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Electrophoresis of a tightly fitting sphere of radius a along the centreline of a liquid-filled
circular cylinder of radius R is studied for a gap width h0 = R − a � a. We assume
a Debye length κ−1 � h0, so that surface conductivity is negligible for zeta potentials
typically seen in experiments, and the Smoluchowski slip velocity is imposed as a
boundary condition at the solid surfaces. The pressure difference between the front
and rear of the sphere is determined. If the cylinder has finite length L, this pressure
difference causes an additional volumetric flow of liquid along the cylinder, increasing
the electrophoretic velocity of the sphere, and an analytic prediction for this increase is
found when L � R. If N identical, well-spaced spheres are present, the electrophoretic
velocity of the spheres increases with N, in agreement with the experiments of Misiunas
& Keyser (Phys. Rev. Lett., vol. 122, 2019, 214501).
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1. Introduction

Analyses and computations of colloidal particle electrophoresis in a liquid-filled circular
cylinder usually assume that the cylinder is infinitely long (Keh & Anderson 1985; Keh &
Chiou 1996; Yariv & Brenner 2002, 2003; Hsu & Yeh 2007; Sherwood & Ghosal 2018).
The volumetric flow rate far from the particle is determined by the electroosmotic slip
velocity created by the uniform electric field if the wall of the cylinder is charged (or is
zero if the wall is uncharged). Misiunas et al. (2015) have shown that when the cylinder
has finite length with open ends, Brownian motion of a particle creates a net liquid flow
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along the cylinder, leading to long-range particle–particle interactions within the cylinder.
Similarly, if several particles are present within a cylinder or channel of finite length,
electrophoresis is faster than for a single particle (Misiunas & Keyser 2019). We shall show
that this too can be explained on the basis of a net volumetric flow along the cylinder. Other
hydrodynamic interactions between the particles are expected to be weak once particles
are separated by distances comparable to, or greater than, the cylinder diameter (Wang &
Skalak 1969).

The aim of this paper is to determine the electrophoretic velocity of N identical spherical
particles of radius a along the axis of a liquid-filled cylinder of radius R and of finite
length L. The spheres fit tightly within the cylinder, i.e. R − a = h0 � a, and have uniform
zeta potential ζ s. The interior wall of the cylinder has uniform zeta potential ζ c, and, far
from the spheres, the imposed electric field E0 (with magnitude E0) is aligned parallel
to the axis of the cylinder. The incompressible liquid has viscosity μ and electrical
permittivity εl, and the number density of ions within the liquid is sufficiently high
that the Debye length κ−1, which characterizes the thickness of the charge cloud of
counter-ions adjacent to any charged surface, is small compared with the gap width h0. The
electrophoretic velocity of the sphere in unbounded liquid is given by the Smoluchowski
velocity εlE0ζ

s/μ. The electroosmotic velocity of liquid within an infinite cylinder would
be −εlE0ζ

c/μ, so that if the spherical particle were small compared with the cylinder
radius its observed velocity would be

USmol = εlE0(ζ
s − ζ c)/μ. (1.1)

Electrophoretic velocities are usually small, as are colloidal particles. For example, in
the experiments of Misiunas & Keyser (2019) the electrophoretic velocity was typically
17 μm s−1 and the particle diameter was 2a = 505 nm. We therefore assume that Reynolds
numbers are small, so that liquid motion is governed by the Stokes equations.

Our strategy is to first determine the pressure difference Δp, generated by the
electrophoretic motion, between liquid in front of and behind a single tightly fitting
sphere. In an infinitely long cylinder this pressure difference has no effect upon the
infinite columns of liquid within the cylinder. But in a cylinder of finite length, opening
into reservoirs with fixed pressure, the pressure difference causes motion of the liquid,
thereby enhancing the observed electrophoretic velocity. If there are several spheres within
the cylinder, the pressure-generated motion and the velocities of the spheres are further
enhanced, as has been observed experimentally by Misiunas & Keyser (2019).

Sherwood & Ghosal (2018) used a lubrication analysis to determine the electrophoretic
velocity of a tightly fitting sphere inside an infinite cylinder. They found a pressure
difference Δp which was nominally O((R/h0)

5/2), whereas the total force due to wall shear
stresses was O((R/h0)

3/2). A force balance on a cylindrical control volume containing the
spherical particle was impossible in the limit h0/R → 0, unless the leading-order pressure
difference Δp vanished, which required the electrophoretic velocity of the sphere to be
USmol/2. This is the electrophoretic velocity in the limit h0/R → 0 determined analytically
by Yariv & Brenner (2003) and numerically by Keh & Chiou (1996).

This limit leaves us with Δp = 0 and no possibility of predicting pressure-driven motion
within a cylinder of finite length. We therefore embark upon a higher-order lubrication
analysis of the flow (Bungay & Brenner 1973). The leading-order analysis is similar to that
of Yariv & Brenner (2003), who considered a sphere at an arbitrary radial position, rather
than on the centreline of the cylinder. They split the velocity field into the irrotational flow
due to a uniform potential ζ c on both the cylinder and sphere, and an additional velocity
due to a potential ζ s − ζ c on the sphere alone. The leading-order force on the sphere
due to this additional velocity was evaluated by means of the reciprocal theorem and an
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Figure 1. A single charged sphere of radius a in a liquid-filled circular cylinder of radius R = a + h0, with
h0 � R. The electrophoretic velocity of the sphere is U, and the imposed electric field has strength E0 away
from the sphere.

integral over the surface of the sphere. Contributions to this integral from higher terms
in the expansion of the electric potential were zero, so there was no need to determine
these higher terms. Here, we shall continue our analysis to second order and predict a
non-zero pressure difference Δp when h0/R is small but non-zero. We shall then turn to
more physically based arguments to determine the motion of N identical spheres along the
cylinder.

The geometry is axisymmetric: we use cylindrical polar coordinates (r, z), with the z
axis aligned along the axis of the cylinder, and with the centre of the sphere on the plane
z = 0, as seen in figure 1. We shall also use x = R − r as a coordinate normal to the inner
surface of the cylinder. A potential difference V is applied across the ends of the cylinder,
such that the electric field is E0 = E0ẑ within the cylinder far from the sphere.

The surface of the sphere is at (r, z) = a(cos θ, sin θ) where θ is a spherical polar
coordinate with θ = 0 in the plane z = 0. The gap width h is therefore

h
a

= R − a
a

+ z2

2a2 + z4

8a4 + · · · . (1.2)

We follow Bungay & Brenner (1973) and Yariv & Brenner (2003) and set x = R − r,
ε = (R − a)/a = h0/a, X = x/(aε), H = h/(aε) and Z = z/(aε1/2), so that

h
a

= ε + ε
Z2

2
+ ε2 Z4

8
+ · · · , (1.3)

and

H = 1 + Z2

2
+ ε

Z4

8
+ · · · ≡ H0 + εH1 + · · · . (1.4)

Note that R = a(1 + ε) and r = R − x = a(1 + ε − εX).

2. The electric field in the narrow gap

We have to solve the Laplace equation for the potential φ, which is axisymmetric,[
1
r

∂

∂r
r

∂

∂r
+ ∂2

∂z2

]
φ = 0, (2.1)
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i.e. [
1

ε2(1 + ε − εX)

∂

∂X
(1 + ε − εX)

∂

∂X
+ 1

ε

∂2

∂Z2

]
φ = 0. (2.2)

The surface conduction of a plane charge cloud adjacent to a surface at potential ζ0 is
negligible compared with that of the electrolyte-filled gap of width h if exp(eζ0/2kT) �
κh, where e is the charge on a proton and kT is the Boltzmann temperature. We assume that
both ζ c and ζ s satisfy this condition, since κh � 1, and surface conduction can indeed be
neglected. There can therefore be no flux of current normal to the surfaces of the sphere
and cylinder, where the normal component of the electric field must be zero. The potential
φ therefore satisfies the boundary conditions

∂φ

∂X
= 0 on X = 0, (2.3a)

n · ∇φ = 0 on X = H, (2.3b)

where n is the normal to the surface of the sphere, which is described by x − h(z) = 0.
The normal n = ∇(x − h(z)) is therefore

n = (nx, nz) = (1, −∂zh) = (1, −z/a − z3/(2a3) + · · · ) = (1, −ε1/2[Z + εZ3/2 + · · · ]).
(2.4)

But nx∂xφ + nz∂zφ = 0 implies nxε
−1∂Xφ + nzε

−1/2∂Zφ = 0, so we require

∂φ

∂X
− ε(Z + εZ3/2 + · · · )∂φ

∂Z
= 0, on X = H. (2.5)

We seek solutions for the electrical potential and liquid velocities that can be
expanded in powers of the small parameter ε, and we shall make all such expansions
non-dimensional. We therefore look for a non-dimensional expansion of φ of the form

φ = ε−1/2
(

E0R2

a

)
(φ0 + εφ1 + · · · ). (2.6)

A factor R2/a enters naturally later in the analysis when the electric field is evaluated from
the total flux across the cross-section of the cylinder, and it is convenient to include this
factor in the definition of the expansion (2.6). The Laplace equation (2.2) becomes[

∂

∂X
(1 + ε − εX)

∂

∂X
+ ε(1 + ε − εX)

∂2

∂Z2

]
(φ0 + εφ1 + · · · ) = 0. (2.7)

At leading order

∂2φ0

∂X2 = 0, (2.8)

and since ∂φ/∂X = 0 on X = 0, we conclude that φ0 is independent of X. We follow Yariv
& Brenner (2003) and determine φ0 by appealing to conservation of the total flux of the
electric field (and current), which is easily evaluated to be πR2E0 far from the sphere,

929 A45-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.892


Electrophoresis of tightly fitting spheres along a circular

so that

2π

∫ R

a
r
∂φ

∂z
dr = −πR2E0, (2.9)

i.e. ∫ H

0
(1 + ε − εX)

∂

∂Z
(φ0 + εφ1 + · · · ) dX = −1/2. (2.10)

Hence{
(1 + ε)

(
1 + Z2

2
+ ε

Z4

8

)
− ε

2

(
1 + Z2

2
+ ε

Z4

8

)2} dφ0

dZ
+

∫ H

0
ε
∂φ1

∂Z
dX = −1

2
.

(2.11)
At leading order

dφ0

dZ
= − 1

2(1 + Z2/2)
, (2.12)

and hence

φ0 = − 1
21/2 tan−1

(
Z√
2

)
, (2.13)

as found by Yariv & Brenner (2003) when the sphere is on the axis of the cylinder. Thus
to leading order the change in electrical potential across the particle is

Δφ = [φ0(∞) − φ0(−∞)]
E0R2

aε1/2 = − πE0R2

(2ah0)1/2 . (2.14)

The second-order terms in the Laplace equation (2.7) are

∂2φ1

∂X2 = −d2φ0

dZ2 = − Z
2(1 + Z2/2)2 , (2.15)

subject to boundary conditions ∂Xφ1 = 0 on X = 0 and, by (2.5),

∂φ1

∂X
= Z

dφ0

dZ
= − Z

2(1 + Z2/2)
, on X = H. (2.16)

The governing equation (2.15) and boundary conditions for φ1 were given by Yariv &
Brenner (2003), but φ1 was not required for their leading-order evaluation of the force on
the sphere, and so was not determined explicitly. Integrating (2.15) once gives

∂φ1

∂X
= − Z

2(1 + Z2/2)2 X + f (Z), (2.17)

and the boundary condition ∂Xφ = 0 on X = 0 implies that the unknown function of
integration f (Z) = 0. If we evaluate ∂Xφ1 (2.17) on X = H,

∂φ1

∂X
= − Z

2(1 + Z2/2)2

(
1 + Z2

2
+ · · ·

)
, X = H, (2.18)

we see that the boundary condition (2.16) is satisfied. Integrating (2.17),

φ1 = − Z
2(1 + Z2/2)2

X2

2
+ g(Z), (2.19)
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where g(Z) is as yet unknown. The flux condition (2.11) gives, at second order,

1
2

dφ0

dZ
+

∫ H

0

∂φ1

∂Z
dX = 0. (2.20)

Hence

− 1
4(1 + Z2/2)

= −dg(Z)

dZ

(
1 + Z2

2

)
+ H3

12

[
1 − 3Z2/2

(1 + Z2/2)3

]
, (2.21)

i.e.

dg(Z)

dZ

(
1 + Z2

2

)
= (4 − Z2 − 3Z4/4)

12(1 + Z2/2)
. (2.22)

Hence, differentiating (2.19),

∂φ1

∂Z
=

[
−(1 − 3Z2/2)X2

4(1 + Z2/2)3 + (4 − Z2 − 3Z4/4)

12(1 + Z2/2)2

]
, (2.23)

and we see that as Z → ∞ the dimensional electric field is

− ∂

∂z
(ε1/2φ1)

R2E0

a
= −∂φ1

∂Z
R2E0

a2 = −R2E0

4a2 . (2.24)

Thus our expansion does not match to the uniform electric field far from the gap, and we
have no analytic solution to which the lubrication analysis might be matched in some
intermediate zone. Our analysis is therefore closer to an extended lubrication analysis
(cf. Tavakol et al. 2017), rather than to one based on matched asymptotic expansions.
However, the hydrodynamic problem is strongly dominated by the region of the narrow
gap (more so than the electrostatic problem), and a solution in the narrow gap is all that
we shall need.

3. Liquid motion within the narrow gap

3.1. The Smoluchowski slip boundary conditions
The electric field is tangential to the insulating surfaces of the sphere and cylinder, and
creates motion of the liquid within the charge cloud adjacent to the surface. If the surface
has potential ζ0, liquid just outside the charge cloud appears to slip relative to the surface
with the Smoluchowski slip velocity

utan = −εlζ0

μ
Etan, (3.1)

where Etan is the tangential electric field. We have ensured that the electric field E satisfies
n · E = 0 on the boundaries of the sphere and cylinder, so if we impose u = −εlζE/μ on
these surfaces (with ζ = ζ c or ζ s as appropriate), we ensure that both the Smoluchowski
slip condition (3.1) and the zero normal velocity condition n · u = 0 are satisfied.
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We non-dimensionalize surface potentials by the arbitrary potential ζ0, setting

ζ̂ c = ζ c/ζ0, ζ̂ s = ζ s/ζ0, (3.2a,b)

and for ease of notation we use (uc, vc) and (us, vs) to denote the (z, r) components of the
slip velocities on the cylinder and sphere, respectively, with

uc = εlζ
c

μ

∂φ

∂z
= ζ̂ c

ε

(
ζ0εlR2E0

μa2

)
∂

∂Z
(φ0 + εφ1 + · · · ). (3.3)

Motivated by (3.3), we non-dimensionalize the expansion of velocities by the velocity
scale

uscale = ζ0εlR2E0/(μa2), (3.4)

and that of pressure (and stress) by μuscale/a. Expansions for volumetric flow rates will
be non-dimensionalized by a2uscale, and those for force (e.g. over the area of a control
volume) by μauscale. On the cylindrical boundary we therefore adopt the expansion

u = uc = ε−1uscale{uc
0 + εuc

1 + · · · }, (3.5)

where, by (2.12),

uc
0 = −ζ̂ c dφ0

dZ
= − ζ̂ c

2(1 + Z2/2)
. (3.6)

By (2.23) with X = 0,

uc
1 = ζ̂ c ∂φ1

∂Z
= ζ̂ c (4 − Z2 − 3Z4/4)

12(1 + Z2/2)2 . (3.7)

The slip velocity on the sphere is, like (3.5), expanded as

u(X = H) = us = ε−1uscale{us
0 + εus

1 + · · · }, (3.8)

with

us
0 = − ζ̂ s

2(1 + Z2/2)
. (3.9)

We shall discuss the next-order correction us
1 to the slip velocity on the sphere in § 3.5.

3.2. Governing equations
The equation of continuity in cylindrical polars (r, z), for an axisymmetric flow field (v, u),
is

∂

∂r
(rv) + r

∂u
∂z

= 0. (3.10)

The Stokes equations are

1
μ

∂p
∂r

= ∇2v − v

r2 = 1
r

∂

∂r

(
r
∂v

∂r

)
+ ∂2v

∂z2 − v

r2 , (3.11)

and
1
μ

∂p
∂z

= ∇2u = 1
r

∂

∂r

(
r
∂u
∂r

)
+ ∂2u

∂z2 . (3.12)
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We again set r = R − x, X = x/(aε), Z = z/(aε1/2), r = a(1 + ε − εX). The equation of
continuity (3.10) becomes

− 1
ε

∂

∂X
[(1 + ε − εX)v] + (1 + ε − εX)

ε1/2
∂u
∂Z

= 0. (3.13)

We see that v is smaller than u, and we therefore look for non-dimensional expansions

u = ε−1uscale{u0 + εu1 + · · · }, (3.14a)

v = −ε−1/2uscale{v1 + · · · }, (3.14b)

p = ε−5/2
(μuscale

a

)
{p0 + εp1 + · · · }. (3.14c)

Note that we have chosen the sign of the expansion of v such that v1 > 0 corresponds to
flow in the x direction, inwards from the wall of the cylinder, rather than in the r direction.

The equation of continuity (3.13) becomes, at leading order,
∂v1

∂X
+ ∂u0

∂Z
= 0. (3.15)

The Stokes equation for the axial velocity u (3.12) becomes

(1 + ε − εX)

ε1/2μ

∂p
∂Z

= 1
aε2

∂

∂X

[
(1 + ε − εX)

∂u
∂X

]
+ (1 + ε − εX)

aε

∂2u
∂Z2 . (3.16)

At leading order
∂p0

∂Z
= ∂2u0

∂X2 . (3.17)

At second order, equating the coefficients of ε−5/2 in (3.16) gives[
∂p1

∂Z
+ (1 − X)

∂p0

∂Z

]
= ∂2u1

∂X2 + ∂2u0

∂Z2 + (1 − X)
∂2u0

∂X2 − ∂u0

∂X
, (3.18)

which simplifies immediately to give

∂p1

∂Z
= ∂2u1

∂X2 + ∂2u0

∂Z2 − ∂u0

∂X
. (3.19)

The leading-order Stokes equation (3.11) for v is

− a
με

∂p
∂X

= 1
ε2

∂2v

∂X2 + 1
ε

∂2v

∂Z2 − v, (3.20)

and we conclude from the leading-order ε−7/2 term

∂p0

∂X
= 0, (3.21)

so that p0 is a function of Z alone. At the next order, equating the coefficients of ε−5/2,
(3.20) gives

∂p1

∂X
= ∂2v1

∂X2 , (3.22)

so that

p1 = ∂v1

∂X
+ F(Z), (3.23)

for some as yet unknown function of integration F(Z).
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The velocity normal to the solid surfaces must be zero. This immediately gives

v = 0 on X = 0. (3.24)

The normal to the surface of the sphere is given by (2.4) and leads to the condition

− ε−1/2v1 + ε−1/2(Z + εZ3/2)(u0 + εu1) = 0. (3.25)

Hence, on the sphere,
v1 = Zu0. (3.26)

If ζ s = ζ c the irrotational velocity field u = −ζ sεlE/μ, with the sphere at rest, satisfies
both the flow equations and the boundary conditions, and hence the electrophoretic
velocity U of the sphere is zero. We have assumed that charge clouds are sufficiently
thin so that the slip velocity at each boundary depends linearly on its zeta potential. We
therefore expect the electrophoretic velocity to depend linearly on both ζ s and ζ c and to
take the form U = αζ s + βζ c for some as yet unknown α and β. Only if α = −β will U
be zero when ζ s = ζ c and hence U must be proportional to ζ s − ζ c for all values of a/R,
and not just for a � R (1.1). This will be a useful check on analytic predictions.

3.3. The leading-order axial velocity u0

We assume that the sphere moves along the cylinder with a velocity U that can be expanded
as

U = uscale{U0 + εU1 + · · · }, (3.27)

where we have adopted our usual velocity scale uscale (3.4) for non-dimensionalization of
the series expansion of U, and we note that this expansion (3.27) starts at O(1), whereas
the expansion (3.14a) for the liquid velocity u starts at O(ε−1), since liquid has to squeeze
through the narrow gap between the sphere and cylinder wall.

Far away from the sphere, the electric field E0 generates a uniform electroosmotic
velocity −εlζ

cE0/μ leading to a volumetric flow rate −πR2εlζ
cE0/μ, and we shall

non-dimensionalize all volumetric flow rates by a2uscale = εlζ0E0R2/μ. When we later
discuss motion in cylinders of finite length, we shall allow for the possibility of an
additional pressure-driven volumetric flow rate QL in the laboratory frame. We know from
previous work (Sherwood & Ghosal 2018) that in the limit ε = 0 there is no pressure
difference across the sphere, and hence no pressure-driven flow. In consequence, we expect

QL = a2uscale{εQL1 + · · · }. (3.28)

We now move into the frame of reference which moves with the sphere, so that the total
volumetric flow rate in the frame in which the sphere is at rest is

Q = QL − πR2
(

εlζ
c

μ
E0 + U

)
=

(
εlζ0E0R2

μ

) {
εQL1 − πζ̂ c − πR2

a2 (U0 + εU1) + · · ·
}

=
(

εlζ0E0R2

μ

)
{Q0 + εQ1 + · · · }, (3.29)

so that

Q0 = −π

(
ζ̂ c + R2

a2 U0

)
, Q1 =

(
QL1 − πR2

a2 U1

)
. (3.30a,b)
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Note that in this frame the liquid velocity at the cylindrical wall is u = uc − U, which in
terms of the non-dimensional series expansions becomes

ε−1{u0 + εu1 + · · · } = ε−1{uc
0 + εuc

1 + · · · } − {U0 + εU1 + · · · }, on X = 0. (3.31)

We see that at O(ε−1) this change in frame of reference makes no difference to the
boundary condition for u0 at the cylinder wall.

We first integrate the Stokes equation (3.17) to obtain

u0 = dp0

dZ
X(X − H0)

2
+ uc

0 + (us
0 − uc

0)X
H0

, (3.32a)

= dp0

dZ
X(X − 1 − Z2/2)

2
− ζ̂ c

2(1 + Z2/2)
− (ζ̂ s

0 − ζ̂ c
0 )X

2(1 + Z2/2)2 . (3.32b)

This solution for u0 satisfies the Smoluchowski slip boundary conditions (to leading order)
at the bounding surfaces of the cylinder and sphere. The unknown pressure gradient ∂Zp0
is a function of Z alone, by (3.21). It is found by considering the total volumetric flow
through the gap between the sphere and cylinder, which is

Q = 2π

∫ R

h
ru dr = 2πεa2uscale

∫ H

0
(1 + ε − εX)

(u0 + εu1 + · · · )
ε

dX. (3.33)

In terms of the non-dimensional expansion (3.29)

Q0

2π
+ ε

Q1

2π
=

∫ H

0
u0 dX + ε

∫ H

0
[(1 − X)u0 + u1] dX

=
∫ H0

0
u0 dX + ε

∫ H0

0
[(1 − X)u0 + u1] dX + εH1u0(H). (3.34)

At leading order, using (3.32a)

Q0

2π
=

∫ H0

0
u0 dX = −dp0

dZ
H3

0
12

+ uc
0H0 + (us

0 − uc
0)

H0

2
, (3.35)

so that, by (3.30a,b),

dp0

dZ
= 12

H3
0

{
(us

0 + uc
0)

H0

2
− Q0

2π

}
= −(ζ̂ c + ζ̂ s)

3
H3

0
+ 6

ζ̂ c

H3
0

+ 6R2U0

a2H3
0

. (3.36)

We consider the forces on a cylindrical control volume, which we choose with axis along
r = 0, plane ends at ±|z| � a and with radius slightly smaller than R, so that the interior
is electrically neutral (since the charge cloud adjacent to the cylinder is excluded, and the
sphere is surrounded by its cloud of counter-ions). The pressure forces on the two plane
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ends contribute a non-dimensional force in the z direction with leading order

− πR2

a2ε5/2

∫ ∞

−∞
dp0

dZ
dZ = − πR2

a2ε5/2

[
ζ̂ c − ζ̂ s + 2R2

a2 U0

] ∫ ∞

−∞
dZ

(1 + Z2/2)3

= − πR2

a2ε5/2

[
ζ̂ c − ζ̂ s + 2R2

a2 U0

]
3
√

2π

8
. (3.37)

The leading-order shear stress is

τzx = μ
∂u
∂x

= μuscale

aε2
∂u0

∂X
= μuscale

aε2

[
dp0

dZ
(X − H0/2) + (us

0 − uc
0)

H0

]
. (3.38)

On X = 0+ (i.e. just outside the charge cloud adjacent to the cylinder) this is

τzx = μuscale

aε2

{[
ζ̂ s − ζ̂ c − 2R2

a2 U0

]
3

2H2
0

− (ζ̂ s − ζ̂ c)

2H2
0

}
= μuscale

aε2H2
0

[
ζ̂ s − ζ̂ c − 3

R2

a2 U0

]
.

(3.39)

The total force acting on the curved surface of the control volume, in the z direction, is

− 2πR
∫ ∞

−∞
τxz dz = −2πRμuscale

ε3/2

[
ζ̂ s − ζ̂ c − 3

R2

a2 U0

] ∫ ∞

−∞
dZ

(1 + Z2/2)2 . (3.40)

We see that the force on the control volume due to pressure at the plane ends is O(ε−5/2),
whereas that due to the shear stress over the curved cylindrical surface is O(ε−3/2). No
balance is possible unless dp0/dZ = 0. We conclude from (3.37) that

U0 = a2

2R2 (ζ̂ s − ζ̂ c), (3.41)

so that, to leading order, the dimensional electrophoretic velocity is

U = εl(ζ
s − ζ c)E0

2μ
, (3.42)

as found by Yariv & Brenner (2003), and the leading-order pressure gradient (3.36) and
total pressure force (3.37) are zero. The leading-order liquid velocity (3.32b) reduces to

u0 = − ζ̂ c

2(1 + Z2/2)
− (ζ̂ s − ζ̂ c)X

2(1 + Z2/2)2 , (3.43)

and the leading-order force on the cylindrical surface of the control volume (3.40) due to
shear stress is

− 2πR
∫ ∞

−∞
τxz dz = πRμuscale

ε3/2 [ζ̂ s − ζ̂ c]

√
2π

2
. (3.44)
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3.4. Leading-order radial velocity v1

We can now obtain v1 from the equation of continuity (3.15)

∂v1

∂X
= −∂u0

∂Z
= − ζ̂ cZ

2(1 + Z2/2)2 − (ζ̂ s − ζ̂ c)
ZX

(1 + Z2/2)3 . (3.45)

Integrating, and using the result v = 0 on X = 0,

v1 = − ζ̂ cZX
2(1 + Z2/2)2 − (ζ̂ s − ζ̂ c)

ZX2

2(1 + Z2/2)3 . (3.46)

On X = H this becomes

v1 = − ζ̂ cZ
2(1 + Z2/2)

− (ζ̂ s − ζ̂ c)
Z

2(1 + Z2/2)
, (3.47)

and we see, by comparison with (3.32b), that v1 = Zu0 on X = H, as required by the
boundary condition (3.26).

Having found v1 (3.46), we obtain p1 (3.23) as

p1 = ∂v1

∂X
+ F(Z) (3.48a)

= − ζ̂ cZ
2(1 + Z2/2)2 − (ζ̂ s − ζ̂ c)

ZX
(1 + Z2/2)3 + F(Z). (3.48b)

3.5. Second-order axial velocity u1

We have already determined the second-order correction uc
1 (3.7) to the slip velocity on the

surface of the cylinder. We now determine the correction to the slip velocity on the surface
of the sphere. Our leading-order axial velocity u0 satisfies the slip velocity on X = H0, but
when working to higher order we must take account of the first-order perturbation H1 to
the gap width, i.e. H = H0 + εH1 + · · · (1.4). The tangential velocity boundary condition
on X = H (equivalent to (3.3), with ζ c replaced by ζ s) becomes

u0(H0) + εH1
∂u0

∂X
+ εu1 = ζ̂ s ∂

∂Z
{φ0 + εφ1 + · · · }

= − ζ̂ s

2(1 + Z2/2)
+ ε

ζ̂ s

4

[
− (1 − 3Z2/2)

(1 + Z2/2)
+ (4 − Z2 − 3Z4/4)

3(1 + Z2/2)2

]
.

(3.49)

So the boundary condition for u1 on the sphere becomes u1(H0) = us
1, where

us
1 = ζ̂ s

4

[
−(1 − 3Z2/2)

(1 + Z2/2)
+ (4 − Z2 − 3Z4/4)

3(1 + Z2/2)2

]
− Z4

8
∂u0

∂X

= ζ̂ s

4

[
(1 + 2Z2 + 3Z4/2)

3(1 + Z2/2)2

]
+ Z4

8
(ζ̂ s − ζ̂ c)

(1 + Z2/2)2 . (3.50)

The first two terms in the expression (3.48b) for p1 make no contribution to the pressure
far from the sphere. But as yet F(Z) is unknown. To find it, we must first find u1, and then,
as in § 3.3, choose F(Z) such that the volumetric flow rate is correct.
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Electrophoresis of tightly fitting spheres along a circular

As a first step, we obtain, from (3.48a) and continuity (3.15)

∂p1

∂Z
= ∂2v1

∂Z∂X
+ dF(Z)

dZ
= −∂2u0

∂Z2 + dF(Z)

dZ
, (3.51)

so that the Z component of the Stokes equation (3.19) becomes

∂2u1

∂X2 = ∂p1

∂Z
− ∂2u0

∂Z2 + ∂u0

∂X
= −2

∂2u0

∂Z2 + dF(Z)

dZ
+ ∂u0

∂X

= − ζ̂ c(1 − 3Z2/2)

(1 + Z2/2)3 − 2(ζ̂ s − ζ̂ c)(1 − 5Z2/2)X
(1 + Z2/2)4 + dF(Z)

dZ
− (ζ̂ s − ζ̂ c)

2(1 + Z2/2)2 .

(3.52)

We integrate twice with respect to X to obtain

u1 = − ζ̂ c(1 − 3Z2/2)

2(1 + Z2/2)3 X(X − H) − (ζ̂ s − ζ̂ c)(1 − 5Z2/2)

3(1 + Z2/2)4 X(X2 − H2)

+ dF(Z)

dZ
X(X − H)

2
− (ζ̂ s − ζ̂ c)

2(1 + Z2/2)2
X(X − H)

2
+ G(Z) + XJ(z), (3.53)

where G(Z) and J(Z) are to be chosen in order to satisfy the boundary conditions u1 = us
1

(3.50) on X = H0 and u1 = uc
1 − U0 on X = 0, where uc

1 is given by (3.7), and we have
used (3.31) to account for the change in reference frame to that in which the sphere is
stationary. Hence

u1 = − ζ̂ c(1 − 3Z2/2)

2(1 + Z2/2)3 X(X − H) − (ζ̂ s − ζ̂ c)(1 − 5Z2/2)

3(1 + Z2/2)4 X(X2 − H2)

+ dF(Z)

dZ
X(X − H)

2
− (ζ̂ s − ζ̂ c)

(1 + Z2/2)2
X(X − H)

4
+ uc

1 − U0 + X
(us

1 − uc
1 + U0)

H
.

(3.54)

At O(ε) the volumetric flow rate equation (3.34) gives

Q1

2π
=

∫ H0

0
u1 dX −

∫ H0

0
(1 − X)

{
ζ̂ c

2(1 + Z2/2)
+ (ζ̂ s − ζ̂ c)X

2(1 + Z2/2)2

}
dX − Z4

16
ζ̂ s

(1 + Z2/2)

= ζ̂ c(1 − 3Z2/2)

12
+ (ζ̂ s − ζ̂ c)(1 − 5Z2/2)

12
− dF(Z)

dZ
H3

0
12

+ (ζ̂ s − ζ̂ c)H0

24

+ H0(us
1 + uc

1 − U0)

2
− ζ̂ c

2
(1 − H0/2) − (1/4 − H0/6)(ζ̂ s − ζ̂ c) − ζ̂ sZ4

16(1 + Z2/2)
,

(3.55)

and hence, using the slip velocities uc
1 (3.7) and us

1 (3.50),

Q1

2π
= (ζ̂ s − ζ̂ c)

{
1

12(1 + Z2/2)
+ Z4

24(1 + Z2/2)

}
− dF(Z)

dZ
H3

0
12

+ ζ̂ c(1 − Z2 + 3Z4/4)

24(1 + Z2/2)
− H0U0

2
− ζ̂ sZ4

16(1 + Z2/2)
, (3.56)
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so that
dF(Z)

dZ
= (ζ̂ s − ζ̂ c)

{
1

(1 + Z2/2)4 + Z4

2(1 + Z2/2)4

}
+ ζ̂ c(1 − Z2 + 3Z4/4)

2(1 + Z2/2)4 − 6U0

(1 + Z2/2)2 − 3ζ̂ sZ4

4(1 + Z2/2)4 − 6Q1

π(1 + Z2/2)3 ,

(3.57)

where the perturbed volumetric flow rate Q1 is given by (3.30a,b). We now integrate (3.57)
to find the change in pressure p1 (3.48b)

Δp1 = p1(∞) − p1(−∞) =
∫ ∞

−∞
dF(Z)

dZ
dZ = −(ζ̂ s − ζ̂ c)

5
√

2π

4
− 9

√
2Q1

4

= −(ζ̂ s − ζ̂ c)
5
√

2π

4
+ 9

√
2πU1R2

4a2 − 9
√

2QL1

4
. (3.58)

The total force balance on the control volume, in the z direction, is

πR2[p(−∞) − p(∞)] − 2πR
∫ ∞

−∞
τrz dz = 0, (3.59)

where the pressure difference is given by (3.58) and the leading-order force due to the wall
shear stress by (3.44), both of which we now know up to O(ε−3/2). In an infinitely long
cylinder QL = 0, so that the non-dimensional force balance at O(ε−3/2) gives

R2

a2

[
(ζ̂ s − ζ̂ c)

5
√

2π

4
− 9

√
2πU1R2

4a2

]
+

√
2Rπ

2a
(ζ̂ s − ζ̂ c) = 0, (3.60)

i.e.
9U1R2

4a2 = (ζ̂ s − ζ̂ c)

[
a

2R
+ 5

4

]
. (3.61)

Hence

U = U0 + εU1 = (ζ s − ζ c)
εlE0

μ

[
1
2

+ ε
7
9

]
= (ζ s − ζ c)

εlE0

μ

[
1
2

+
(

R
a

− 1
)

7
9

]
.

(3.62)

Figure 2 shows results for U (scaled by the Smoluchowski prediction (1.1)) as a
function of a/R, computed numerically by Keh & Chiou (1996) (solid line), together
with our prediction (3.62) (dashed line). When a/R = 0 the numerical results tend to the
Smoluchowski prediction (1.1), as expected. As a/R → 1 both curves tend to the limit
(3.42) predicted by Yariv & Brenner (2003). We see that the slope of the prediction (3.62)
is good near a/R = 1 (i.e. when h0 � a), but rapidly becomes poor as h0 increases. We
make the Euler transformation (Hinch 1991)

δ = ε

1 + ε
= h0

R
, (3.63)

and (3.62), expressed in terms of δ and linearized for δ � 1 becomes

U = (ζ s − ζ c)
εlE0

μ

[
1
2

+ 7
9
δ

]
= (ζ s − ζ c)

εlE0

μ

[
1
2

+ 7
9

(
h0

R

)]
. (3.64)

This too is shown in figure 2. The improved agreement suggests that δ = h0/R might be
more appropriate as a small parameter for our analysis than ε = h0/a, and that the length

929 A45-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.892


Electrophoresis of tightly fitting spheres along a circular

0 0.2 0.4 0.6 0.8 1.0
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U
μ
/ε
l(
ζs
–

ζ
c )
E 0

Figure 2. The electrophoretic velocity U of a single sphere, scaled by εlE0(ζ
s − ζ c)/μ, as a function of the

ratio of the sphere radius a to the cylinder radius R. ———– Numerical predictions (Keh & Chiou 1996);
– – – – prediction based on (3.62); – - – - – transformed prediction (3.64).

φ =V

z = L1

p =P0

0

L

L2

φ = 0

P1 P2P∞P–∞ P0

Figure 3. The liquid-filled cylinder has total length L = L2 − L1. The figure shows the case of one sphere
(N = 1) at z = 0, with two sections of liquid-filled pipe of length L2 − a and −L1 − a, in which the electric
field and pressure gradient are assumed uniform.

scale R might have been more appropriate for non-dimensionalization than a. However,
the representation of the gap width H (1.4) would have been more complicated.

4. Case of N spheres in a pipe of finite length

We now assume that the cylinder has finite length L, with κ−1 � h0 � R � L. The ends
of the cylinder are at z = L1 < 0 and z = L2 > 0, with L2 − L1 = L. The cylinder ends
open into large reservoirs (figure 3). In § 4.1 the analysis of § 2 for the electric field in
the narrow gap between a single sphere (centred at (r, z) = (0, 0)) and the cylinder wall is
combined with an estimate of the electric field far from the sphere, and it is straightforward
to extend this analysis in order to estimate the electric field when N well-spaced spheres
are present. In § 4.2 we perform similar steps for the pressure field, and obtain a prediction
for the electrophoretic velocity, which is compared against experimental results in § 4.3.
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4.1. The electric field
A potential difference V is applied between the two liquid reservoirs at each end of the
cylindrical tube, such that the electric field is E0 = E0ẑ within the cylinder far from any
sphere. In the absence of spheres and of any end effects, E0 = V/L. We model electrical
end effects by the electric field around a circular hole in a membrane of zero thickness
(Sherwood, Mao & Ghosal 2014). This end effect is discussed in detail in the context of
acoustic impedance by Brandão & Schnitzer (2020). In the absence of any sphere, but
when end effects are included, the imposed electric field within the pipe is

E0 ≈ V
L + πR/2

. (4.1)

In § 2 we showed that the total drop in potential (2.14) across the particle is

[φ]∞−∞ = − E0R2π

(2ah0)1/2 . (4.2)

The electric field E0 away from the particle (i.e. in the liquid-filled portion of the cylinder,
of length approximately L − 2a) contributes a potential difference E0(L − 2a), and end
effects add a potential difference E0πR/2. The total potential drop between the two
reservoirs is therefore

V ≈ E0

[
πR
2

+ (L − 2a) + πR2

(2ah0)1/2

]
. (4.3)

Analogous arguments predict that when there are N particles

V ≈ E0

[
πR
2

+ (L − 2Na) + NπR2

(2ah0)1/2

]
. (4.4)

We assume that L/R ≈ L/a � 1, which enables us to neglect terms in (4.4) that have
been estimated, rather than rigorously derived. The electric field (4.4) away from any of
the spheres therefore simplifies to

E0 ≈ V
[

L + NπR2

(2ah0)1/2

]−1

= V
L

[
1 + NπR2

L(2ah0)1/2

]−1

. (4.5)

The correction term on the right-hand side of (4.5) is O(ε−1/2R/L), and as long as this is
small we may expand (4.5) to obtain the electric field E0 away from any of the spheres in
the form

E0 = V
L

(
1 − NπR2

L(2ah0)1/2 + · · ·
)

. (4.6)

We see from (4.6) that one effect of increasing the number of spheres, N, within the
cylinder is to decrease the electric field E0 away from any sphere if V is held constant.
This effect on its own would tend to reduce the electrophoretic velocity of the spheres to
below that of a single sphere.

4.2. The pressure field
As in § 4.1 for the electric field, we first examine electrophoretic motion of a single sphere
with centre at z = 0, and determine the pressure generated by this motion. The results will
then be generalized to the case of N spheres along the centreline. We assume that the ends
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of the cylinder open into liquid-filled half-spaces, both of which are at pressure P0. The
pressure at the right-hand end of the cylinder, z = L2, is P2, and that at the left end z = L1
is P1 (figure 3). The pressure losses due to a volumetric flow rate QL into and out of the
ends of the pipe are each approximated as 3QLμ/(2R3), based on flow through a hole of
radius R in a membrane of zero thickness (Happel & Brenner 1973). The (small) errors
due to this approximation are discussed by Dagan, Weinbaum & Pfeffer (1982).

We assume that the pressure p tends towards P∞ as we move away from the sphere into
a region z > a sufficiently far from the particle for the pressure gradient to be unaffected
by the presence of the sphere. Similarly p tends to P−∞ away from the sphere in z <

−a, and in § 3.5 we obtained an estimate (3.58) for the pressure difference Δp = P∞ −
P−∞ in terms of the (as yet unknown) electrophoretic velocity U and any pressure driven
volumetric flow rate QL.

Looking at the Poiseuille flow in the left- and right-hand parts of the liquid-filled pipe,
the lengths of which we approximate as −L1 − a and L2 − a, and at the pressure losses
due to entrance and exit effects at the ends of the cylinder, we find

QL = πR4(P∞ − P2)

8μ(L2 − a)
= πR4(P1 − P−∞)

8μ(−L1 − a)
= 2R3(P0 − P1)

3μ
= 2R3(P2 − P0)

3μ
. (4.7)

Hence
8μQL

πR4 [L − 2a] = P1 − P2 + Δp, (4.8)

and since the two reservoirs are at the same pressure P0,

3μQL

R3 = P2 − P1, (4.9)

so that

Δp = 8μQL

πR4

[
L − 2a + 3πR

8

]
. (4.10)

If there are N spheres, an analysis including the pressure drop in each of the N + 1 portions
of the cylinder not containing a sphere leads to

NΔp = 8μQL

πR4

[
L − 2Na + 3πR

8

]
. (4.11)

As for the electric field, we now assume R � L, so that (4.11) simplifies to

NΔp = 8μQLL
πR4 . (4.12)

We rewrite (4.12) in terms of the non-dimensional expansions for p (3.14c) and QL (3.28):

QL1 = NπR4Δp1

8a3Lε5/2 . (4.13)

We have ignored perturbations to the electroosmotically generated volume flow rate due to
electroosmotic effects at the two ends of the cylinder. Such entrance and exit effects may
be important when salt concentrations are low and surface conductivities large (Lee et al.
2012). However, we have assumed that Debye lengths are small and zeta potentials not too
large, so that surface conductivity is negligible.
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We use (4.13) in order to eliminate QL from the expression (3.58) for Δp1, leading to

Δp1

[
1

21/2π
+ 9NR4

32La3ε5/2

]
= −(ζ̂ s − ζ̂ c)

5
4

+ 9U1R2

4a2 . (4.14)

We now reconsider the force balance (3.59) on our control volume, using (3.44), and find
at O(ε−3/2)

πR2

a2 Δp1 = πR2 9U1R2/(4a2) − 5(ζ̂ s − ζ̂ c)/4

1/(
√

2π) + 9NR4/(32La3ε5/2)
=

√
2π2R
2a

(ζ̂ s − ζ̂ c), (4.15)

and hence

U1 = (ζ̂ s − ζ̂ c)
a2

R2

[
7
9

+ R3N
√

2π

16La2ε5/2

]
. (4.16)

The non-dimensional electrophoretic velocity of the N spheres is therefore

U0 + εU1 + · · · = (ζ̂ s − ζ̂ c)

2

[
1 + 14ε

9
+ R3N

√
2π

8La2ε3/2

]
. (4.17)

Writing this in dimensional terms, and using (4.6) to express the electric field E0 in terms
of the applied potential difference V

U = εl(ζ
s − ζ c)

2μ

V
L

(
1 − NπR2

L(2ah0)1/2

) [
1 + 14h0

9a
+ R3N

√
2π

8La1/2h3/2
0

]
. (4.18)

We see that the reduction in velocity due to the reduction in the electric field E0 (4.6) is
O(h0/R) smaller than the increase in velocity due to the pressure-driven flow and may be
neglected, leaving

U = εl

2μ
(ζ s − ζ c)

V
L

{
1 + 14h0

9a
+ NR3

√
2π

8La1/2h3/2
0

+ · · ·
}

. (4.19)

This tends to our previous result (3.62) in the limit L → ∞. As might be expected, the rate
of increase in electrophoretic velocity is largest when h0 is small, so that leakage fluxes
past the spheres are small. The increase becomes infinite in the limit h0 → 0. However, we
have assumed h � κ−1. Moreover, if liquid velocities and electric fields become too large
within the narrow gap, the charge clouds will be deformed (Sherwood & Ghosal 2018),
and an analysis based solely on the Smoluchowski slip velocity (3.1) no longer suffices.

If, as earlier in (3.64), we replace ε = h0/a in (4.17) by δ = h0/R, the prediction (4.19)
for the electrophoretic velocity becomes

U = εl

2μ
(ζ s − ζ c)

V
L

{
1 + 14h0

9R
+ NR9/2

√
2π

8La2h3/2
0

+ · · ·
}

. (4.20)

4.3. Comparison with experiments
We now look at the experiments of Misiunas & Keyser (2019), who used particles
of diameter 2a = 505 nm in a rectangular channel with side 2b = 750 nm and length
L = 104 nm. We consider an effective cylinder radius R = 423 nm such that πR2 = 4b2,
leading to estimates h0 = R − a = 171 nm, L/R = 23.6, h0/R = 0.4, ε = h0/a = 0.68,
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a/R = 0.6, δ = h0/R = 0.4. Misiunas & Keyser (2019) do not state the Debye length in
their experiments, but an electrolyte concentration of 2 mM KCl suggests κ−1 ≈ 7 nm,
so that κ−1 � h0. Similarly our assumption R � L is satisfied. The gap width h0 is
sufficiently large that we see from figure 2 that our predicted velocity U (3.62) in an infinite
cylinder is poor, but the transformed expression (3.64) remains good, and we adopt this
here. Our predicted velocity, using (4.19) for the increase in velocity due to the finite length
of the cylinder, is therefore

U(N) = εlV
μL

(ζ s − ζ c)

{
1
2

+ 7δ

9
+ NR3

√
2π

16La1/2h3/2
0

}
= 0.93

εlV
μL

(ζ s − ζ c)[1 + 0.07(N − 1)]. (4.21)

If instead we use (4.20), our prediction becomes

U = 0.94
εlV
μL

(ζ s − ζ c)[1 + 0.13(N − 1)]. (4.22)

The experiments of Misiunas & Keyser (2019) found that the electrophoretic velocity of
N spheres, U(N) ≈ U(1)[1 + 0.09(N − 1)], increases linearly with N only slightly faster
than predicted by (4.21) or less than predicted by (4.22). This agreement between theory
and experiment is much better than one might expect, given the square cross-section of the
experimental flow channel and the only moderately small experimental value of h0/a.

The theoretical prediction of the dependence of the electrophoretic velocity on
the number of particles N in the cylinder, obtained above ((4.20) and (4.19)) complements
the experimental and numerical results of Misiunas & Keyser (2019). Our analysis requires
the particles to be spherical, and only slightly smaller in diameter than the circular cylinder
along which they move. The Debye length must be thin compared with the minimum gap
width between the cylinder wall and the particle. The zeta potentials on the surfaces of
the particles and cylinder are assumed to be sufficiently small so that surface conductivity
can be neglected: this constraint is usually satisfied if, as here, Debye lengths are small.
We have assumed that the particles lie along the axis of the cylinder: the effect of radial
position of the particle has been studied (for the case of a single particle in an infinite
cylinder) by Yariv & Brenner (2003). The cylinder length L is assumed to be long
compared with the particle radius a, so that the pressure-driven flow is dominated by
Poiseuille flow in the particle-free portions of the cylinder, and the particle separation
is assumed to be large compared with the cylinder diameter 2R, so that hydrodynamic
interactions other than those due to the volumetric flow of liquid are negligible.

Electrophoresis experiments in which the particle diameter is only slightly less than
that of the liquid-filled cylinder are perhaps rare, since the particle might be attracted
to the cylinder wall if the two surfaces have opposite sign or (at close range) even if
they have different fixed charge densities of the same sign (Israelachvili 2011). Entry
into such a cylinder may lead to clogging, and particles accumulated outside (but did
not clog) the channel entrance in the experiments of Misiunas & Keyser (2019). However,
our predictions (4.21) and (4.22) appear to be useful even when the gap is as large as
h0/R = 0.4, and may therefore serve to help design experiments in which the cylinder
length L is sufficiently long for bulk volumetric flow and end effects to be negligible.
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