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INTERPOLATION IN SPACES OF ENTIRE FUNCTIONS 
IN €N 

BY 

LAWRENCE GRUMAN 

Let {sm} be a discrete set of points in C ^ and Xm any sequence of points in C . 
We shall be interested in finding an entire function F(z) such that F(sm)=ûm. 
This is of course easy if no restriction is placed on F, but we shall be interested in 
finding an F which in addition satisfies certain growth conditions. 

We shall denote the variable z=(zl9. . . , zN)9 zJ=xj+iyj, ||z|| = Qr*Li |^l2)1/2« 
Iff(z) is an entire function, we set Mf(r)=supuz^r\f(z)\, which is an increasing 
function of r. The function f(z) is of finite exponential type a if 

— log Mf(r) ^ 
a = hm —-—z±^ < oo. 

r-*co V 

If N= 1 and {Àm} e A, it is known that if {sm} is the set of integers 0, ± 1, ± 2 , . . . , 
then there exists an entire function F(z) of exponential type at most rr such that 
F{sm)=K and FeL*(R), IR={z:j=0}. (cf. Boas [1], Chapter 10.6.) When 
N>1, one can obtain the same result by iterating the one variable technique 
when {sm} is the lattice points all of whose coordinates are integral, but if {sm} 
only lies near these lattice points, this process will no longer work and different 
techniques are required. We shall prove the following: 

THEOREM. Let {Am} G / 2 and let {sm} be a sequence of points in CN such that 
\sm—smf\>2dfor mj^m' and sup,- | Im(^) m |<C Then there exists an entire function 
F(z) of exponential type at most A(N, C, ô) with Fe L2(\RN= Rx • • • xR) such 
that F(sm)=2.m. 

We can take A(N, C, (5) = (104iV5/2/^2)(l + (C+^)2)3/2 but this is not necessarily 
the best possible. 

NOTE. Ronkin [4] has shown that if sm e RN and has a certain density, then if 
the exponential growth of F is not too large, the solution will be unique. 

We begin by stating two lemmas which we shall need in the proof of the theorem. 
A function V is plurisubharmonic if it is upper semi-continuous and if 

2/,fc (d2Vldzjdzk)wjWjc taken as a distribution defines a positive measure for all 
w e CN. We let 5 be the exterior differential operator 3=2iLi ( 3 / ^ ) àz^ If a is 
a (0,1) differential form with functions for coefficients a = ^ ^ s l C i ^ , then 

l«l=2£iic,i. 
109 
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LEMMA 1. Let V be a plurisubharmonic function and C(z) a continuous function 
such that ^j>lc(d*VjdZidzy)wéwic--C(z) ||w||2 defines a positive measure for allwe CN. 
Then for every (0, I) form <x such that 3a=0 , there exists a function ft such that 
J l^l2 e x p ( - V) dX<] (|a|2/C(z))exp(- V) dl when the right hand side is finite. 

Proof. The proof is exactly the same as that of Lemma 4.4.1 of [2] as extended 
in Theorem 4.4.2. 

LEMMA 2. Let F(z) be an entire function of finite exponential type r. Then if 
F{x+iy) e L2(RN)for somey^iy^ . . . ,yN)9 F{x+iy) e L2(P.N)for ally and 

f \F(x+iy)\2dx1-'dxN<Qxp2r(2\yJ\)! \F(x)\2dxx--dxN. 

Proof. This follows by iteration of the one variable analogue (cf. Boas [1], 
p. 98). 

Proof of Theorem. For w=u+iv e C , we define the function 

m . j ^ p t i B ) (G±ls±ïB)}+I*1+l.f> 
We note that this defines a locally convergent series since 

(1) (l + |w-n|2)( l + |w+n|2) = (l+u2+v2+n2)2~4u2n2 

and log(l+c/«2)<c/n2 for all c>0 . Furthermore, V(w) is periodic with period 1 
so Fis uniformly bounded for \v\<B. 

Since F i s periodic, we may assume |w|<l. Then for \v\ sufficiently large, 
b y ( l ) 

iogf ( 1 + | w~w | a ) Qdh+nD) < i f((M+i)2+"2)a) 
I n 2 n2 I ~ \ n4 / 

n2 I 
By comparing V with log |sin7rw|=log |w>|+2™=ilog |1 —(w2/«2)| for w=iv, 
we see that there exists k>0 such that 

(2) V(w) < 2TT\V\ + k 

We also note that (d2Vldwdw)(w)='^=_a:> (l/(l + |w-«|2)2) which converges for 
all w and is periodic with period 1. We can assume without loss of generality 
that 0 < M < | . Then 

s, i r ds 
•f « t i ( l + B 2 + ( n - u ) 2 ) 2 Ji ( l+B 2 +(s -u ) 2 ) 2 

ds (s-u) y i r _ 
(l+B2+(s-u)2)Ji 2(l+B2)Ji 1-2 ( l + B 2 ) ( l + B 2 + ( s - u ) 2 ) J i 2 ( l+B 2 ) J i 1 + B 2 + ( S - M ) 2 

- d - » ) , 1 ^ - t a n - 1 V~U) ' 
2( l+B 2 ) ( l+ J B 2 +(l -u) 2 ) 2(1+B2)3/2|_2 (1+B2)1/2 

https://doi.org/10.4153/CMB-1976-016-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1976-016-4


1976] ENTIRE FUNCTIONS IN CN 111 

Similarly 

ds 0 1 /'oo 

„i(i+52+(«-«)2)2>Ji (T+B*+(s+uyy 

2(l+B2)(l+B2+w2) 2(1+B2)3/2|_2 a n (1+B2)1/2J 

So 

(3) ™ > » 
W 3w3w 2(1+B2)3/2 

Let a(r) be any "if2 function with O^oc^l, a = l for r < | , a=0 for r > l . In 
particular, we will choose 

r (i-x)\x-$2 dx 
a = = 1 ~ 7 ï i < r < l 

(l-x)\x-$2dx 
Jl/2 

(The constant A will depend on the choice of a.) An easy computation shows 
that J Î / 2 ( l - ^ ) 2 ( ^ - i ) 2 ^ = 9 i ô . For i<r<l, a ' (r)=-960(l-r)2(r-i)2 and 
sup r |a

,(r) |=¥; a , ,(/ ,)=960-2(l~r)(r-i)(2r-|) which takes its maximum 
when 

3 1 , , „,x, 40 
r = A + A~K a n d s u p , a ( r ) l = "7Î-

4 4^/3 r 73 
Let*S(z)=2m=i a(̂ —«y«i/̂ )log(||z—JTO||/3). Since log ||z—jm|| is plurisubharmonic 

we find 

^ ^ 925(z) . . v ( - 4 0 1 o g 2 15). M . 

5 2 y.fc 

^-§iV||w||2 

Let F1(z)=2f=i ^ ) - From (3), 

2^w^> ^ W 

£ ^ 9 4 ' * 2(l+(C+<5)2)3/2 

for ze,4={z:((5/2)<||z—,sOT||<<5} and S(z) is plurisubharmonic outside of A. 
Thus by (4) 
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is plurisubharmonic and there exists a constant c such that 

IzPÇzw^jc^cM* for sup | j ; , | < C+e5. 
j,jc OZi OZk j 

Let s(z)=^™==1 Àm(x.(z—sm). Then if œ=ds, 3a=0. Let c{z) be any continuous 
function such that {cf2)<c{z)<c for sup,- | j , |<C+(5 and c(z)<inf 2*2£L«>>< 
{1/(1 + \zj-w|2)2}. Then J |oc|2 e x p ( - K*)/c(z)) ûtt< oo since lm e *f2 so by Lemma 1, 
there exists a function /? such that d/3=oc. Since a G ̂ °° so is /3 (cf. Hormander [2], 
Chapter 4). Notice that exp(— V*) has a non-integrable singularity at each point 
sm so that /?C?m)=0. Then F(z)=s(z)—/3(z) is a holomorphic function, hence 
entire, and F(sm)=Am. Furthermore, 

f |F |2exp(~F*)rfA< oo. 

This implies (cf. Lelong [3], Theorem 5.4.3) that F has exponential type at most 
a=jV5/2(104/<52)(l + (c+<5)2)3/2 since ¥&)<% 2TT \yt\+k£2n JN+k by (2). Fur
thermore, since F* is bounded above for sup,- \y-\ < C, j * ^ | < c |F|2 dX<co and hence 
by Lemma 2, F G L\UN). Q.E.D. 
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