INEQUALITIES FOR CERTAIN CLASSES OF CONVEX FUNCTIONS

by L. MIRSKY (Received 27th June 1959)

MAKING use of properties of doubly-stochastic matrices, I recently gave a simple proof (4) of a theorem of Ky Fan (Theorem 2b below) on symmetric gauge functions. I now propose to show that the same idea can be employed to derive a whole series of results on convex functions; in particular, certain well-known inequalities of Hardy-Littlewood-Pólya and of Pólya will emerge as special cases.

Our notation is as follows. All numbers are understood to be real; n denotes a positive integer and $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n)$ denote two given vectors. If $\bar{x}_1, ..., \bar{x}_n$ are the numbers $x_1, ..., x_n$ arranged in non-ascending order of magnitude and if $\bar{y}_1, ..., \bar{y}_n$ are defined similarly, then $\mathbf{x} \ll \mathbf{y}$ means that

Further, we write $\mathbf{x} \prec \mathbf{y}$ if (1) holds and if, in addition, there is equality for k=n.

We put $a^+ = \max(a, 0)$ and $\mathbf{x}^+ = (x_1^+, \dots, x_n^+)$. A typical permutation of 1, ..., n is denoted by π , and \mathbf{x}_n is the vector obtained when π is applied to the components of \mathbf{x} . The set of symmetric functions, i.e. of functions F such that $F(\mathbf{u}_n) = F(\mathbf{u})$ for all vectors \mathbf{u} and all permutations π , is denoted by \mathscr{S} . The set of increasing functions, i.e. of functions F such that $F(\mathbf{u}) \leq F(\mathbf{v})$ whenever $\dagger \mathbf{u} \leq \mathbf{v}$, is denoted by \mathscr{S} . Again, \mathscr{Z} denotes the set of functions F such that $F(\mathbf{u}\Lambda) \leq F(\mathbf{u})$ for every vector \mathbf{u} and every diagonal matrix Λ whose diagonal elements are equal to 0 or 1. Thus, for $n = 1, f \in \mathscr{Z}$ means that $\min_u f(u) = f(0)$.

The function F is called *convex* if, for any vectors **u**, **v** and any numbers λ, μ such that $\lambda \ge 0, \mu \ge 0, \lambda + \mu = 1$, we have

$$F(\lambda \mathbf{u} + \mu \mathbf{v}) \leq \lambda F(\mathbf{u}) + \mu F(\mathbf{v}).$$

The set of convex functions is denoted by \mathscr{C} .

Following von Neumann (6), we call F a symmetric gauge function if it satisfies the following conditions. (i) $F(\mathbf{u}) > 0$ ($\mathbf{u} \neq \mathbf{0}$); (ii) $F(\rho \mathbf{u}) = |\rho| F(\mathbf{u})$; (iii) $F(\mathbf{u}+\mathbf{v}) \leq F(\mathbf{u}) + F(\mathbf{v})$; (iv) $F(\mathbf{u}_{\pi}\Delta) = F(\mathbf{u})$. Here ρ is any real number; \mathbf{u} , \mathbf{v} are any vectors; π any permutation; and Δ any diagonal matrix with diagonal elements ± 1 . The set of symmetric gauge functions will be denoted by \mathscr{G} .

† Inequalities between vectors are interpreted component-wise.

Theorem 1. The inequality

$$F(\mathbf{x}) \leqslant F(\mathbf{y})$$
(2)

holds for all $F \in \mathcal{C} \cap \mathcal{S}$ if and only if \dagger

Let (3) be given. Then, by (8), \mathbf{x} lies in the convex hull of the n! vectors \mathbf{y}_{π} , i.e.

$$\mathbf{x} = \sum_{n} t_n \mathbf{y}_n,$$

where the t's are non-negative numbers with sum 1. Hence, for $F \in \mathscr{C} \cap \mathscr{S}$,

$$F(\mathbf{x}) \leq \sum_{\pi} t_{\pi} F(\mathbf{y}_{\pi}) = \sum_{\pi} t_{\pi} F(\mathbf{y}) = F(\mathbf{y}).$$

Suppose, on the other hand, that (2) holds for all $F \in \mathscr{C} \cap \mathscr{S}$. The functions $(u-y_k)^+$ $(1 \leq k \leq n)$ of the single variable u are all convex. Hence

$$F_k(\mathbf{u}) = \sum_{i=1}^n (u_i - y_k)^+ \in \mathscr{C} \cap \mathscr{S} \quad (1 \leq k \leq n),$$

and so $F_k(\mathbf{x}) \leq F_k(\mathbf{y})$ $(1 \leq k \leq n)$. By the reasoning of Hardy, Littlewood, and Pólya (2, pp. 89-90), we now infer (3).

Theorem 1a. (Hardy-Littlewood-Pólya (2, Theorem 108); Karamata (3)). The inequality

holds for all $\ddagger f \in \mathcal{C}$ if and only if (3) is satisfied.

Let (3) be given. If $f \in \mathcal{C}$, then

and (4) follows by Theorem 1. If, on the other hand, (4) holds for all $f \in \mathcal{C}$, then we infer (3) exactly as in (2), viz. by considering the functions $u, -u, (u-y_k)^+$ $(1 \le k \le n)$.

Theorem 2. The inequality (2) holds for all $F \in \mathcal{C} \cap \mathcal{S} \cap \mathcal{S}$ if and only if

x≪y(6)

Let (6) be given. Then, by (5), there exists a doubly-stochastic matrix § **D** such that $\mathbf{x} \leq \mathbf{yD}$. Hence, for $F \in \mathcal{I}$, $F(\mathbf{x}) \leq F(\mathbf{yD})$. But, by (8), \mathbf{yD} lies in the convex hull of the vectors \mathbf{y}_{π} and so, for $F \in \mathcal{C} \cap \mathcal{S}$, $F(\mathbf{yD}) \leq F(\mathbf{y})$. Hence (2) holds for all $F \in \mathcal{C} \cap \mathcal{S} \cap \mathcal{S}$.

https://doi.org/10.1017/S0013091500021969 Published online by Cambridge University Press

232

[†] To avoid trivial complications, we consider throughout those functions which possess the specified properties *everywhere*. Naturally, our theorems could be made a little sharper if we restricted ourselves to appropriate regions or intervals.

 $[\]ddagger$ In (2) the continuity of f was postulated explicitly, but our definition of convexity implies that f is continuous.

[§] A (square) matrix is said to be doubly stochastic if its elements are non-negative and if the sum of the elements in each row and in each column is equal to 1.

Again, the functions $(u-y_k)^+$ $(1 \le k \le n)$ of u all belong to $\mathcal{C} \cap \mathcal{I}$. Hence the functions $F_k(\mathbf{u})(1 \le k \le n)$, defined in the proof of Theorem 1, belong to $\mathcal{C} \cap \mathcal{I} \cap \mathcal{I}$. If follows, by precisely the same argument as above, that, if (2) holds for all $F \in \mathcal{C} \cap \mathcal{I} \cap \mathcal{I}$, then (6) is satisfied.

Theorem 2a. (Pólya (7)).

The inequality (4) holds for all $f \in \mathcal{C} \cap \mathcal{I}$ if and only if (6) is satisfied.

Let (6) be given. If $f \in \mathcal{C} \cap \mathcal{I}$, then the function $F(\mathbf{u})$, defined by (5), belongs to $\mathcal{C} \cap \mathcal{I} \cap \mathcal{I}$. Hence (4) follows by Theorem 2. If, on the other hand, (4) holds for all $f \in \mathcal{C} \cap \mathcal{I}$, we consider, as before, the functions $(u-y_k)^+$ $(1 \leq k \leq n)$ and obtain (6).

Theorem 2b. (Fan (1)).

Suppose that $\mathbf{x} \ge \mathbf{0}$, $\mathbf{y} \ge \mathbf{0}$. Then the inequality (2) holds for all $F \in \mathcal{G}$ if and only if (6) is satisfied.

Denote by $\mathscr{C}^+, \mathscr{G}^+, \mathscr{I}^+$ the sets of functions which are respectively convex, symmetric, and increasing in the positive orthant. Let $F \in \mathscr{G}$; then clearly $F \in \mathscr{C}^+ \cap \mathscr{G}^+$. Moreover, it is well known (9, Lemma 5.16) that $F \in \mathscr{I}^+$. Thus $F \in \mathscr{C}^+ \cap \mathscr{G}^+ \cap \mathscr{I}^+$ and (2) follows by an obvious modification of Theorem 2.

Again, suppose that (2) holds for all $F \in \mathcal{G}$. As was pointed out by Fan (1), relation (6) follows at once if we consider the functions

$$F_{k}(\mathbf{u}) = \max_{1 \le i_{1} < \dots < i_{k} \le n} (|u_{i_{1}}| + \dots + |u_{i_{k}}|) (1 \le k \le n)$$

which obviously belong to \mathcal{G} .

Theorem 3. The inequality (2) holds for all
$$F \in \mathcal{C} \cap \mathcal{S} \cap \mathcal{Z}$$
 if and only if

$$\mathbf{x} \ll \mathbf{y}^+, \quad -\mathbf{x} \ll (-\mathbf{y})^+.$$
 (7)

Let (7) be satisfied. Then, by (5), **x** lies in the convex hull of the vectors $y_{\pi}\Lambda$, where π ranges over all permutations of 1, ..., *n* and Λ over all diagonal matrices whose diagonal elements are 0 or 1. Thus

$$\mathbf{x} = \sum_{\pi, \Lambda} t_{\pi, \Lambda} \, \mathbf{y}_{\pi} \Lambda$$

where the t's are non-negative and have sum 1. Using successively the relations $F \in \mathscr{C}, F \in \mathscr{Z}, F \in \mathscr{S}$, we obtain

$$F(\mathbf{x}) \leqslant \sum_{\substack{\pi,\Lambda\\\pi,\Lambda}} t_{\pi,\Lambda} F(\mathbf{y}_{\pi}\Lambda) \leqslant \sum_{\substack{\pi,\Lambda\\\pi,\Lambda}} t_{\pi,\Lambda} F(\mathbf{y}) = F(\mathbf{y}).$$

Next, let (2) be satisfied for all $F \in \mathscr{C} \cap \mathscr{S} \cap \mathscr{Z}$. Assume, as may be done without loss of generality, that

$$x_1 \ge \ldots \ge x_n, \quad y_1 \ge \ldots \ge y_n.$$
 (8)

The functions $(u-y_k^+)^+$ $(1 \le k \le n)$ of u all belong to $\mathscr{C} \cap \mathscr{Z}$. Hence

and so

Now we have

$$F_{k}(\mathbf{x}) = \sum_{i=1}^{n} (x_{i} - y_{k}^{+})^{+} \ge \sum_{i=1}^{k} (x_{i} - y_{k}^{+}),$$

$$F_{k}(\mathbf{x}) \ge \sum_{i=1}^{k} x_{i} - ky_{k}^{+}.$$
(10)

i.e.

Also, as is easily shown,

$$F_k(\mathbf{y}) = \sum_{i=1}^k i^+ - ky_k^+$$
.(11)

Hence, by (9), (10) and (11),

$$\sum_{i=1}^{k} x_i \leq \sum_{i=1}^{k} y_i^+ \quad (1 \leq k \leq n);$$

and, in view of (8), this is equivalent to $\mathbf{x} \ll \mathbf{y}^+$. Furthermore,

$$G_k(\mathbf{u}) = \sum_{i=1}^n \{-u_i - (-y_k)^+\}^+ \in \mathscr{C} \cap \mathscr{S} \cap \mathscr{Z} \quad (1 \leq k \leq n),$$

and so $G_k(\mathbf{x}) \leq G_k(\mathbf{y})$. But it is easy to verify that

$$\begin{split} G_k(\mathbf{x}) &\ge -\sum_{i=k}^n x_i - (n-k+1)(-y_k)^+, \\ G_k(\mathbf{y}) &= \sum_{i=k}^n (-y_i)^+ - (n-k+1)(-y_k)^+, \end{split}$$

and therefore

$$-\sum_{i=k}^{n} x_i \leq \sum_{i=k}^{n} (-y_i)^+ \quad (1 \leq k \leq n),$$

i.e. $-\mathbf{x} \ll (-\mathbf{y})^+$. This completes the proof.

Theorem 3a. The inequality (4) holds for all $f \in C \cap \mathcal{Z}$ if and only if (7) is satisfied.

If $f \in \mathscr{C} \cap \mathscr{Z}$, then the function $F(\mathbf{u})$, defined by (5), belongs to $\mathscr{C} \cap \mathscr{S} \cap \mathscr{Z}$. Hence, if (7) is given, then (4) is satisfied by virtue of Theorem 3. On the other hand, suppose that (4) holds for all $f \in \mathscr{C} \cap \mathscr{Z}$. Then, by considering the functions

$$(u-y_k^+)^+, \{-u-(-y_k)^+\}^+ (1 \le k \le n)$$

and arguing exactly as in the proof of Theorem 3, we infer (7).

It may be noted that, if (8) holds, then the set of inequalities

$$\begin{array}{c} \sum\limits_{i=1}^{k} x_{i} \leqslant \sum\limits_{i=1}^{k} \max\left(y_{i}, 0\right) \\ \sum\limits_{i=k}^{n} x_{i} \geqslant \sum\limits_{i=k}^{n} \min\left(y_{i}, 0\right) \end{array} \right) \quad (1 \leqslant k \leqslant n)$$

is equivalent to (7).

In conclusion, I wish to thank Professor R. Rado for a number of helpful comments,

234

REFERENCES

(1) K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, *Proc. Nat. Acad. Sci.*, **37** (1951), 760-766.

(2) G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities (Cambridge, 1934).

(3) J. Karamata, Sur une inégalité relative aux fonctions convexes, Publ. math. Univ. Belgrade, 1 (1932), 145-148.

(4) L. Mirsky, Symmetric gauge functions and unitarily invariant norms, *Quart. J. Math.* (Oxford). To appear.

(5) L. Mirsky, On a convex set of matrices, Archiv der Math., 10 (1959), 88-92.

(6) J. von Neumann, Some matrix-inequalities and metrization of matricspace, Tomsk Univ. Rev. 1 (1937), 286-299.

(7) G. Pólya, Remark on Weyl's note: Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci., 36 (1950), 49-51.

(8) R. Rado, An inequality, J. London Math. Soc., 27 (1952), 1-6.

(9) R. Schatten, A Theory of Cross-spaces (Princeton, 1950).

THE UNIVERSITY SHEFFIELD