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INTERPOLATION IN SPACESNOF ENTIRE FUNCTIONS
IN C

BY
LAWRENCE GRUMAN

Let {s,,} be a discrete set of points in C¥ and 4, any sequence of points in C.
We shall be interested in finding an entire function F(z) such that F(s,)=4,,.
This is of course easy if no restriction is placed on F, but we shall be interested in
finding an F which in addition satisfies certain growth conditions.

We shall denote the variable z=(zy, . .., zy), z;=x;+iy;, ||z]|=(zl,~v=1 1213172,
If f(z) is an entire function, we set M (r)=sup,_. | f(z)|, which is an increasing
function of r. The function f(z) is of finite exponential type o if

o = Tim 2EMAD o,
r=o r
If N=1and {4,,} € £?, it is known that if {s,,} is the set of integers 0, &1, +2,...,
then there exists an entire function F(z) of exponential type at most = such that
F(s,,)=A, and Fe L?(R), R={z:y=0}. (cf. Boas [l], Chapter 10.6.) When
N>1, one can obtain the same result by iterating the one variable technique
when {s,,} is the lattice points all of whose coordinates are integral, but if {s,}
only lies near these lattice points, this process will no longer work and different
techniques are required. We shall prove the following:

THEOREM. Let {A,} € £* and let {s,,} be a sequence of points in C¥ such that
|S s —S8m:| =20 for ms~m’ and sup; |Im(s;),,| < C. Then there exists an entire function
F(z) of exponential type at most A(N, C, 0) with Fe LA(RN=Rx - xR) such
that F(s,,)=2p.

We can take A(N, C, 6)=(104N5/2/62)(1 4 (C+96)?)*/? but this is not necessarily
the best possible.

Note. Ronkin [4] has shown that if s, € R¥ and has a certain density, then if
the exponential growth of F is not too large, the solution will be unique.

We begin by stating two lemmas which we shall need in the proof of the theorem.
A function V is plurisubharmonic if it is upper semi-continuous and if
> ix (0*V[0z,0Z,)w;w, taken as a distribution defines a positive measure for all
we CY. We let 9 be the exterior differential operator 8-=Zf-v= 1(0/0z;) dz;. If o is
a (0, 1) differential form with functions for coefficients oc=Z§V=1 C, dz;, then
lel =3, IC,l.
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LemMA 1. Let V be a plurisubharmonic function and C(z) a continuous function
such that > ; (02V]02;0Z,)w;,— C(2) | |2 defines a positive measure for allw € CV.
Then for every (0, 1) form o such that 90.=0, there exists a function B such that
§ 1812 exp(—V) dAL § (|«|*/C(2))exp(— V) dA when the right hand side is finite.

Proof. The proof is exactly the same as that of Lemma 4.4.1 of [2] as extended
in Theorem 4.4.2.

LEMMA 2. Let F(z) be an entire function of finite exponential type . Then if
F(x+iy) e Lz(IRN)for some y=(y1, ..., yn), F(x+iy) € LZ(IRN)for all y and

N
[ Fesi s, asy <exp2r (S 1n) [ PO s - dxy.
R¥ =1 R¥

Proof. This follows by iteration of the one variable analogue (cf. Boas [1],
p- 98).
Proof of Theorem. For w=u+-iv € C, we define the function

Yo =3 Iog{ ((”":2" "'2)) ((1+":2+ "'2))}+1og(1+|w|2).

n=1

We note that this defines a locally convergent series since

6)) A+w=nP)A+|w+n]®) = (1 +u*+0°+n*)*—4u’n®
and log(l+c¢/n?) <c[n? for all ¢>0. Furthermore, ¥ (w) is periodic with period 1
so V is uniformly bounded for |v| <B.

Since V is periodic, we may assume |u|<1. Then for |v| sufficiently large,

by (1)

1og{(1+"";"'2) Ukirinl)) Iog{((lvl+112+n2)z}
n n n

2
<2 log{1+(—lgliz-9—}
n
By comparing ¥V with log [sin 7w|=log |w|+ >, ; log |l —W?/n?)| for w=iv,
we see that there exists >0 such that
@ V(W) < 2nlo] + k
We also note that (9*V/owow)(w)=>,"___ (1/(1+|w—n|?)?) which converges for

all w and is periodic with period 1. We can assume without loss of generality
that 0<u<3%. Then

2 1 ® ds
,gl (1+B%*+(n—u)*)? >fl (14 B2+ (s—u)?)?

= (s—u) :|°°+ 1 ® ds
20+B)(A+B*+(s—u)®) 11 2(1+B*) Ji 14+B*+(s—u)®

- —(1—w) 1 T ian-t A8

_2(1+B2)(1+BZ+(1—u)2)+2(1+32)3/2[2 fan (1+B2)1’2:|
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Similarly

0 1 J“” ds
nzw (1+Bz+(n-—u)2)2> 1 (14+B2+(s+u)?)?
—u . 1 T - u
N 2(1+Bz)(1+Bz+u2)T2(1+Bz)3’2[5_tan (1+Bz)l’2]

So

*V(w) T

3

® owow =~ 2(1+B%»*2

Let a(r) be any %* function with 0<a<1, a=1 for r<%, =0 for r>1. In
particular, we will choose

ﬁ;O—WY@—%de

a=1—

n i<r<l1
£/2(1 —x)’(x—3)" dx

(The constant 4 will depend on the choice of «.) An easy computation shows
that (i, (1—x)}(x—3)?dx=35. For }<r<1, o'(r)=—960(1—r)*(r—3)* and
sup, [o'()|=2%%; o"(r)=960-2(1—r)(r—3%)(2r—%) which takes its maximum
when

3 1 40
r=>+ and su "] = —.
PRaE up [" ()]

J3
Let S(2)=2 vo_y (z—5,,/0)log(llz—s5,,/6). Since log | z—s,,| is plurisubharmonic
we find

0°S(z)
ik aZ,- afk

_ —401og 2 15}
Wy, > — ——1 |w,
W,Wk_gc{\ﬁ 2 25 (Wl 1wl

@

> =35 vl

26 R
> o N [w]
Let Vy(z)= 7., V(z;). From (3),
*V(z) ll
CALZ1S SR NG L —
i%0z; 0%, 2(14-(CH+06)%)**

for ze A={z:(6/2)<||z—s,||<d} and S(z) is plurisubharmonic outside of A.
Thus by (4)
52(14+(C+6)?)*2

V*(z) = ZN{ —

NVl(z)+S(z)}
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is plurisubharmonic and there exists a constant ¢ such that

o*v*
ik aZ,- az-k

W > ¢ [wl® for sup [yl < C+9.
3

Let s(2)=2 m_; A,u2(z—5,,). Then if a=0s, du=0. Let ¢(z) be any continuous
function such that (¢/2)<c(z)<c for sup;|y;|<C+6 and c(z)<inf X; D72 %
{1/(1+4|z;—n|?)?}. Then | |a|? exp(— V*)/c(z)) dA< o since 4,, € £* so by Lemma 1,
there exists a function f such that d8=c. Since « € € so is 8 (cf. Hormander [2],
Chapter 4). Notice that exp(— V*) has a non-integrable singularity at each point
s, so that f(s,)=0. Then F(z)=s(z)—f(z) is a holomorphic function, hence
entire, and F(s,,)=4,,. Furthermore,

le[z exp(—V¥*) dA < oo.

This implies (cf. Lelong [3], Theorem 5.4.3) that F has exponential type at most
o=N>°/2(104/6%)(1 4+ (C+0)*)?/2 since V1(2) <> 27 |y;|+k<2m \/N+k by (2). Fur-
thermore, since V'* is bounded above for sup; |y;| <C, jl?/;l <c |F[*dA< oo and hence
by Lemma 2, F e L}(RY). Q.E.D.

REFERENCES

1. R. P. Boas, Entire Functions, Academic Press, New York (1954).

2. L. Hormander, An Introduction to Complex Analysis in Several Variables, Second edition,
North-Holland, Amsterdam (1973).

3. P. Lelong, Fonctionelles analytiques et fonctions entiéres (n Variables), Les Presses de L’Uni-
versité de Montréal (1968).

4. L. I. Ronkin, On real sets of uniqueness for entire functions of several variables and on the
completeness of functions eX*»X>, Siber. Math. J. 13 (1972), 638-644 (Russian); English trans-
lation: Siber. Math. J. 13 (1972), 439-443.

https://doi.org/10.4153/CMB-1976-016-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1976-016-4

