INEQUALITIES FOR CERTAIN CLASSES OF CONVEX FUNCTIONS

by L. MTRSKY

(Received 27th June 1959)

Making use of properties of doubly-stochastic matrices, I recently gave a simple proof (4) of a theorem of Ky Fan (Theorem 2b below) on symmetric gauge functions. I now propose to show that the same idea can be employed to derive a whole series of results on convex functions ; in particular, certain well-known inequalities of Hardy-Littlewood-Pólya and of Pólya will emerge as special cases.

Our notation is as follows. All numbers are understood to be real; n denotes a positive integer and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathrm{y}=\left(y_{1}, \ldots, y_{n}\right)$ denote two given vectors. If $\bar{x}_{1}, \ldots, \bar{x}_{n}$ are the numbers x_{1}, \ldots, x_{n} arranged in non-ascending order of magnitude and if $\bar{y}_{1}, \ldots, \bar{y}_{n}$ are defined similarly, then $\mathbf{x} \ll \mathbf{y}$ means that

$$
\begin{equation*}
\sum_{i=1}^{k} \bar{x}_{i} \leqslant \sum_{i=1}^{k} \bar{y}_{i} \quad(1 \leqslant k \leqslant n) . \tag{1}
\end{equation*}
$$

Further, we write $\mathrm{x}<\mathrm{y}$ if (1) holds and if, in addition, there is equality for $k=n$.

We put $a^{+}=\max (a, 0)$ and $\mathbf{x}^{+}=\left(x_{1}^{+}, \ldots, x_{n}^{+}\right)$. A typical permutation of $1, \ldots, n$ is denoted by π, and \mathbf{x}_{π} is the vector obtained when π is applied to the components of \mathbf{x}. The set of symmetric functions, i.e. of functions F such that $F\left(\mathrm{u}_{n}\right)=F(\mathrm{u})$ for all vectors u and all permutations π, is denoted by \mathscr{S}. The set of increasing functions, i.e. of functions F such that $F(\mathbf{u}) \leqslant F(\mathbf{v})$ whenever \dagger $\mathbf{u} \leqslant \mathbf{v}$, is denoted by \mathscr{I}. Again, \mathscr{Z} denotes the set of functions F such that $F(u \boldsymbol{\Lambda}) \leqslant F(\mathbf{u})$ for every vector \mathbf{u} and every diagonal matrix $\boldsymbol{\Lambda}$ whose diagonal elements are equal to 0 or 1 . Thus, for $n=1, f \in \mathscr{Z}$ means that $\min _{u} f(u)=f(0)$.

The function F is called convex if, for any vectors \mathbf{u}, \mathbf{v} and any numbers λ, μ such that $\lambda \geqslant 0, \mu \geqslant 0, \lambda+\mu=1$, we have

$$
F(\lambda \mathbf{u}+\mu \mathbf{v}) \leqslant \lambda F(\mathbf{u})+\mu F(\mathbf{v}) .
$$

The set of convex functions is denoted by \mathscr{C}.
Following von Neumann (6), we call F a symmetric gauge function if it satisfies the following conditions. (i) $F(u)>0(u \neq 0)$; (ii) $F(\rho u)=|\rho| F(u)$; (iii) $F(\mathbf{u}+\mathbf{v}) \leqslant F(\mathbf{u})+F(v)$; (iv) $F\left(\mathbf{u}_{n} \Delta\right)=F(\mathbf{u})$. Here ρ is any real number ; \mathbf{u}, \mathbf{v} are any vectors ; π any permutation; and Δ any diagonal matrix with diagonal elements ± 1. The set of symmetric gauge functions will be denoted by \mathscr{G}.
\dagger Inequalities between vectors are interpreted component-wise.

Theorem 1. The inequality

$$
\begin{equation*}
F(\mathbf{x}) \leqslant F(\mathrm{y}) \tag{2}
\end{equation*}
$$

holds for all $F \in \mathscr{C} \cap \mathscr{S}$ if and only if \dagger
Let (3) be given. Then, by (8), \mathbf{x} lies in the convex hull of the $n!$ vectors \mathbf{y}_{π}, i.e.

$$
\mathbf{x}=\sum_{\pi} t_{\pi} \mathbf{y}_{\pi}
$$

where the t 's are non-negative numbers with sum 1. Hence, for $F \in \mathscr{C} \cap \mathscr{S}$,

$$
F(\mathrm{x}) \leqslant \sum_{\pi} t_{\pi} F\left(\mathrm{y}_{\pi}\right)=\sum_{\pi} t_{\pi} F(\mathrm{y})=F(\mathrm{y})
$$

Suppose, on the other hand, that (2) holds for all $F \in \mathscr{C} \cap \mathscr{S}$. The functions $\left(u-y_{k}\right)^{+}(1 \leqslant k \leqslant n)$ of the single variable u are all convex. Hence

$$
F_{k}(\mathbf{u})=\sum_{i=1}^{n}\left(u_{i}-y_{k}\right)+\varepsilon \mathscr{C} \cap \mathscr{S} \quad(1 \leqslant k \leqslant n)
$$

and so $F_{k}(\mathbf{x}) \leqslant F_{k}(\mathbf{y})(\mathbf{l} \leqslant k \leqslant n)$. By the reasoning of Hardy, Littlewood, and Pólya (2, pp. 89-90), we now infer (3).

Theorem 1a. (Hardy-Littlewood-Pólya (2, Theorem 108); Karamata (3)). The inequality

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right) \leqslant \sum_{i=1}^{n} f\left(y_{i}\right) \tag{4}
\end{equation*}
$$

holds for all $\ddagger f \in \mathscr{C}$ if and only if (3) is satisfied.
Let (3) be given. If $f \in \mathscr{C}$, then

$$
\begin{equation*}
F(\mathbf{u})=\sum_{i=1}^{n} f\left(u_{i}\right) \in \mathscr{C} \cap \mathscr{S} \tag{5}
\end{equation*}
$$

and (4) follows by Theorem 1. If, on the other hand, (4) holds for all $f \in \mathscr{C}$, then we infer (3) exactly as in (2), viz. by considering the functions $u,-u$, $\left(u-y_{k}\right)^{+}(1 \leqslant k \leqslant n)$.

Theorem 2. The inequality (2) holds for all $F \in \mathscr{C} \cap \mathscr{P} \cap \mathscr{I}$ if and only if

$$
\begin{equation*}
x \ll y \tag{6}
\end{equation*}
$$

Let (6) be given. Then, by (5), there exists a doubly-stochastic matrix § \mathbf{D} such that $\mathbf{x} \leqslant \mathrm{yD}$. Hence, for $F \in \mathscr{I}, F(\mathbf{x}) \leqslant F(\mathbf{y D})$. But, by (8), yD lies in the convex hull of the vectors \mathbf{y}_{π} and so, for $F \in \mathscr{C} \cap \mathscr{S}, F(\mathrm{yD}) \leqslant F(\mathbf{y})$. Hence (2) holds for all $F \in \mathscr{C} \cap \mathscr{S} \cap \mathscr{I}$.

[^0]Again, the functions $\left(u-y_{k}\right)^{+}(1 \leqslant k \leqslant n)$ of u all belong to $\mathscr{C} \cap \mathscr{I}$. Hence the functions $F_{k}(\mathbf{u})(1 \leqslant k \leqslant n)$, defined in the proof of Theorem 1 , belong to $\mathscr{C} \cap \mathscr{S} \cap \mathscr{I}$. If follows, by precisely the same argument as above, that, if (2) holds for all $F \in \mathscr{C} \cap \mathscr{P} \cap \mathscr{I}$, then (6) is satisfied.

Theorem 2a. (Pólya (7)).
The inequality (4) holds for all $f \in \mathscr{C} \cap \mathscr{I}$ if and only if (6) is satisfied.
Let (6) be given. If $f \in \mathscr{C} \cap \mathscr{I}$, then the function $F(\mathbf{u})$, defined by (5), belongs to $\mathscr{C} \cap \mathscr{S} \cap \mathscr{I}$. Hence (4) follows by Theorem 2. If, on the other hand, (4) holds for all $f \in \mathscr{C} \cap \mathscr{I}$, we consider, as before, the functions $\left(u-y_{k}\right)^{+}$ ($1 \leqslant k \leqslant n$) and obtain (6).

Theorem 2b. (Fan (1)).
Suppose that $\mathbf{x} \geqslant \mathbf{0}, \mathbf{y} \geqslant \mathbf{0}$. Then the inequality (2) holds for all $F \in \mathscr{G}$ if and only if (6) is satisfied.

Denote by $\mathscr{C}^{+}, \mathscr{S}^{+}, \mathscr{I}^{+}$the sets of functions which are respectively convex, symmetric, and increasing in the positive orthant. Let $F \in \mathscr{G}$; then clearly $F \in \mathscr{C}^{+} \cap \mathscr{S}^{+}$. Moreover, it is well known (9, Lemma 5.16) that $F \in \mathscr{I}^{+}$. Thus $F \in \mathscr{C}^{+} \cap \mathscr{P}^{+} \cap \mathscr{I}^{+}$and (2) follows by an obvious modification of Theorem 2.

Again, suppose that (2) holds for all $F \in \mathscr{G}$. As was pointed out by Fan (1), relation (6) follows at once if we consider the functions

$$
F_{k}(\mathbf{u})=\max _{1 \leq i_{1}<\ldots<i_{k} \leqslant n}\left(\left|u_{i_{1}}\right|+\ldots+\left|u_{i_{k}}\right|\right)(1 \leqslant k \leqslant n)
$$

which obviously belong to \mathscr{G}.
Theorem 3. The inequality (2) holds for all $F \in \mathscr{C} \cap \mathscr{S} \cap \mathscr{Z}$ if and only if

$$
\begin{equation*}
\mathbf{x} \ll \mathbf{y}^{+}, \quad-\mathbf{x} \ll(-\mathbf{y})^{+} . \tag{7}
\end{equation*}
$$

Let (7) be satisfied. Then, by (5), x lies in the convex hull of the vectors $\mathbf{y}_{\boldsymbol{\pi}} \boldsymbol{\Lambda}$, where π ranges over all permutations of $1, \ldots, n$ and $\mathbf{\Lambda}$ over all diagonal matrices whose diagonal elements are 0 or 1 . Thus

$$
\mathbf{x}=\sum_{\pi, \boldsymbol{\Lambda}} t_{\pi, \mathbf{\Lambda}} \mathbf{y}_{\pi} \boldsymbol{\Lambda}
$$

where the t 's are non-negative and have sum 1. Using successively the relations $\boldsymbol{F} \in \mathscr{C}, F \in \mathscr{Z}, F \in \mathscr{S}$, we obtain

$$
\begin{aligned}
F(\mathbf{x}) & \leqslant \sum_{\pi, \mathbf{\Lambda}} t_{\pi, \mathbf{\Lambda}} F\left(\mathbf{y}_{\pi} \mathbf{\Lambda}\right) \leqslant \sum_{\pi, \mathbf{\Lambda}} t_{\pi \mathbf{\Lambda},} F\left(\mathbf{y}_{\pi}\right) \\
& =\sum_{\pi, \mathbf{\Lambda}} t_{\pi, \mathbf{\Lambda}} F(\mathbf{y})=F(\mathbf{y}) .
\end{aligned}
$$

Next, let (2) be satisfied for all $F \in \mathscr{C} \cap \mathscr{P} \cap \mathscr{Z}$. Assume, as may be done without loss of generality, that

$$
\begin{equation*}
x_{1} \geqslant \ldots \geqslant x_{n}, \quad y_{1} \geqslant \ldots \geqslant y_{n} \tag{8}
\end{equation*}
$$

The functions $\left(u-y_{k}^{+}\right)^{+}(1 \leqslant k \leqslant n)$ of u all belong to $\mathscr{C} \cap \mathscr{Z}$. Hence

$$
F_{k}(\mathbf{u})=\sum_{i=1}^{n}\left(u_{i}-y_{k}^{+}\right)^{+} \in \mathscr{C} \cap \mathscr{S} \cap \mathscr{Z} \quad(1 \leqslant k \leqslant n),
$$

and so

$$
\begin{equation*}
F_{k}(\mathbf{x}) \leqslant F_{k}(\mathbf{y}) \quad(1 \leqslant k \leqslant n) \tag{9}
\end{equation*}
$$

Now we have
i.e.

$$
\begin{gather*}
F_{k}(\mathbf{x})=\sum_{i=1}^{n}\left(x_{i}-y_{k}^{+}\right)^{+} \geqslant \sum_{i=1}^{k}\left(x_{i}-y_{k}^{+}\right) \\
\boldsymbol{F}_{k}(\mathbf{x}) \geqslant \sum_{i=1}^{k} x_{i}-k y_{k}^{+} . \ldots \ldots \ldots \tag{10}
\end{gather*}
$$

Also, as is easily shown,

$$
\begin{equation*}
\boldsymbol{F}_{k}(\mathrm{y})=\sum_{i=1}^{k} i_{i}^{+}-k y_{k}^{+} . \tag{11}
\end{equation*}
$$

Hence, by (9), (10) and (11),

$$
\sum_{i=1}^{k} x_{i} \leqslant \sum_{i=1}^{k} y_{i}^{+} \quad(1 \leqslant k \leqslant n)
$$

and, in view of (8), this is equivalent to $\mathbf{x} \ll y^{+}$. Furthermore,

$$
G_{k}(\mathbf{u})=\sum_{i=1}^{n}\left\{-u_{i}-\left(-y_{k}\right)^{+}\right\}^{+} \in \mathscr{C} \cap \mathscr{S} \cap \mathscr{Z} \quad(1 \leqslant k \leqslant n)
$$

and so $G_{k}(\mathbf{x}) \leqslant G_{k}(\mathbf{y})$. But it is easy to verify that

$$
\begin{aligned}
G_{k}(\mathbf{x}) & \geqslant-\sum_{i=k}^{n} x_{i}-(n-k+1)\left(-y_{k}\right)^{+} \\
G_{k}(\mathbf{y}) & =\sum_{i=k}^{n}\left(-y_{i}\right)^{+}-(n-k+1)\left(-y_{k}\right)^{+}
\end{aligned}
$$

and therefore

$$
-\sum_{i=k}^{n} x_{i} \leqslant \sum_{i=k}^{n}\left(-y_{i}\right)^{+} \quad(1 \leqslant k \leqslant n)
$$

i.e. $-\mathbf{x} \ll(-\mathbf{y})^{+}$. This completes the proof.

Theorem 3a. The inequality (4) holds for all $f \in \mathscr{C} \cap \mathscr{Z}$ if and only if (7) is satisfied.

If $f \in \mathscr{C} \cap \mathscr{X}$, then the function $F(\mathbf{u})$, defined by (5), belongs to $\mathscr{C} \cap \mathscr{S} \cap \mathscr{Z}$. Hence, if (7) is given, then (4) is satisfied by virtue of Theorem 3. On the other hand, suppose that (4) holds for all $f \in \mathscr{C} \cap \mathscr{Z}$. Then, by considering the functions

$$
\left(u-y_{k}^{+}\right)^{+}, \quad\left\{-u-\left(-y_{k}\right)^{+}\right\}^{+} \quad(1 \leqslant k \leqslant n)
$$

and arguing exactly as in the proof of Theorem 3, we infer (7).
It may be noted that, if (8) holds, then the set of inequalities

$$
\left.\begin{array}{l}
\sum_{i=1}^{k} x_{i} \leqslant \sum_{i=1}^{k} \max \left(y_{i}, 0\right) \\
\sum_{i=k}^{n} x_{i} \geqslant \sum_{i=k}^{n} \min \left(y_{i}, 0\right)
\end{array}\right\} \quad(1 \leqslant k \leqslant n)
$$

is equivalent to (7).
In conclusion, I wish to thank Professor R. Rado for a number of helpful comments,

REFERENCES

(1) K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci., 37 (1951), 760-766.
(2) G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities (Cambridge, 1934).
(3) J. Karamata, Sur une inégalité relative aux fonctions convexes, Publ. math. Univ. Belgrade, 1 (1932), 145-148.
(4) L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math. (Oxford). To appear.
(5) L. Mirsky, On a convex set of matrices, Archiv der Math., 10 (1959), 88-92.
(6) J. von Neumann, Some matrix-inequalities and metrization of matricspace, Tomsk Univ. Rev. 1 (1937), 286-299.
(7) G. Polya, Remark on Weyl's note : Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci., 36 (1950), 49-51.
(8) R. Rado, An inequality, J. London Math. Soc., 27 (1952), 1-6.
(9) R. Schatten, A Theory of Cross-spaces (Princeton, 1950).

The University
Sheffield

[^0]: \dagger To avoid trivial complications, we consider throughout those functions which possess the specified properties everywhere. Naturally, our theorems could be made a little sharper if we restricted ourselves to appropriate regions or intervals.
 \ddagger In (2) the continuity of f was postulated explicitly, but our definition of convexity implies that f is continuous.
 \S A (square) matrix is said to be doubly-stochastic if its elements are non-negative and if the sum of the elements' in each row and in each column is equal to 1.

