W,)-module V(c, B)" as
follows:

V(a, )V := @y,

kez
JR) := g v, du) 1= —alg™ "t n, —n — k).

After replacing ¢ by g~! in (1.6), we get the following Z-graded U(W,)-module
V(a, B)®:

V(a, B)® := P Cy,
(1.9) kez

J) = gvi dy(w) = —alg !, —n, =KV
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By (1.7), we know that
a(g”',—n,—k) = [k — alg "+ [n — 1][8lg"*
= —(—¢ % +q ' [B1g"" + (g > — q[B))).
Choose o/, 3’ € C such that
gl = g **—qlBland ¢** — ¢ '[8') = ¢ '[8).

Then we get

k
p _"q_, (g % +@ — ¢ '8 Dg™ +4(8")

= [n+k+a'1a™ +[1 — n][B1g".
A direct computation shows that
Vi, 3) ~ V(a',3") and V(a, B)V ~ V(a”, 8")

for some o, 3, ", 3" € C. Therefore, the construction which produces the modules
V(a, B) (resp. V(a, B)") does not take us out of the class of the Z-graded U(W,)-module
V(a, B)? (resp. V(a, 8)).

Hence, for any (), o, ) € C* x C x C, we can construct two kinds of Z-graded U(W,)-
module A(\, o, 3) and B()\, «, 8) by using (1.3), (1.7), (1.9), (1.10) and () as follows
(where n,k € 7):

(1.1D) A\ a,B) := P Cyy,
kezZ
Jwe) := Ad'vy,
du(i) := =A7" [k + adg® + [1 +n][Blg" vk
— _ )\*qu (_ —2k + [B] 2n +( 200 _I[/B]))
- q— q_l q q q q q Va+k

a(g”',—n,—k) =

and

(1.12) B\, o, 3) := P Cw,

kez
Je) := Ag v,

du(v) = =27 [+ k+ adg™ + [1 = nl[B1g" WV

Al
q—q!

Let X be A or B, we define

cl(X) = {X(\, o,B) | (\a,B) € C*xC xC}.

A U(W,)-module V is said to be in c£(X) if V ~ X()\, «, §) (as U(W,)-modules) for some
X\, a, B) € cl(X).

REMARK. For any fixed h € Z, X(\, a, 3) ~ X(A\g", & + h, 3') as U(W,)-modules,
where 3’ € C with [3'] = [Blg*".

(=g 7+ (@ — 4 ' 1B +q[B]) Vuss-
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2. The properties of U(W,)-modules X(), o, 3). In this section, we assume that ¢
is not a root of unity.

If g is in the real number field R, then U(W,) has an antilinear anti-involution 6 such
that 9(J*") := J*!' and 6(d,) :== d_, foralln € 7.

DEFINITION 2.1. Let g € R. A U(W,)-module V is unitary with respect to § if there
is an Hermitian form (-|-) on V such that

(vlv) >0forv e Vand v #0,
(%) (x(u)|v) = (u|0(x)v) for u,v € V and x € UW,,).

An Hermitian form (-|-) satisfying (x) is called a contravariant form.
Let X(, 8) := X(1, «, B); then the following proposition is clear:

PROPOSITION 2.1.  For (\,a,3) € C* x C X C, we have

(1) X(X\, a, () is reducible if and only if X(«, 3) is reducible.

(2) If q € R, then X(\, «, 8) is unitary with respect to 8 if and only if X € R, A # 0
and X(«, 3) is unitary with respect to 6. n

Now we prove

PROPOSITION 2.2. Let X,Y € {A,B}. Then
(1) X(\, o, B) ~ Y(\1, a1, B1) <= there exist some h € T such that A\ = \\q" and
some Z-grading preserving isomorphism ¢ such that ¢ : X(a,3) ~ Y(',3'),
where o' = ay +hand [B'] = [8114*".
(2) Every submodule of X(\, a, 3) respects the Z-grading of X(\, ., 3).
PROOE. (1) =: Let
X()\,a,ﬁ):®CVk, Y(/\lvalvﬁl):@cuk

kez kez
i X\ o, 0) 2 YA, an,51),  Y(w) = ajuj, +- -+ aju;,
where a;, € C* and j; # j; if s # t. That YJ(v;) = J(v;) gives that A\ = X\ ¢ for all
1 <s < r. Because q is not a root of unity, r = 1. It follows that
Y(v) = agUsky, where f(k) € Z.
Since ¢/ ¥~k = %I,f(k) —k =f(k') —kforall k,k' € Z. Let h :== f(k) — k fork € Z.
Then
V(i) = ageptien fork € 7.

By the remark in Section 1,  : Y(\j, a1, 31) ~ Y(\q", o/, ), where o = o) +h
and [#'] = [B1]g*". Let p := ny; then  preserves the Z-grading and ¢ : X(\, o, §) ~
Y(\, o, 3). Using the automorphism ¢ () of U(W,), we get that ¢ : X(«a, 8) ~ Y(/, 3').

—: If X(a, 3) >~ Y(, 3'), then

X\ a,8) ~ YO, o, 8) = Y(Ouq", o1 + h, ) ~ YO\, a1, B1).
(2) follows from the application of the operator J. "
The proposition above tells us that if g is not a root of unity, then in order to study

the properties of the U(W,)-module X(A, a, 3), it suffices to study the properties of the
U(W,)-module X(a, 3).
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PROPOSITION 2.3. Let (a,f) € € x C. Then B(a,) € cl(A) < ¢***' +
(eq* — 1)[B] # 0.
PROOF. <=: Since ¢°**! + (¢* — 1)[B] # 0, we can find (a’3’) € C x C such that
7 —q'181 = qlB) and q[3'] = ¢ — 7' [B].

Hence, B(a, 8) = A(o, ') € cf(A) by (1.11) and (1.12).
= If B(a, ) € cl(A), then, by Proposition 2.2, there exists a Z-grading preserving
isomorphism ¢ such that

¢ : A, ) ~ B(a, ) for some (o', 3') € C x C.

Set
A(Of/, /8/) = @Cvll(v B(a’ﬁ) = @ Cvka
kez kez
©(v;) = v, where q; € C
and
2.1 Qop = qzo’, bas:=aes—1, c5:=4q[f1—1.

Using (1.11), (1.12) and ¢d,(v}) = dn¢(v}), we have
(2.2) (—x+qB"y + awg)anu = (—x + aqzy + qlB)ay,

where
x:=qg *andy:=¢*

It follows from (2.2) that

(2.3) (bo/;i’x + q[/Bl]y)aan = (Cﬁx + aggy)ao,

(2.4) (baryx + qIB Dar = (csx + ans)ao.
Multiplying both sides of (2.2) by

(baryx +qIB 1) boyx +ql3']),
we get by using (2.3) and (2.4)

(—x +qlB'ly + agy)(cpx + aagy)(boryx + q[8'])
= (—x+aqgy + q[ﬁ])(ba’ﬁ’x + Q[ﬂ/]y)(cpx + aaﬁ)-

Comparing the coefficients of x’y and xy” gives us the following identities:

(2. 5) —aagba/,g/ + q[ﬁl]Cﬁba/g/ = —q[ﬁ/]CB + aaﬁba/ﬂ/qg;
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(2.6) (8Naasbars = [8'1csaqs-
Let n = 0in (2.2); we have

2.7 ql8')+ awg = qIB1 + dag.
e If a3 = 0, then [3] = ¢***!' by (2.1). Hence,
P+ (g* — DIBl = $°5 #0.
o If ags # O and [B'] # O, then, by (2.1) and (2.6), we get

2.8) 7 —q '8 = qlB).
It follows from (2.7) and (2.8) that

(2.9 7" —q '8l = qlB].
Using (2.8) and (2.9), we have that

0#¢* =q7'[8'1+4(8]
=q %¢* — q ' 1B1+4(8)
=g (g +(¢* — DIB)),

50 ¢***! +(¢* — DIB1 # 0.
elf ans # 0and [3'] = 0, then by 3 # 0 by (2.4). It follows from (2.5) that c5 = —1,
i.e. [3] = 0. Hence,

q2a+] + (q4 _ 1)[/@] — q2a+l # 0 -
A similar argument can prove the following proposition:

PROPOSITION 2.4. Let ¢ be a Z-grading preserving linear map and «, 3, '3 € C.
We have
(1) ¢ : A, B) ~ A(d, B) if and only if one of the following conditions holds:
o (@1 —1)#0and [B] = [']=0;
° ¢°° =" and () = [B');
° q2a+l =[B] = qza’fl, [ﬁ/] _ Oana’qzo‘, Q/ {q2k l ke Z},‘
o ¢ = [B1=¢g*", [Bl =0and ¢ & {g* | k € 7}.
(2) ¢ : B(a,B) ~ B(d, ') if and only if one of the following conditions holds:
o ¢** =g 181 ¢ = q'[8'] and (q[B] — )(q[B'] — 1) #£ 0
° q2a — q2a’ and [ﬁ] — [ﬁ’];
° q2a+l — [,B] — q2a’7l, [B/] — Oanqua’ ¢ {q2k l k € Z},
o % =Bl =g, [Bl =0and ¢** ¢ {¢* | k € 7}. =

PROPOSITION 2.5. For (a,3) € C x C, we have
(1) A(a, ) is reducible if and only if either ¢** — g* = [3] = 0 or ¢***' = [3] =
g %! for somet € 1.
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(2) If B(e, ) & cl(A), then B(w, 3) is irreducible.

PROOF. The arguments of proving (1) and (2) are similar. Let us explain them by
proving 2.
If B(«r, B) & cl(A), then, by Proposition 2.3,

(2.10) @'+ - DB =

Assume that N # 0 is a submodule of B(a, 3); it follows from Proposition 2.2 that
N = @ycs Cvy, for some non-empty subset S of Z.
o If there exists v,, & N and v, ¢ N withm # n, then by (1.12),

qk

— q—l
qk

_q—l

N3 dyoi(v) = — (=g + (@ — q ' 1BDE "™ + qlB])vm

N 3 dy (i) = — (=g + (@ — q ' BDF" ™ + q(8))vn

where v, € N. So the coefficients of v,, and v, have to be zero. This implies that qzo‘
g~ '[8] = 0. Going back to (2.10), we get that [3] = 0, which contradicts to (2.10).
e If Z\S = {s}, then we can choose v,, € N and v, € N with m # n. As above, it
follows from d;_,,(v,;,) € N and ds—,(v,) € N that [3] = 0, which is impossible. ]
Fort € 7, we define

4o, if ¢ =6l =
Ala,p) = @iz O, if 2a+1 [5] _ q—2t 1
k#t

Then, A,(a, ) is an irreducible U(W,)-module.

PROPOSITION 2.6. Let q € R, then with respect to the antilinear anti-involution 6 of
UW,), .

(1) A(a, B) is unitary <= q > 0 and ¢** = q~'[8] + q[B].

(2) A(w, B8) and B(a, B) are not unitary, where B(a, 8) & cl(A).

PROOF. (1) =>: Assume that A(c, ) = @yez Cvy is unitary and (-|-) the contravari-
ant form on V. So

<dm(Vk)|Vg> = <Vk|d,m(Vg)> for m,k, L el
Let n := { := m + k, then we have by (1.11)

¢ (—q > +qlBlg" (g™ — q*'[ﬁ]))(vnlm
= q"(—q " +4q[Blg " + (¢ — ¢ "[BD) (vi| ).
where n,k € Z. Let k = 0in (2.11), we get

Q2.11)

(2.12) (qBIg*" + bas){valva) = ¢"(C5q " + @ap)(vo|vo),
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where aq g, bo g and cs are defined by (2.1).
It follows from (2.11) and (2.12) that

(=x+q[Blxy + aaﬁ)(baﬂx + g[8 (@qpy +¢3)

(2.13) o —
= (=x +agaxy + q[B1)(Cax + agp)(q[Bly + bop),

where x := g% and y := ¢*". Comparing the coefficients of x’y, xy and y, we get

(2.14) — Aogbag + qlB1Csbas = —qlB1cs + Caaagbags;
(2.15) G*B1°Ch + Auslaibas = Gap-bay + ¢ [B1BICH;
(2.16) [Blaas@a; = q18)[6) a3

Suppose that [3] = 0, then a,3 = ¢** # 0, c5 = —1 and by # 0 by (2.1) and (2.12).
It follows from (2.15) that a,3 = a43. So (2.12) becomes that

(¢** — D{vn|vn) = q"(§* — q_z")<v0‘v0> forn e 7.

This implies that f(n) := 5;—:‘1:— > 0 for all n € Z, which is impossible because

f(n)f(—n) < 0 for large n > 0. Therefore, we have proved that [3] # 0.
Similarly, we can prove that a,; # 0 by using (2.14).
Going back to (2.16), we have a,3 = q[3], i.e. ¢** = ¢~ '[3] + ql3].
Finally, choose an odd ng € Z such that g[3]g*" + bas # 0, then (2.12) gives that

<v"o l vﬂo> = qin%VO | V()>’

which implies that g > 0.
<=: Define an Hermitian form (-|-) on V by

(V| Vi) := bumq~ " forall n,m € Z.

It is easy to check that (-|-) is a contravariant form.
(2) Use the same argument as above. n
3. A partial g-analogue of Kaplansky’s Theorem.

LEMMA 3.1. Let q be not a root of unity, then for all integers n and all positive
integers s, we have in U(W,)

. . L2nllsn]
o’ = gy + g~ 2] 'Sl[;”]d:;'dor' + [snll(s — Dnld>, T2,
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PROOF. 'We use induction on s. It is clear that the Lemma is true for s = 1. Now we
assume that the Lemma is true for s, then

dud”) = (dyd’ ),

[2n][sn]
[n]

+[snll(s — Dnld* 02 )d,

- (q*MdS_ A e Ll PP

=q d (q 2"d_nd, +q " [2n)dod ")
+ [sn][(s — Dnlg*"d* ,J?

[2”][m1d‘ 1 § (g "d_ndo + [n)d_pJ~ )Jﬁ

(n]
[2n]

q72n(\+l)ds+|d +q (S+])n(q Jn[n] +q[sn])ﬁd d()JAl

+ (g7 2n] + ¢7(s — Dn)[snld?,J 2
s+ Dnli2n]
(n]

—sn

— q-Zn(sH)d,sjnldn + q—(s+l)n diﬂd().],‘

+[(s + Dn][sn]d*,J 2

This proves the Lemma. [
Now we begin to prove the following partial g-analogue of Kaplansky’s Theorem:

THEOREM 3.2. Let g be not a root of unity and V = @cz Cvy a Z-graded U(W,)-
module with J(v) € Cvy fork € L. If dy and d_, are injective operators on V and

1

71 VO,

Jdid_J — Jd_d\J)(vp) # -

then V>~ A(\, a, 3) or V =~ B(\, , B) for some (\, o, 3) € C* X C x C.

PROOF.  Since J(v) € Cv, di(vy) # 0 and JdiJ~' = gd(v;), there exists some
X\ € C* such that J(v;) = Ag*v for all k € Z. Using the automorphism ¢(\~!), we can
assume that A = 1, in which case, we will prove that either V ~ A(«, §) or V ~ B(«, 3)
for some (o, 3) € C x C.

Set

do(vo) = avo, did_1(vj)) = xv;,  d_1di(vj) = yjvj,
where a, x;,y; € Cand j € Z. We consider the system (i) with respect to o and j3:
(3.2) = (lalg” +[B) = a;
(3.3) lalg®(fo — 11g® + [2){B]) = xo
and the system (ii) with respect to o and 3:

—([alg® + [B]) = a;
(34) [+ 11g°([alg” + [2][Blg) =
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First, we assume that there exist o and 3 such that (i) holds. Using induction on j and
(3.2) gives us

3.5) do(v;)) = — ([« +j1g% + [ﬁ]q’)v, forj e 7.
Since (gdd-\J — g 'd_1d\J)(v,) = [2]dyv;, we have by (3.5)
(3.6) ¢"'x — ¢y, = —[21la +j1g* — [21(Bl¢ forj € Z.

Furthermore, computing did_d;(v,—1) in two ways produces the following relation
between x; and y;:

3.7 x, =y forjeZ
Going back to (3.6), we get

(3.8) ¢ — ¢ 'xu = —[2][a +j1g* — [21[B]¢ forj € Z.

Now we claim that

(3.9) x = la+jlg*(la+j — 1]g* +[2][B8]¢) for j € Z.

By (3.3), (3.9) is true for j = 0. Assume that (3.9) is true for j, then (3.9) is also true
for j + 1. For example, let us prove that (3.9) is true for j + 1. By (3.8),

X1 = qhx + [21[a+j1g" 7 + [2][B)g
= ¢*lo+jlg™([a+j — 11g° + [21[81¢) + [2][ec + jlg®*' +[21(B]q
= [o+jlg*(q* [ +j — 1]+ [2]g *7*)
+[21181g° ([ + j1g*" + 4" ™)
= [o+j1g* (e +j + 1]+ [21[Blg ¢ [ +j + 1]
= [a+j+ gl +jlg* + [21[Blg"*").

Hence, (3.9) is true for all j € Z by induction.

Letj = 11in (3.9), we get (3.4). So we have proved that if @ and [ satisfy (i), then o
and § also satisfy (ii).

Similarly, we can prove that if o and 3 satisfy (ii), then « and (3 also satisfy (i).

A direct calculation shows that either (i) has a solution or (ii) has a solution. Therefore
there exists (a, 8) € C x C such that (i) holds.

Using (3.5) and (3.9), we can choose a basis of V, say {v; | k € Z}, such that

(3.10) dn(v)) = —(lor+j1g" + [n + 11[81g")Wnsy,

wheren =0,+1 andj € Z.
Forj € Z, set
d(v) = e(Iva,  d-a(v) := g(v,-2,
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(3.12) e(j) := £() — (j + alg” + [31(8lg™).
(3.13) g() := h() — (i + alg” — [Blg ),

where e(j), g(/).f (), h(j) € C.
Using (3.10) and following identities:

(qPdrd_1J — g "d_1d20)(v)) = [31d1(v)),
(g %d 2d\J — gdvd_2D)(v)) = —[31d_1(v)),

we get
g™ a+j+2]e() — ¢"Pa+jle( — 1) = —[31([a +1g” + [21[Bl¢*H),
¢ (la+j—21¢" + 121181¢ He() — ¢ 2 +jlg* + 121181 g + 1) = [31[a +/1g™.
It follows from (3.12) and (3.13) that

[a+j+21f() = ¢’la+jIfG — D),
(Lo +j1g™ + 2181 HhG + 1) = ([ +j — 21g™ + [21[B1¢ ().

These identities imply that

3
. q'la+1]la+2]
(3.14) = [atj+ 1][a+j+2]f(0)’
q¥([a — 11g” + 218D — 2]g* + [21[Blg ")
([a+j —2]g* + [21[Bl¢")([a +j — 11g* + [2][B1¢)
where j € Z. Note, that denominators in (3.14) and (3.15) are non-zero follows from that

(3.10) and d(v)) # O for all j € Z.
Let z := g7/[j]. We can rewrite (3.12)—(3.15) as follows:

(3.15) h(j) = h(0),

(3.16) g e —2)=q ’f(—2) — (g°z+ [ — 2lg" + 318D,
(3.17) q’'g() = q 7h() — (z+ [alg™ — [Blg ),

g 2[a+ 1][a +2]f(0)
(@ %+ [a+ 1] — 2lg" (@G> 2+ [a+2] — 2lg~)’

(3.18) qfG-2=

([ — 11g* + 218Dl — 21g* + [21[Blg HA(0)
(gz+[a — 1g* + [2][BD(g’z + [ — 21g* + [2][Blg~ ')

(3.19) q7’h()) =

where j € Z.
By Lemma 3.1 and a direct computation, we can get

(3.20) Te(j —2) - q7g(j)) = ¢*2* + 12 + ¢ for large even j,
q
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where ¢ and ¢, are complex numbers, which are independent of ;.
Using (3.16)-(3.19), we have

(3.21) G- =~ aTsh) = 7
where
Ry = (z+[a—21g° 2+ [3][Blg Dz +[a+11g° > —[2]g )
X (z+[a+2]g° " = [21g %) — ¢**la+ 1 +2]£(0),
Ry :=(z+[a+1]g" 7 —[2lg D)z +[a+2)g" " —[2g ),
Ty == (z+[alg” — [Blg Dz +la—1g* " +[21[8lg ")
X (z+ [ —2]g" 2 +[21(Blg )
— g ([ — 11" + 218D — 21g™ + [2)[Blg ™~ ")A(0),
Ty:=(z+[a—11g°" +[21[8lg Nz + [ —21g° >+ [21[Blg ).

(3.20) implies that as the polynomials with respect to z, we have
(3. 22) R2T2 divides R] Tl .

Now we have two cases to discuss:

e CASE 1. f(0)g(0) = 0, in which case, either f(0) = 0 or g(0) = 0. If f(0) = O,
then (3.22) becomes

T, divides (z + [a — 21¢° % + [31[8lg HT.

It follows that

_613([6¥ — g™ + 21BN ([« — 21g* + [2](Blg~HA(0)
T

(3.23)

is a polynomial of z, hence, it is zero. Since d;(v_) # 0 and d,(v_7) # 0, the coefficient
of h(0) in (3.23) is not zero. So we have to have h(0) = 0.

Similarly, if 4(0) = 0, then we also have f(0) = 0.

Therefore, f(0)g(0) = 0 implies that f(0) = g(0) = 0. By (3.12)—(3.15), (3.10) is also
true for n = £2 and j € Z. This proves that V = A(«, §) because U(W,) is generated by
{J* do,dyy,d i}

e CASE2. f(0)g(0) # 0. Since d(v;) # 0 for all j € Z, the coefficients of f(0) and
g(0) in Ry and T) are non-zero. It follows from (3.22) that R, divides T} and T, divides
R[, ie.

Ty = (z+[a+ 11" — [2lg Dz + [a+21¢" % — [2lg )z +G),
Ry = (z+[a— 1g" " +121(8lg Nz + [ — 2]a® 2 +[21[Blg )z + H),

where G, H € C. Comparing the coefficients of 7%, we get

G=[a—2lg" 2+ [3118lg %, H=q"lal—[B8lg "
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Going back to (3.21), we have
ey = &L 2]g**? — [BlgH)(z + [a+ 1]g™* + [2][Blg%)
(3.24) a-e G+ [a+ g™ D + [a+ 21g*2)
X (z+ [a)g” +[2](Blg),

PP il 1g® > — [21g e+ [+ 2]g° * — [2g %)
(3.25) (z+[a— g '+ [2][Blg~ )z + [ — 2]g* 2 + [2][Blg )
X (z+la—21g"* + [318lg )
for large even j. In particular, the rational function g/e(j) of z and the rational function
of the right side of (3.24) take the same values at infinite different points:

{g7[j1] for large even j}.

It follows that (3.24) is true for all j € Z.
Similarly, (3.25) is also true for all j € Z.
Now we choose ap = 1 and g, € C* for j € Z such that

a2+ [a+k+1]ged
aprst 2+ [a+klgeH + [2][Blg"

Set u, := a,v,, we get
dn(u)) = —¢/'(z + [+ nlg™™" +[1 = nl[Blg"uns,
- —([(X +n +j]£]am + [1 - n][ﬁ]qnﬂ)unﬂ

forn=0,+1,4+2andj € 7.
For example, let us check that (3.27) is true for n = 2 and all j € Z. By (3.26), we
have

(3.26) forj,k € Z.

3.27)

a (z+ [or+ 11g™ )z + [ + 21°*)
a2 (z+[adg” + 21819z + [a + 11g**! +[2][B]g%)
(3.24) and (3.28) imply that
d(w) = a,(v) = a,e()viia = ¢
a2
B (z+[a+ 1g* D)z + [a +2]g"*)
= (z+[adg® + [21[B1g)(z + [ + 11g**! + [21(B1g?)

@t [o+21g" — [Blg")z +[ar+ 1g™*! + [2](8l°)
@+ [a+ 1g* Dz +[a +2]g°?)

X (z+ [alg” + 1211812
= —q' 2+ [a+21g" — [Blg o
Therefore, V = @,z Cu, = B(x, ) by (3.27). ]

(3.28)

q

qije(i)u]+2
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