Sir: Förstl et al (Journal, March 1993, 162, 385–392) presented a prospective longitudinal study designed to investigate frequency, clinical manifestations, and neuropathological findings of the Lewy body (LB) variant of Alzheimer's disease (AD). At post-mortem analysis, LBs were found in the cortex and brainstem of eight out of 65 patients with the clinical diagnosis of possible or probable AD. In patients with LB pathology (LBP), computerised tomography scans showed cortical atrophy which was most pronounced at the frontal lobes. The neuropathological analysis revealed that the presence of LBs was accompanied by a dramatic cell loss in the intermediate component of the nucleus basalis of Meynert (nbM). Neuron counts in the nbM were significantly lower in patients with LBs than in those without. Therefore the authors emphasised the prominence of cholinergic dysfunction in the LB variant of AD. We wish to draw attention to some issues of this interesting paper.

(a) In our opinion, the degenerative changes affecting the basal forebrain of patients with LBP appear to correlate with the cortical atrophy which was found in the study by Förstl et al. Previous investigations performed on AD brains suggested that the involvement of the nbM is most likely a consequence of primary cortical pathology (Pearson et al., 1983) which results in a decrease of trophic factors retrogradely transported to the basal forebrain (Hefti & Weiner, 1986). The localisation of low-affinity nerve growth factor (NGF) receptors on the large cholinergic neurons within the nbM have indirectly indicated that these cells are strictly dependent on the NGF (Mufson et al., 1989a). This view is supported by experimental evidence showing that the depletion of choline acetyltransferase (ChAT) activity and the cell atrophy observed in the intermediate nbM of primates bearing a fronto-parietal cortical lesion can be prevented by exogenous NFG (Liberini et al., 1993).

It has been indicated that the severity and the localisation of the neuropathological changes affecting the cholinergic neurons within the basal forebrain follow a regional distribution which correlates with the regressive phenomena of the neocortex receiving the corresponding projections (Mufson et al., 1989b).

It is remarkable that in primates the intermediate nbM provides the major cholinergic input for the frontal cortex. Therefore, the greater neuronal damage in the nbM of patients with LBs than in those without is likely to depend on the frontal accentuation of the cortical atrophy detected in the former by Förstl et al.

(b) Förstl et al detected significant cell loss in the nbM of all examined patients. This finding was obtained by counting neurons defined as large Nissl-positive nucleolated cells. On this regard, we would like to underline that, using an a priori criterion of neuron size as a working definition for basal forebrain neurons, various degrees of cell loss within the nbM were reported to occur in primary degenerative dementia. However, the cell atrophy occurring in the basal forebrain makes this size factor a less accurate criterion for the estimation of cell loss because shrunken but viable neurons may be counted as lost (Vogls et al., 1990). In contrast, by applying quantitative analysis to ChAT- or NGF receptor-immunostained preparations, both large and atrophied cholinergic neurons of the basal forebrain are counted, therefore reflecting more accurately the nbM's status (Liberini et al., 1993). This is of therapeutic relevance because atrophic but viable neurons may be still responsive to neurotrophins. In AD patients the permanence of immunoreactivity for high and low affinity NGF receptors on the nbM cholinergic neurons despite the severe atrophy supports this hypothesis (Mufson et al., 1989b).

(c) The prominent vulnerability of the cholinergic system in the LB variant of AD suggests that pharmacologic treatments directly or indirectly enhancing cholinergic transmission might ameliorate some of the impaired cognitive functions. Metabolic precursors of acetylcholine and inhibitors of acetylcholinesterase are, at present, the most promising molecules. Recently it has been shown that a subgroup of patients affected by primary degenerative dementia positively respond to direct manipulation of the cholinergic function obtained by administering the acetylcholinesterase inhibitor tacrine (Davis et al., 1992; Farlow et al., 1992). The question which naturally arises is whether in this group of responders a significant number of patients affected by LBP was included. We believe that the answer to this relevant question might come only from a post-mortem examination of the group of responders. A positive correlation would open new perspectives in the symptomatic treatment of a subgroup of demented patients.

https://doi.org/10.1192/bjp.163.5.693 Published online by Cambridge University Press
possibly satisfy their operational criteria. This is hard
examined sample were biased so that they could not
correctly. We are not at all convinced that the mere
263) argue that the patients in our prospectively
interesting therapeutic perspective.

\[2572]\text{in the basal nucleus of Meynert, and frontal lobe}
which may underlie the reported association between
small number of cases in our study.
done that too and came to similar conclusions which
monoclonal antibody to \(\beta\)-amyloid protein. We have
delighted to hear that the authors have undertaken
amyloid dementia rather than a variant. We are
patients is sufficient evidence to propose a discrete \(\beta\)-
amyloid dementia rather than a variant. We are
delighted to hear that the authors have undertaken
quantitative immunohistochemical studies using
monoclonal antibody to \(\beta\)-amyloid protein. We have
done that too and came to similar conclusions which
we thought were not worth reporting, because of the
small number of cases in our study.

Liberini \textit{et al} suggest an intriguing mechanism
which may underlie the reported association between
Lewy body pathology, cell loss or cell shrinkage
in the basal nucleus of Meynert, and frontal lobe
atrophy. This possible mechanism may offer an
interesting therapeutic perspective.

McKeith \textit{et al} (\textit{Journal}, August 1993, 163, 262–
263) argue that the patients in our prospectively
examined sample were biased so that they could not
possibly satisfy their operational criteria. This is hard
to believe as, for example, extrapyramidal distur-
ance, hallucinations (usually visual) or fluctuation
due to temporary confusional state can occur in a
large proportion of patients satisfying the NINCDS-
ADRDA (McKhann \textit{et al}, 1984) criteria (\textit{Förstl et al},
1992, 1993). The McKhann and McKeith criteria are
not mutually exclusive. Therefore it would have
been possible and of advantage if our patients with
Lewy bodies had shown an increased rate of halluci-
nations, fluctuations, and so on. They did not. All
eight were demented as required by the NINCDS-
ADRDA criteria, five showed rigidity with cog-
wheeling and two had other ‘psychiatric’ distur-
ances. This is in good agreement with Lewy’s original
findings, who felt that

\[2542]\text{“the psyche is seldom spared in the course of illness (of}
Parkinson’s disease; transl. note). The mental symptoms
may have different characteristics . . . but all belong to
the group of senile dementia. In the early cases anomalies of
affect prevail, partly of a euphoric, partly of a depressive
nature; they are often associated with hallucinations and
paranoid ideas derived from them. In the later years, the
disturbance of memorizing and of memory predominate
and lead to the most severe stages of dementia in a small
number of patients” (Lewy, 1923; see \textit{Förstl & Levy},

We would be considerably concerned if traditional
classification systems be abandoned (Almeida \textit{et al},
1992) in order to accommodate patients with de-
mentia, paraphrenia or delusional depression and
those with Lewy bodies in one group (together with
‘preclinical’ cases of odd cortical Lewy bodies),
patients with dementia, paraphrenia and delusional
depression without Lewy bodies in a second group,
and ‘other diseases’ in a third.

Hughes \textit{et al} (1992) have recently reported the
neuropathological findings of 100 patients with clini-
cally diagnosed Parkinson’s disease. Similar to our
series, all of their patients who had Lewy bodies in
the brainstem also had Lewy bodies in the cortex.
We would be interested to hear about these patients’
cognitive status. It would certainly strengthen the Lewy
body’s role in psychiatry if some of those patients
were demented, depressed or at least paraphrenic.

Should a significantly larger number of patients
with cortical Lewy bodies be cognitively impaired,
hallucinating, fluctuating, and so on, than Parkinson
patients without cortical Lewy bodies, we will suc-
cumb to the ideas from Newcastle.

\text{ALMEIDA, O., HOWERO, F. & LEVY, R. (1992) Should the diagnosis
of late paraphrenia be abandoned? \textit{Psychological Medicine}, 22,
11–14.}
\text{\textit{Förstl, H. & Levy, R. (1991) F.H. Lewy on Lewy bodies, parkin-
sonism and dementia. \textit{International Journal of Geriatric Psy-
chiatry}, 6, 757–766.}