INTERPOLATION IN SPACES OF ENTIRE FUNCTIONS IN \mathbb{C}^{N}

BY
LAWRENCE GRUMAN

Let $\left\{s_{m}\right\}$ be a discrete set of points in \mathbb{C}^{N} and λ_{m} any sequence of points in \mathbb{C}. We shall be interested in finding an entire function $F(z)$ such that $F\left(s_{m}\right)=\lambda_{m}$. This is of course easy if no restriction is placed on F, but we shall be interested in finding an F which in addition satisfies certain growth conditions.
We shall denote the variable $z=\left(z_{1}, \ldots, z_{N}\right), z_{j}=x_{j}+i y_{j},\|z\|=\left(\sum_{j=1}^{N}\left|z_{j}\right|^{2}\right)^{1 / 2}$. If $f(z)$ is an entire function, we set $M_{f}(r)=\sup _{\|z\|=r}|f(z)|$, which is an increasing function of r. The function $f(z)$ is of finite exponential type σ if

$$
\sigma=\varlimsup_{r \rightarrow \infty} \frac{\log M_{f}(r)}{r}<\infty .
$$

If $N=1$ and $\left\{\lambda_{m}\right\} \in \ell^{p}$, it is known that if $\left\{s_{m}\right\}$ is the set of integers $0, \pm 1, \pm 2, \ldots$, then there exists an entire function $F(z)$ of exponential type at most π such that $F\left(s_{m}\right)=\lambda_{m}$ and $F \in L^{p}(\mathbb{R}), \mathbb{R}=\{z: y=0\}$. (cf. Boas [1], Chapter 10.6.) When $N>1$, one can obtain the same result by iterating the one variable technique when $\left\{s_{m}\right\}$ is the lattice points all of whose coordinates are integral, but if $\left\{s_{m}\right\}$ only lies near these lattice points, this process will no longer work and different techniques are required. We shall prove the following:

Theorem. Let $\left\{\lambda_{m}\right\} \in \ell^{2}$ and let $\left\{s_{m}\right\}$ be a sequence of points in $\mathbb{C}^{\boldsymbol{N}}$ such that $\left|s_{m}-s_{m^{\prime}}\right| \geq 2 \delta$ for $m \neq m^{\prime}$ and $\sup _{j}\left|\operatorname{Im}\left(s_{j}\right)_{m}\right| \leq C$. Then there exists an entire function $F(z)$ of exponential type at most $A(N, C, \delta)$ with $F \in L^{2}\left(\mathbb{R}^{N}=\mathbb{R} x \cdots x \mathbb{R}\right)$ such that $F\left(s_{m}\right)=\lambda_{m}$.

We can take $A(N, C, \delta)=\left(104 N^{5 / 2} / \delta^{2}\right)\left(1+(C+\delta)^{2}\right)^{3 / 2}$ but this is not necessarily the best possible.

Note. Ronkin [4] has shown that if $s_{m} \in \mathbb{R}^{N}$ and has a certain density, then if the exponential growth of F is not too large, the solution will be unique.

We begin by stating two lemmas which we shall need in the proof of the theorem.
A function V is plurisubharmonic if it is upper semi-continuous and if $\sum_{j, k}\left(\partial^{2} V / \partial z_{j} \partial \bar{z}_{k}\right) w_{j} \bar{w}_{k}$ taken as a distribution defines a positive measure for all $w \in \mathbb{C}^{N}$. We let $\bar{\partial}$ be the exterior differential operator $\bar{\partial}=\sum_{j=1}^{N}\left(\partial / \partial \bar{z}_{j}\right) d \bar{z}_{j}$. If α is a $(0,1)$ differential form with functions for coefficients $\alpha=\sum_{j=1}^{N} C_{j} d \bar{z}_{j}$, then $|\alpha|=\sum_{j=1}^{N}\left|C_{j}\right|$.

Lemma 1. Let V be a plurisubharmonic function and $C(z)$ a continuous function such that $\sum_{j, k}\left(\partial^{2} V / \partial z_{j} \partial \bar{z}_{k}\right) w_{j} \bar{w}_{k}-C(z)\|w\|^{2}$ defines a positive measure for all $w \in \mathbb{C}^{N}$. Then for every $(0,1)$ form α such that $\bar{\partial} \alpha=0$, there exists a function β such that $\int|\beta|^{2} \exp (-V) d \lambda \leq \int\left(|\alpha|^{2} / C(z)\right) \exp (-V) d \lambda$ when the right hand side is finite.

Proof. The proof is exactly the same as that of Lemma 4.4.1 of [2] as extended in Theorem 4.4.2.

Lemma 2. Let $F(z)$ be an entire function of finite exponential type τ. Then if $F(x+i y) \in L^{2}\left(\mathbb{R}^{N}\right)$ for some $y=\left(y_{1}, \ldots, y_{N}\right), F(x+i y) \in L^{2}\left(\mathbb{R}^{N}\right)$ for all y and

$$
\int_{\mathbb{R}^{\mathbb{B}}}|F(x+i y)|^{2} d x_{1} \cdots d x_{N} \leq \exp 2 \tau\left(\sum_{j=1}^{N}\left|y_{j}\right|\right) \int_{\mathbb{R}^{\mathbb{N}}}|F(x)|^{2} d x_{1} \cdots d x_{N}
$$

Proof. This follows by iteration of the one variable analogue (cf. Boas [1], p. 98).

Proof of Theorem. For $w=u+i v \in \mathbb{C}$, we define the function

$$
V(w)=\sum_{n=1}^{\infty} \log \left\{\left(\frac{\left(1+|w-n|^{2}\right)}{n^{2}}\right)\left(\frac{\left(1+|w+n|^{2}\right)}{n^{2}}\right)\right\}+\log \left(1+|w|^{2}\right) .
$$

We note that this defines a locally convergent series since

$$
\begin{equation*}
\left(1+|w-n|^{2}\right)\left(1+|w+n|^{2}\right)=\left(1+u^{2}+v^{2}+n^{2}\right)^{2}-4 u^{2} n^{2} \tag{1}
\end{equation*}
$$

and $\log \left(1+c / n^{2}\right) \leq c / n^{2}$ for all $c \geq 0$. Furthermore, $V(w)$ is periodic with period 1 so V is uniformly bounded for $|v|<B$.

Since V is periodic, we may assume $|u|<1$. Then for $|v|$ sufficiently large, by (1)

$$
\begin{aligned}
\log \left\{\frac{\left(1+|w-n|^{2}\right)}{n^{2}} \frac{\left(1+|w+n|^{2}\right)}{n^{2}}\right\} & \leq \log \left\{\frac{\left((|v|+1)^{2}+n^{2}\right)^{2}}{n^{4}}\right\} \\
& \leq 2 \log \left\{1+\frac{(|v|+1)^{2}}{n^{2}}\right\}
\end{aligned}
$$

By comparing V with $\log |\sin \pi w|=\log |w|+\sum_{n=1}^{\infty} \log \left|1-\left(w^{2} / n^{2}\right)\right|$ for $w=i v$, we see that there exists $k>0$ such that

$$
\begin{equation*}
V(w) \leq 2 \pi|v|+k \tag{2}
\end{equation*}
$$

We also note that $\left(\partial^{2} V / \partial w \partial \bar{w}\right)(w)=\sum_{n=-\infty}^{\infty}\left(1 /\left(1+|w-n|^{2}\right)^{2}\right)$ which converges for all w and is periodic with period 1 . We can assume without loss of generality that $0 \leq u \leq \frac{1}{2}$. Then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{\left(1+B^{2}+(n-u)^{2}\right)^{2}}>\int_{1}^{\infty} \frac{d s}{\left(1+B^{2}+(s-u)^{2}\right)^{2}} \\
& \left.\quad=\frac{(s-u)}{2\left(1+B^{2}\right)\left(1+B^{2}+(s-u)^{2}\right)}\right]_{1}^{\infty}+\frac{1}{2\left(1+B^{2}\right)} \int_{1}^{\infty} \frac{d s}{1+B^{2}+(s-u)^{2}} \\
& \quad=\frac{-(1-u)}{2\left(1+B^{2}\right)\left(1+B^{2}+(1-u)^{2}\right)}+\frac{1}{2\left(1+B^{2}\right)^{3 / 2}}\left[\frac{\pi}{2}-\tan ^{-1} \frac{(1-u)}{\left(1+B^{2}\right)^{1 / 2}}\right]
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\sum_{n=-\infty}^{0} \frac{1}{\left(1+B^{2}+(n-u)^{2}\right)^{2}} & >\int_{1}^{\infty} \frac{d s}{\left(1+B^{2}+(s+u)^{2}\right)^{2}} \\
= & \frac{-u}{2\left(1+B^{2}\right)\left(1+B^{2}+u^{2}\right)}+\frac{1}{2\left(1+B^{2}\right)^{3 / 2}}\left[\frac{\pi}{2}-\tan ^{-1} \frac{u}{\left(1+B^{2}\right)^{1 / 2}}\right]
\end{aligned}
$$

So

$$
\begin{equation*}
\frac{\partial^{2} V(w)}{\partial w \partial \bar{w}}>\frac{\pi}{2\left(1+B^{2}\right)^{3 / 2}} \tag{3}
\end{equation*}
$$

Let $\alpha(r)$ be any \mathscr{C}^{2} function with $0 \leq \alpha \leq 1, \alpha \equiv 1$ for $r \leq \frac{1}{2}, \alpha \equiv 0$ for $r \geq 1$. In particular, we will choose

$$
\alpha=1-\frac{\int_{1 / 2}^{r}(1-x)^{2}\left(x-\frac{1}{2}\right)^{2} d x}{\int_{1 / 2}^{1}(1-x)^{2}\left(x-\frac{1}{2}\right)^{2} d x} \quad \frac{1}{2}<r<1
$$

(The constant A will depend on the choice of α.) An easy computation shows that $\int_{1 / 2}^{1}(1-x)^{2}\left(x-\frac{1}{2}\right)^{2} d x=\frac{1}{960}$. For $\frac{1}{2}<r<1, \alpha^{\prime}(r)=-960(1-r)^{2}\left(r-\frac{1}{2}\right)^{2}$ and $\sup _{r}\left|\alpha^{\prime}(r)\right|=\frac{15}{4} ; \quad \alpha^{\prime \prime}(r)=960 \cdot 2(1-r)\left(r-\frac{1}{2}\right)\left(2 r-\frac{3}{2}\right)$ which takes its maximum when

$$
r=\frac{3}{4}+\frac{1}{4 \sqrt{ } 3} \quad \text { and } \sup _{r}\left|\alpha^{\prime \prime}(r)\right|=\frac{40}{\sqrt{3}}
$$

Let $S(z)=\sum_{m=1}^{\infty} \alpha\left(z-s_{m} / \delta\right) \log \left(\left\|z-s_{m}\right\| / \delta\right)$. Since $\log \left\|z-s_{m}\right\|$ is plurisubharmonic we find

$$
\begin{align*}
\sum_{j, k} \frac{\partial^{2} S(z)}{\partial z_{j} \partial \bar{z}_{k}} w_{j} \bar{w}_{k} & \geq \sum_{j, k}\left\{\frac{-40}{\sqrt{ } 3} \frac{\log 2}{\delta^{2}}-\frac{15}{2 \delta^{2}}\right\}\left|w_{j}\right|\left|w_{k}\right| \tag{4}\\
& \geq-\frac{26}{\delta^{2}} \sum_{j, k}\left|w_{j}\right|\left|w_{k}\right| \\
& \geq-\frac{26}{\delta^{2}} N\|w\|^{2}
\end{align*}
$$

Let $V_{1}(z)=\sum_{j=1}^{N} V\left(z_{j}\right)$. From (3),

$$
\sum_{j, k} \frac{\partial^{2} V_{1}(z)}{\partial z_{j} \partial \bar{z}_{k}} w_{j} \bar{w}_{k}>\frac{\pi\|w\|^{2}}{2\left(1+(C+\delta)^{2}\right)^{3 / 2}}
$$

for $z \in A=\left\{z:(\delta / 2) \leq\left\|z-s_{m}\right\| \leq \delta\right\}$ and $S(z)$ is plurisubharmonic outside of A. Thus by (4)

$$
V^{*}(z)=2 N\left\{\frac{52\left(1+(C+\delta)^{2}\right)^{3 / 2}}{\pi \delta^{2}} N V_{1}(z)+S(z)\right\}
$$

is plurisubharmonic and there exists a constant c such that

$$
\sum_{j, k} \frac{\partial^{2} V^{*}}{\partial z_{j} \partial \bar{z}_{k}} w_{j} \bar{w}_{k} \geq c\|w\|^{2} \text { for } \sup _{j}\left|y_{j}\right| \leq C+\delta
$$

Let $s(z)=\sum_{m=1}^{\infty} \lambda_{m} \alpha\left(z-s_{m}\right)$. Then if $\alpha=\bar{\partial} s, \bar{\partial} \alpha=0$. Let $c(z)$ be any continuous function such that $(c / 2) \leq c(z) \leq c$ for $\sup _{j}\left|y_{j}\right| \leq C+\delta$ and $c(z) \leq \inf \sum_{j} \sum_{n=-\infty}^{+\infty} \times$ $\left\{1 /\left(1+\left|z_{j}-n\right|^{2}\right)^{2}\right\}$. Then $\left.\int|\alpha|^{2} \exp \left(-V^{*}\right) / c(z)\right) d \lambda<\infty$ since $\lambda_{m} \in \ell^{2}$ so by Lemma 1, there exists a function β such that $\bar{\partial} \beta=\alpha$. Since $\alpha \in \mathscr{C}^{\infty}$ so is β (cf. Hormander [2], Chapter 4). Notice that $\exp \left(-V^{*}\right)$ has a non-integrable singularity at each point s_{m} so that $\beta\left(s_{m}\right)=0$. Then $F(z)=s(z)-\beta(z)$ is a holomorphic function, hence entire, and $F\left(s_{m}\right)=\lambda_{m}$. Furthermore,

$$
\int|F|^{2} \exp \left(-V^{*}\right) d \lambda<\infty
$$

This implies (cf. Lelong [3], Theorem 5.4.3) that F has exponential type at most $\sigma=N^{5 / 2}\left(104 / \delta^{2}\right)\left(1+(C+\delta)^{2}\right)^{3 / 2}$ since $V_{1}(z) \leq \sum 2 \pi\left|y_{i}\right|+k \leq 2 \pi \sqrt{ } N+k$ by (2). Furthermore, since V^{*} is bounded above for $\sup _{j}\left|y_{j}\right| \leq C, \int_{\left|y_{j}\right| \leq C}|F|^{2} d \lambda<\infty$ and hence by Lemma $2, F \in L^{2}\left(\mathbb{R}^{N}\right)$. Q.E.D.

References

1. R. P. Boas, Entire Functions, Academic Press, New York (1954).
2. L. Hormander, An Introduction to Complex Analysis in Several Variables, Second edition, North-Holland, Amsterdam (1973).
3. P. Lelong, Fonctionelles analytiques et fonctions entières (n Variables), Les Presses de L’Université de Montréal (1968).
4. L. I. Ronkin, On real sets of uniqueness for entire functions of several variables and on the completeness of functions $e^{1\langle\lambda, X\rangle}$, Siber. Math. J. 13 (1972), 638-644 (Russian); English translation: Siber. Math. J. 13 (1972), 439-443.
