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Abstract

Differential item functioning (DIF) screening has long been suggested to ensure assessment

fairness. Traditional DIF methods typically focus on the main effects of demographic

variables on item parameters, overlooking the interactions among multiple identities.

Drawing on the intersectionality framework, we define intersectional DIF as deviations in

item parameters that arise from the interactions among demographic variables beyond

their main effects and propose a novel item response theory (IRT) approach for detecting

intersectional DIF. Under our framework, fixed effects are used to account for traditional

DIF, while random item effects are introduced to capture intersectional DIF. We further

introduce the concept of intersectional impact, which refers to interaction effects on

group-level mean ability. Depending on which item parameters are affected and whether

intersectional impact is considered, we propose four models, which aim to detect

intersectional uniform DIF (UDIF), intersectional UDIF with intersectional impact,

intersectional non-uniform DIF (NUDIF), and intersectional NUDIF with intersectional

impact, respectively. For efficient model estimation, a regularized Gaussian variational

expectation-maximization (GVEM) algorithm is developed. The algorithm avoids the need

for the multidimensional integration in the marginal likelihood and enables closed-form

solutions for most parameters. The log penalty is introduced on the variance of the random

item effects to identify items that are free of intersectional DIF. Four simulation studies

corresponding to the four models demonstrate that our methods can effectively detect

intersectional UDIF, although their detection of intersectional NUDIF is more limited. An

empirical Simulation is also conducted to demonstrate the feasibility and utility of our

methods in practice.

Key words: differential item functioning, intersectional DIF, regularization,

variational estimation
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Introduction

The heavy reliance on assessments in critical social decision-making, such as college

admission, personnel selection and placement, and resource allocation, highlights the need

for a thorough evaluation of assessment fairness, particularly in light of ongoing concerns

about equity. For decades, assessment fairness has been a central focus in psychometrics.

American Educational Research Association et al. (2014) further emphasizes the

importance of ensuring assessment fairness throughout the test development process,

including the standard practice of screening for differential item functioning (DIF).

DIF refers to the phenomenon in which people from different subgroups, usually

defined by demographic variables such as gender, race, or ethnicity, differ in the probability

of correctly answering an item after controlling for their ability. Although DIF does not

necessarily indicate measurement bias, DIF detection is a critical first step for further

investigation. Two types of DIF are often discussed in the literature: uniform DIF (UDIF)

and non-uniform DIF (NUDIF). Specifically, UDIF assumes a consistent difference in item

responses between groups across ability levels, whereas NUDIF allows this difference to

vary across ability levels. Various DIF detection methods have been developed, including

Lord’s chi-square test, logistic regression, and regularized DIF (Lord, 1980; Swaminathan

& Rogers, 1990; Tutz & Schauberger, 2015; Wang et al., 2023). While these methods differ

in many ways, they typically treat DIF as the main effect of each demographic variable.

Recently, two criticisms have emerged concerning the quantitative methodologies

used in inequality studies, including those employed in DIF analysis. First, existing

methods often overlook intersectionality. In reality, people’s multiple identities do not

function in isolation but are interlinked to collectively shape the privilege and

discrimination. Intersectionality, a theoretical framework rooted in feminist scholarship,

highlights this complexity and is increasingly used in fields such as health, psychology, and

education studies (Cole, 2009; Núñez, 2014).In the context of DIF, this framework gives

rise to the concept of intersectional DIF, which refers to the DIF that results from the
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interaction effect of multiple demographic variables. Unlike traditional DIF, which only

considers the main effect of demographic variables separately, intersectional DIF captures

the potential bias that arises at the intersection of multiple identities. For example,

individuals belonging to multiple marginalized groups may experience DIF effects that are

not simply the sum of the effect of each grouping variable, but amplified or diminished due

to their intersecting social positions. Empirical results from a recent intersectional DIF

study suggest that traditional DIF methods that ignore intersectionality may lead to

substantial bias (Albano et al., 2024). Second, existing studies often require the

specification of a reference group. DIF is usually detected by comparing each focal group

to the reference group, while comparisons among focal groups themselves are rarely made.

Although mathematically any group can be designated as the reference with no difference,

the routine choice of the privileged group may unintentionally reinforce the notion that

privileged groups represent the norm, positioning all other groups as deviations (Johfre &

Freese, 2021).

In response to these concerns, recent studies have begun to address intersectional

DIF (Albano et al., 2024; Belzak, 2023; Muthén & Asparouhov, 2018; Russell & Kaplan,

2021; Russell et al., 2021, 2022). These methods typically model intersectional DIF by

either incorporating both demographic variables and their interactions (i.e., product terms)

into the measurement model, or by defining a single synthetic categorical variable that

encodes all combinations of demographic characteristics. The synthetic group method is

mathematically equivalent to modeling all-way interactions. However, both methods treat

intersectional DIF as fixed effects, which limits scalability. As more demographic variables

are included, the number of intersectional groups and corresponding parameters increases

geometrically, while the sample size per group decreases. This leads to challenges for model

estimation. For example, the combination of gender (e.g., male, female, and non-binary)

and race (e.g., White, Black or African American, American Indian or Alaska Native,

Asian, and Native Hawaiian or Other Pacific Islander) results in 15 intersectional groups,
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and this number expands rapidly as additional variables are considered.

In contrast to traditional fixed-effect methods for DIF detection, intersectionality

can be modeled as random effects within the multilevel modeling framework. This

approach is inspired by multilevel analysis of individual heterogeneity and discriminatory

accuracy (MAIHDA), an emerging quantitative approach developed in health inequality.

MAIHDA treats individuals (level 1) as nested within intersectional strata (level 2), where

each stratum represents a unique combination of social identities, that is, a specific level of

the synthetic intersectional group variable. MAIHDA models incorporate the main effect

for each demographic variable and a stratum-level random effect. Rather than modeling

all-way interaction terms explicitly through fixed effects, the random effect captures the

total between-strata variance that is not explained by the additive main effects. Compared

to traditional fixed-effect methods, this multilevel framework promotes model parsimony

and scalability in the presence of many demographic variables and enables the

decomposition of covariate effects into additive and interactive components (Evans et al.,

2018, 2024; Merlo, 2018). It is worth noting that, in MAIHDA, the same demographic

variables that characterize individuals at level 1 also define the level 2 strata. While this

seems to introduce collinearity, there is a conceptual distinction. As clarified in the

MAIHDA literature, unlike in conventional multilevel models where demographic variables

are treated as individual-level covariates, these variables are conceptualized as properties of

the strata at level 2. This framing is fundamental to the MAIHDA framework and is

discussed in detail by Evans et al. (2024)

Similar to the MAIHDA framework, we propose applying random effects to item

parameters for detecting intersectional DIF. In this approach, the main effects of

demographic variables on item parameters are explicitly modeled to account for traditional

DIF, while random effects are introduced to capture additional variations across

intersectional groups without requiring the explicit specification of interaction terms. A

random item effect with nonzero variance, after controlling for main effects, is interpreted
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as evidence of intersectional DIF. Using random effects, the proposed model inherits the

advantages of MAIHDA, including interpretability, scalability, and parsimony.

Although this multilevel approach is new to DIF detection, it builds on the

well-known random item effect framework in psychometrics. Specifically, random-item IRT

models allow item parameters to vary across groups following specific distributions. These

models have been applied in various measurement invariance contexts, such as longitudinal

designs with randomly drawn item samples, international large-scale assessments, and

automatic item generation (AIG) or item cloning (De Boeck, 2008; Jong et al., 2007;

Lathrop & Cheng, 2017; Muthén & Asparouhov, 2018; Rijmen & Jeon, 2013). However,

existing random item effect models cannot be used directly for intersectional DIF

detection. First, most existing models define groups using a single demographic variable

(e.g., country) and do not involve the decomposition of main and interaction effects. When

extended to intersectional groups formed by multiple identities, using only random effects

confounds interactions with main effects. In other words, without explicitly modeling main

effects, the random effect cannot be directly interpreted as intersectional DIF (Jong et al.,

2007; Muthén & Asparouhov, 2018; Rijmen & Jeon, 2013). Second, existing models

typically assume random effects on all items, requiring post hoc tests to identify DIF items.

Third, model estimation is computationally intensive. Although Rijmen and Jeon (2013)

employ variational inference to reduce computational efforts, their algorithm still lacks

closed-form solutions and remains computationally demanding.

Our proposed methods address these limitations through three innovations. First,

as mentioned above, the proposed models incorporate both main effects of demographic

variables and random effects, enabling separation between traditional and intersectional

DIF. Second, we impose a log penalty on the random item effects, effectively shrinking the

variance to zero for items free from intersectional DIF. Notably, due to this regularization,

our methods do not require anchors for random effects. However, anchor items are still

needed for main effects, as we assume that both traditional and intersectional DIF can
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appear on the same item. Since the primary focus of this study is on intersectional DIF,

the anchor requirement applies only to main effects and thus plays a limited role. Third,

for efficient model estimation, we develop a Gaussian variational expectation-maximization

(GVEM) algorithm. Originally introduced to psychometrics for multidimensional IRT

(MIRT) estimation, GVEM circumvents the high-dimensional integral in model estimation,

achieves a closed-form solution within the EM algorithm, and significantly reduces

computational complexity (Cho et al., 2021).

Our methods accommodate both intersectional UDIF and NUDIF detection by

applying a unified modeling strategy to different item parameters (i.e., difficulty and

discrimination). In addition, we extend the model to capture intersectional impact. Impact

refers to differences in the group-level mean abilities. Traditionally, impact is limited to the

main effects of demographic variables on group-level ability means. However, as emphasized

by intersectionality, interactions among multiple identities could also influence group-level

abilities. We define intersectional impact as different group-level mean abilities arising from

these interactions. Similar to intersectional DIF, we use random effects on group-level mean

abilities to capture intersectional impact. Beyond studying intersectionality, our proposed

approach is also well suited for nested structures, such as students within different

countries, especially in large-scale assessments (Pastor, 2003; Sulis & Toland, 2017).

In summary, the major contributions of this paper are fourfold: (1) quantifying the

intersectional DIF as random item effects, (2) introducing the concept of intersectional

impact, (3) applying a log penalty to detect nonzero item-level variation reflective of

intersectional DIF, and (4) applying efficient variational methods for model estimation.

The rest of the paper is organized as follows. We first introduce the four random item IRT

models proposed in this study, followed by the regularized GVEM algorithm. Then, we

present four simulation studies and an empirical study to evaluate the performance of the

proposed intersectional DIF detection methods. Finally, we conclude with a discussion of

limitations and future directions.
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Methods

This study aims to detect intersectional DIF, defined as interactions among

demographic variables on item parameters. We also consider scenarios both with and

without intersectional impact, defined as interactions among demographic variables that

affect group-level mean abilities. The two-parameter logistic (2PL) IRT model is used as

the foundational model, upon which four extended models are developed. These models

incorporate random item intercepts for intersectional UDIF, random item slopes for

intersectional NUDIF, and a multilevel ability structure for intersectional impact.

Specifically, the four proposed models are 2PL with random item intercept (2PL-Ri), 2PL

with random item intercept and with multilevel latent trait (2PL-RiM), 2PL with random

item intercept and slope (2PL-Ris), 2PL with random item intercept and slope and with

multilevel latent trait (2PL-RisM). The structure and applicability of these models are

summarized in Table 1.

Table 1
Proposed IRT models in this study.

2PL-Ri 2PL-RiM 2PL-Ris 2PL-RisM
Random Intercept Yes Yes Yes Yes
Random Slope No No Yes Yes
Multilevel Latent Trait No Yes No Yes
DIF scenario UDIF UDIF with

impact
UDIF and

NUDIF
UDIF and

NUDIF with
impact

Note. DIF and impact refer to intersectional DIF and intersectional impact, respectively.

Let yijs denote the binary response of person i (i = 1, 2, . . . , Ns) in group s

(s = 1, 2, . . . , S) on item j (j = 1, 2, . . . , J). For 2PL-RisM, the most flexible model in this

study, the item response function of yijs is

P(yijs = 1 | θis, ajs, bjs) = 1
1 + exp[−(ajsθis + bjs)]

, (1)
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where the random effects are

θis | α0s ∼ N (α0s + αT
1 Xs, σ2

θ),

α0s ∼ N (0, σ2
α0),

bjs ∼ N (βT
j X̃s, σ2

bj
),

ajs ∼ N+(γ̄T
j X̃s, σ̄2

aj
).

(2)

Before interpreting the model, it is necessary to clarify several notations. Let D denote the

number of demographic variables of interest. An intersectional group is defined as a unique

combination of levels across these D variables. Let S be the total number of such

intersectional groups, equal to the product of the number of levels for each variable. That

is, S = ∏D
d=1 Kd, where Kd is the number of levels for the d-th variable. For each group

s ∈ {1, . . . , S}, let Xs be a P -dimensional dummy coded vector. The total number of

dummy variables is P = ∑D
d=1(Kd − 1). For example, if there are D = 2 variables, race and

gender, where race has K = 5 categories and gender has K = 3 categories, then

S = 5× 3 = 15, and P = (5− 1) + (3− 1) = 6. To accommodate the intercept, let

X̃s = [1, XT
s ]T be a (P + 1)-dimensional vector. Correspondingly, βT

j = [bj, β̇T
j ], where bj

denotes the intercept parameter for item j in the reference group, and β̇T
j is the vector of

coefficients representing the main effects of demographic variables on the intercept. Note

that in the current model, one intersectional group serves as the reference group because

demographic variables are dummy coded to capture main effects. However, by using effect

coding instead, no single intersectional group is treated as the reference; rather, effects are

interpreted relative to the overall mean across all groups. Similarly, γ̄T
j = [aj, ˙̄γT

j ], where aj

denotes the slope parameter for item j in the reference group, and ˙̄γT
j represents the main

effects on the slope. Finally, N and N+ denote the normal distribution and the truncated

normal distribution (left-truncated at zero), respectively. We place bars over parameters

associated with ajs to indicate that γ̄T
j X̃s and σ̄2

aj
represent the mean and variance of the

untruncated latent variable underlying ajs, rather than those of ajs itself.
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In Equation (1), θis is the ability of person i in subgroup s, where abilities within

each subgroup follow a normal distribution with mean α0s + αT
1 Xs. Recall that Xs is the

dummy coding vector that corresponds to group s. αT
1 Xs represents the main effect of

demographics on the group-level mean ability, that is, the traditional impact in DIF

literature. In addition, we introduce the random intercept α0s ∼ N (0, σ2
α0). As in the

MAIHDA literature, we do not explicitly model any high-order interactions among the

demographic variables. Instead, the random effect α0s is used to capture these additional

deviations, that is, the intersectional impact. Moreover, bjs represents the group-specific

intercept parameter for item j in subgroup s, following a normal distribution with mean

βT
j X̃s and variance σ2

bj
. The term βT

j X̃s represents the group-specific intercept due to the

main effects of demographic variables, corresponding to the traditional UDIF. The variance

of the random intercept σ2
bj

captures deviations from the main effect across intersectional

groups and is intended to reflect intersectional DIF on the intercept. Similarly, the

group-specific slope parameter ajs follows a truncated normal distribution. Its

pre-truncation mean, γ̄T
j X̃s, captures the main effects of demographics on the slope (i.e.,

traditional NUDIF), while the variance σ̄2
aj

is specifically introduced to capture

intersectional DIF on the slope. Accordingly, the model is parameterized so that item j is

free of intersectional NUDIF when σ̄2
aj

= 0, and further free of intersectional UDIF when

σ2
bj

= 0 as well.

Please note that the 2PL-RisM model shown above combines features of the random

item effect model and multilevel IRT model. It treats item parameters similarly to a linear

logistic test model with error (LLTM with error), but instead of using a property matrix to

explain the difficulty (De Boeck, 2008; Kim & Wilson, 2020), the mean of each item’s

difficulties is determined by the main effects of demographics to capture traditional DIF,

while the variance accounts for additional variations (i.e., intersectional DIF). In addition,

the other three models in Table 1 are simplified version of the 2PL-RisM model: the

2PL-Ris model sets α0s = 0, the 2PL-RiM model sets ajs = aj, and the 2PL-Ri model sets
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both α0s = 0 and ajs = aj.

Model Estimation

In this section, we introduce a novel algorithm for model estimation based on

variational inference. The key idea of variational approximation is to approximate the

intractable marginal likelihood with a computationally feasible lower bound. The lower

bound derived in this paper follows the local variational methods by Bishop (2006) and

Cho et al. (2021). Compared to the variational methods by Rijmen and Jeon (2013), the

GVEM method in this paper results in closed-form solutions for most parameters. To

ensure clarity, we begin with the simplest model in this study, 2PL-Ri. The item response

function of yijs can still be written as in Equation (1), with random effects

θis ∼ N (αT
1 Xs, σ2

θ),

bjs ∼ N (βT
j X̃s, σ2

bj
).

(3)

Let Z = ⋃S
s=1

⋃Ns
i=1

⋃J
j=1{θis, bjs} be the set of all latent variables, including both

latent traits and random item effects, in the 2PL-Ri model. The joint likelihood of

responses Y = ⋃S
s=1

⋃Ns
i=1

⋃J
j=1{yijs} and latent variables Z is

p(Y , Z) = P(Y | Z)p(Z)

=
S∏

s=1


Ns∏

i=1

J∏
j=1

P(Yijs = yijs | θis, bjs)
 J∏

j=1
pbj

(bjs)
 [Ns∏

i=1
pθis

(θis)
] ,

(4)

where P(Yijs = yijs | θis, bjs) = P(Yijs = 1 | θis, bjs)yijsP(Yijs = 0 | θis, bjs)1−yijs . With any
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probability density function q(Z) for Z, the log marginal likelihood of Y can be written as

ℓ(Y ) = logP(Y )

=
∫

[logP(Y )] q(Z)dZ

=
∫ [

log p(Y , Z)
p(Z | Y )

]
q(Z)dZ

=
∫ [

log p(Y , Z)
q(Z)

]
q(Z)dZ +

∫ [
log q(Z)

p(Z | Y )

]
q(Z)dZ

≥
∫ [

log p(Y , Z)
q(Z)

]
q(Z)dZ

≡ ELBO

=
∫

[log p(Y , Z)] q(Z)dZ − constant,

(5)

where ELBO refers to the evidence lower bound, and the difference ℓ(Y )− ELBO

corresponds to the Kullback–Leibler (KL) divergence (Kullback & Leibler, 1951) from q(Z)

to p(Z | Y ), given by

KL[q(Z) ∥ p(Z | Y )] =
∫ [

log q(Z)
p(Z | Y )

]
q(Z)dZ ≥ 0.

Note that the constant in Equation (5),
∫

[log q(Z)] q(Z)dZ, depends only on q and can

therefore be omitted from the optimization. Optimizing ℓ(Y ) is thus reduced to

maximizing
∫

[log p(Y , Z)] q(Z)dZ. The EM algorithm achieves this by setting q(Z) such

that KL[q(Z) ∥ p(Z | Y )] = 0. In the E-step, it computes the expectation of the

log-likelihood (i.e.,
∫

log [p(Y , Z)] q(Z)dZ). In the M-step, this expectation is maximized

with respect to model parameters. However, the regular EM algorithm requires that the

expectation is computationally feasible, which hardly holds in the random item effect

models. In the 2PL-Ri model, for example, the expectation in Equation (5) involves a

high-dimensional integral with respect to Z, a latent variable of dimension SJ + N , where

N = ∑S
s=1 Ns is the total sample size. We address this challenge by applying variational
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inference for estimation.

In the context of 2PL-Ri, given Equations (1), (3), (4), and (5), we have

∫
[log p(Y , Z)] q(Z)dZ

=
∫

[logP(Y | Z) + log p(Z)] q(Z)dZ

=
∫ [

S∑
s=1

Ns∑
i=1

J∑
j=1

{
yijs log 1

1 + exp[−(ajθis + bjs)]
+ (1− yijs) log 1

1 + exp(ajθis + bjs)

}

+
S∑

s=1

{
Ns∑
i=1

log pθis
(θis) +

J∑
j=1

log pbjs
(bjs)

}]
q(Z)dZ

=
∫ [

S∑
s=1

Ns∑
i=1

J∑
j=1

{
yijs log 1

1 + exp[−(ajθis + bjs)]
+ (1− yijs) log 1

1 + exp(ajθis + bjs)

}

− 1
2

S∑
s=1

{
(Ns + J) log 2π +

Ns∑
i=1

[
log σ2

θ + (θis −αT
1 Xs)2

σ2
θ

]

+
J∑

j=1

[
log σ2

bj
+

(bjs − βT
j X̃s)2

σ2
bj

]}]
q(Z)dZ.

(6)

The difficulty in computing the marginal log-likelihood in Equation (6) primarily arises

from the sigmoid function, which prevents closed-form integration. We adopted a local

variational method (Bishop, 2006) to approximate the sigmoid function with a

computationally feasible lower bound. As demonstrated in Cho et al. (2021), a sigmoid

function can be expressed as

f(x) = exp(x)
1 + exp(x) = max

ξ

exp(ξ)
1 + exp(ξ) exp

[
(x− ξ)

2 − η(ξ)(x2 − ξ2)
]

≥ exp(ξ)
1 + exp(ξ) exp

[
(x− ξ)

2 − η(ξ)(x2 − ξ2)
]
,

(7)

where η(ξ) = (2ξ)−1{1/[1 + exp (−ξ)]− 1/2}, and ξ is the variational parameter used to

approximate the sigmoid function, which is updated iteratively in the EM algorithm.

https://doi.org/10.1017/psy.2025.10046 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.10046


15

Applying Equation (7) to Equation (6), we obtain

∫
[log p(Y , Z)] q(Z)dZ

≥
∫ [

S∑
s=1

Ns∑
i=1

J∑
j=1

{
log 1

1 + e−ξijs
+
(

yijs −
1
2

)
(ajθis − bjs)−

1
2ξijs − η(ξijs)

[
(ajθis − bjs)2 − ξ2

ijs

] }

− 1
2

S∑
s=1

{
(Ns + J) log 2π +

Ns∑
i=1

[
log σ2

θ + (θis −αT
1 Xs)2

σ2
θ

]

+
J∑

j=1

[
log σ2

bj
+

(bjs − βT
j X̃s)2

σ2
bj

]}]
q(Z)dZ

≡
∫
B(Y , Z)q(Z)dZ

≡Q(Y ),
(8)

where B(Y , Z) denotes a lower bound of log p(Y , Z) under the local variational

approximation.

Next, we need to determine a variational density q(Z) that closely approximates the

true posterior p(Z | Y ), such that KL[q(Z) ∥ p(Z | Y )] is minimized. This ensures that

the ELBO provides a tight approximation to the marginal log-likelihood ℓ(Y ), as shown in

Equation (5). Under the mean-field variational assumption (Bishop, 2006), we approximate

the posterior distribution of the latent variables using a product of independent factors,

each corresponding to a separate latent variable, i.e.,

q(Z) =
S∏

s=1

Ns∏
i=1

qθis
(θis)

J∏
j=1

qbjs
(bjs)

 .

Note that the latent variables in Z need not be truly independent, as the goal is to

approximate its true posterior distribution while simplifying the computation. Then, for

any latent variable zℓ ∈ Z, its optimal variational distribution qzℓ
takes the form

qzℓ
(zℓ) ∝ expEZ\{zℓ}[log p(Y , Z)],
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where EZ\{zℓ} refers to the expectation over all latent variables in Z other than zℓ (Bishop,

2006; Blei et al., 2017). With the lower bound B(Y , Z), we update the variational

distribution as

qzℓ
(zℓ) ∝ expEZ\{zℓ}[B(Y , Z)].

Thus, the optimal qθis
(θis) and qbjs

(bjs) that maximize the ELBO (i.e., minimize the KL

divergence) are given by

qθis
(θis) ∝ expEZ\{θis} [B(Y , Z)]

∝ expEZ\{θis}


J∑

j=1

[(
yijs −

1
2

)
ajθis − η(ξijs)(ajθis − bjs)2

]
− (θis −αT

1 Xs)2

2σ2
θ


∝ exp


J∑

j=1

[(
yijs −

1
2

)
ajθis − η(ξijs)(a2

jθ
2
is − 2ajθisµbjs

+ µ2
bjs

+ σ2
bjs

)
]
− (θis −αT

1 Xs)2

2σ2
θ


∝ exp


J∑

j=1
aj

[(
yijs −

1
2

)
+ 2η(ξijs)µbjs

]
θis −

J∑
j=1

[
η(ξijs)a2

j

]
θ2

is −
θ2

is − 2αT
1 Xsθis

2σ2
θ


∝ exp


 J∑

j=1
aj

{(
yijs −

1
2

)
+ 2η(ξijs)µbjs

}
+ αT

1 Xs

σ2
θ

 θis −

 J∑
j=1

η(ξijs)a2
j + 1

2σ2
θ

 θ2
is


(9)

and

qbjs
(bjs) ∝ expEZ\{bjs} [B(Y , Z)]

∝ expEZ\{bjs}

{
−

Ns∑
i=1

[(
yijs −

1
2

)
bjs + η(ξijs)(bjs − ajθis)2

]
−

(bjs − βT
j X̃s)2

2σ2
bj

}

∝ exp
{
−

Ns∑
i=1

[(
yijs −

1
2

)
bjs + η(ξijs)

{
b2

js − 2bjsajµθis
+ a2

j(µ2
θis

+ σ2
θis

)
}]
−

(bjs − βT
j X̃s)2

2σ2
bj

}

∝ exp
{

Ns∑
i=1

[
2η(ξijs)ajµθis

−
(

yijs −
1
2

)]
bjs −

Ns∑
i=1

η(ξijs)b2
js −

b2
js − 2βT

j X̃sbjs

2σ2
bj

}

∝ exp
{[

Ns∑
i=1

{
2η(ξijs)ajµθis

−
(

yijs −
1
2

)}
+

βT
j X̃s

σ2
bj

]
bjs −

[
Ns∑
i=1

η(ξijs) + 1
2σ2

bj

]
b2

js

}
,

(10)

respectively. As shown in Equation (9), the variational density of θis is an exponential
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family with sufficient statistics θis and θ2
is, and thus qθis

(θis) = N (µθis
, σ2

θis
), where

σ2
θis

= σ2
θ

1 + 2σ2
θ

∑J
j=1 η(ξijs)a2

j

µθis
=

αT
1 Xs + σ2

θ

∑J
j=1 aj

[
yijs − 1

2 + 2η(ξijs)µbjs

]
1 + 2σ2

θ

∑J
j=1 η(ξijs)a2

j

.

(11)

Similarly, the variational density of bis shown in Equation (10) also follows a normal

distribution, that is, qbis
(bis) = N (µbjs

, σ2
bjs

), where

σ2
bjs

=
σ2

bj

1 + 2σ2
bj

∑Ns
i=1 η(ξijs)

µbjs
=

βT
j X̃s − σ2

bj

∑Ns
i=1

[
yijs − 1

2 − 2η(ξijs)ajµθis

]
1 + 2σ2

bj

∑Ns
i=1 η(ξijs)

.

(12)

Given the optimal variational distributions derived above and the mean-field variational

assumption, we compute the expectation over all latent variables with respect to the

variational distribution q(Z) in Equation (8), yielding

Q(Y ) =
S∑

s=1

Ns∑
i=1

J∑
j=1

{
log 1

1 + e−ξijs
+
(

yijs −
1
2

)
(ajµθis

− µbjs
)− 1

2ξijs

− η(ξijs)
[
a2

j(µ2
θis

+ σ2
θis

)− 2ajµθis
µbjs

+ µ2
bjs

+ σ2
bjs
− ξ2

ijs

] }

− 1
2

S∑
s=1

{
(Ns + J) log 2π +

Ns∑
i=1

[
log σ2

θ +
σ2

θis
+ (µθis

−αT
1 Xs)2

σ2
θ

]

+
J∑

j=1

log σ2
bj

+
σ2

bjs
+ (µbjs

− βT
j X̃s)2

σ2
bj

}.

(13)

In addition, a log penalty is imposed on σ2
bj

in Equation (13) to encourage sparsity

in item random effects for intersectional DIF detection. The log penalty has been employed

for identifying permissible attribute patterns in cognitive diagnostic models (Gu & Xu,

2019; Ma et al., 2023; Wang, 2024). Note that log σ2
bj

is already included in Q(Y ). On the

one hand, incorporating the log penalty preserves closed-form solutions in the M-step,
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thereby ensuring computational efficiency. On the other hand, as shown by Ma et al.

(2023), the log penalty has a Bayesian interpretation: it corresponds to placing a Dirichlet

prior with parameter 1− λ on the variances. When 1− λ < 0, the prior becomes an

improper Dirichlet distribution, which promotes the selection of significant variances more

aggressively than traditional proper Dirichlet priors. Overall, a regularized GVEM

algorithm is proposed, where the objective function to be maximized is given by

Q′(Y ) = Q(Y )− λ
J∑

j=1
log σ2

bj
,

where λ > 0 is a tuning parameter and larger values of λ result in greater sparsity in σ2
bj

.

In each EM iteration, variational densities in Equations (11) and (12) are updated

in the E-step. In the M-step, Q′(Y ) is maximized to update all model parameters. This is

achieved by setting the derivative of the objective function with respect to each model

parameter to be zero. We will show that all parameters of the 2PL-Ri model can be

updated with closed-form solutions, leading to a computationally efficient algorithm. We

fix σθ to 1 for model identification, and the update rules for all other model parameters are

presented below:

ξ2
ijs = µ2

bjs
+ σ2

bjs
− 2ajµθis

µbjs
+ a2

j(µ2
θis

+ σ2
θis

),

aj =
∑S

s=1
∑Ns

i=1

[
(yijs − 1

2)µθis
+ 2η(ξijs)µθis

µbjs

]
2∑S

s=1
∑Ns

i=1 η(ξijs)(µ2
θis

+ σ2
θis

)
,

α1 =
(

S∑
s=1

Ns∑
i=1

XsX
T
s

)−1 ( S∑
s=1

Ns∑
i=1

µθis
Xs

)
,

βj =
(

S∑
s=1

X̃sX̃
T
s

)−1 ( S∑
s=1

µbjs
X̃s

)
,

σ2
bj

= 1
S + 2λ

S∑
s=1

[
σ2

bjs
+ (βT

j X̃s − µbjs
)2
]

.

(14)

Following the derivation shown above, similar variational lower bounds can be derived for

the other three proposed models. The detailed derivation for the most complex model in
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this study, 2PL-RisM, is provided in the Appendix.

Lastly, we employ the generalized information criterion (GIC) to select an

appropriate value of λ, as it has been shown to have desirable theoretical properties (Cho

et al., 2024; Fan & Tang, 2013). Specifically, GIC takes the form of

GIC = −2ℓ(Y ) + k × cN , (15)

where k is the number of DIF parameters and cN = c log N log log N , with c being a

constant that controls the degree of model sparsity. When cN = log N , GIC reduces to the

Bayesian information criterion (BIC). Since ℓ(Y ) is computationally intractable due to

high-dimensional integration, we instead use Q(Y ) as a surrogate in Equation (15) to

compute the GIC.

The regularized GVEM algorithm for DIF detection in the 2PL-Ri model is

summarized in Algorithm 1. Two remarks are worth noting:

Remark 1. The log penalty term log x might lead to numerical instability when x

approaches zero. Although log x does not appear in the iterations of the GVEM algorithm

as shown in Equations (11), (12), and (14), it is required for computing the GIC.

Therefore, we replace σ2
bj

with max{0.1, σ2
bj
} in the GIC calculation whenever σbj

̸= 0.

Remark 2. We do not penalize main DIF effects (i.e., β̇j and/or ˙̄γj) because the primary

goal of this study is to detect intersectional DIF, which is defined through nonzero variance

terms. As a result, anchor items must be prespecified, in contrast to approaches in the

literature that penalize main effects directly (see, e.g., Wang et al., 2023). If an additional

penalty term, such as the lasso, were imposed on these main effects, anchor items would no

longer be required. In this study, we use four anchor items, corresponding to 20% of the

total test length.
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Algorithm 1 Regularized GVEM algorithm for DIF detection in the 2PL-Ri model.
GICbest ← +∞
for each value of λ do

Initialize all model parameters: ξ2
ijs, α1, aj, βj, σ2

bj
, σ2

θ

while not converged do ▷ Convergence is achieved when the maximum change in pa-
rameter estimates across successive EM iterations is less than ε = 0.001

E-step: Given current model parameters, update the means and variances of the
variational distributions using Equations (11) and (12)
M-step: Given current variational distributions, update model parameters using
Equation (14)

kλ ← 0 ▷ Count the number of nonzero variance parameters
for j ← 1 to J do

if σ2
bj

< ρb then ▷ Threshold set to ρb = 0.001
σ2

bj
← 0

else
kλ ← kλ + 1

Rerun the EM algorithm without penalty (i.e., set λ = 0), allowing only items with
σbj
̸= 0 to retain random item effects, to obtain the final estimates

GICλ ← −2Q(Y ) + kc log N log log N
if GICbest > GICλ then

GICbest ← GICλ

Store current parameter estimates as optimal

Simulation Studies

Four simulation studies are conducted to evaluate the performance of the proposed

regularized GVEM algorithm in detecting intersectional DIF. Studies I to IV corresponded

to the four models, 2PL-Ri, 2PL-RiM, 2PL-Ris, and 2PL-RisM, respectively, each targeting

at a different DIF scenario, as detailed in the Methods section. In all studies, the number

of items is fixed to J = 20. Following Huang et al. (2024), the slope parameters aj

(j = 1, 2, . . . , J) are drawn from Lognormal(0, 0.252), and intercept bj (j = 1, 2, . . . , J) are

drawn from Uniform[−2, 2]. The true item parameters are given in Table 2.

Each simulation study systematically manipulates four common factors. First, the

number of intersectional groups is set to either 10 or 40. For the 10-group conditions (i.e.,

S = 10), groups are defined by two demographic variables, one binary (e.g., sex) and one

five-category variable (e.g., occupational status), resulting in P = 5 for the dummy-coded

variables. For the 40-group conditions, groups are defined by four demographic variables,
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Table 2
True fixed item parameters for the simulation studies.

Item 1 2 3 4 5 6 7 8 9 10
aj 0.691 1.483 0.787 0.795 0.607 0.934 0.924 0.855 0.974 1.113
bj 0.354 0.122 1.911 −1.209 1.377 −1.620 −0.475 −1.816 −1.390 1.099

Item 11 12 13 14 15 16 17 18 19 20
aj 0.823 0.724 0.823 1.003 0.963 0.839 1.346 1.089 1.135 0.929
bj −0.422 −0.554 −0.316 −0.712 0.209 1.885 0.232 0.297 0.565 1.296

three binary (e.g., sex, immigrant background, and dichotomous education level) and one

five-category variable (e.g., occupational status), resulting in P = 7 for the dummy-coded

variables. This setup aligns with an empirical study on intersectionality (Keller et al.,

2023). Second, the sample size per group is set to either 50 or 100. Third, the proportion of

items with intersectional DIF is set at 20% (Items 1–4) or 60% (Items 1–12). Intersectional

DIF is introduced by nonzero random item effects. For items with intersectional UDIF, half

are assigned σ2
bj

= 0.54 and the other half σ2
bj

= 1. For items with intersectional NUDIF,

half are assigned σ̄2
aj

= 0.33 and the other half σ̄2
aj

= 1. These magnitudes are derived from

a pilot study using PISA data, where the variances for intersectional DIF ranged from 0.31

to 0.98 for intercepts (centered at 0.54) and from 0.22 to 0.46 for slopes (centered at 0.33).

All items with intersectional NUDIF include both both random intercept and random

slope, reflecting real-world scenarios where NUDIF often coexists with UDIF (Wang et al.,

2023). Fourth, traditional impact, defined as mean ability differences due to the main

effects by demographic variables, is either absent or present. When present, the traditional

impact is set at α1 = 0.1, yielding ability mean differences ranging from 0.1 to 0.2 for the

10-group conditions and up to 0.4 for the 40-group conditions.

Beyond the four common factors, Studies II and IV also consider intersectional

impact. This is introduced by the variance of the group-level random intercept on ability

(σ2
α0), set to either 0 (absence) or 0.5 (presence). These values correspond to intra-class

correlation (ICC) values of approximately 0 and 0.1, aligning with the ICC in empirical
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intersectional educational assessment literature (Keller et al., 2023). Overall, Studies I and

III included 16 experimental conditions each, while Studies II and IV included 32

conditions each. A summary of all manipulated factors is provided in Table 3.

Table 3
Illustration of simulation designs.

Simulation I Simulation II Simulation III Simulation IV
(2PL-Ri) (2PL-RiM) (2PL-Ris) (2PL-RisM)

Number of groups (S) 10, 40 10, 40 10, 40 10, 40
Sample size per group (Ns) 50, 100 50, 100 50, 100 50, 100
Proportion of DIF items 20%, 60% 20%, 60% 20%, 60% 20%, 60%
Traditional impact (α1) 0.1, 0 0.1, 0 0.1, 0 0.1, 0
Intersectional impact (σ2

α0) — 0.5, 0 — 0.5, 0

We note again that this study focuses on detecting intersectional DIF, rather than

traditional DIF. To avoid confounding due to traditional DIF and to demonstrate the

models’ ability to disentangle traditional and intersectional DIF, all items are designed to

exhibit traditional DIF, which is introduced through fixed main effects of demographic

variables. More specifically, we set βT
j = [bj, 0.2× 1T

P ] and γ̄T
j = [āj, 0.1× 1T

P ] in Equation

(2). Under the 10-group conditions, this setup results in traditional DIF magnitudes

ranging from 0.2 to 0.4 for intercepts and 0.1 to 0.2 for slopes across groups. For the

40-group conditions, these ranges increase to 0.2 to 0.8 for intercepts and 0.1 to 0.4 for

slopes, following the design by Belzak and Bauer (2020). To ensure model identification in

the presence of traditional DIF across all items, 20% of items (Items 17–20) are designated

as anchors with main effects fixed at zero (i.e., β̇j = 0 and ˙̄γ = 0). However, their random

effects are still freely estimated, meaning that they are not anchored with respect to

intersectional DIF.

The flagging procedure for intersectional DIF has been shown in Algorithm 1. Each

condition is replicated 50 times, and the performance is measured by false positive (FP)

and true positive (TP) rates. Specifically, the FP rate refers to the proportion of items free

from intersectional DIF mistakenly flagged as DIF items, while the TP rate refers to the
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proportion of items with intersectional DIF that are correctly detected. We consider 50

replications sufficient since the true and false positive rates are averaged across all the

DIF-free and DIF-related item parameters, rather than being evaluated for a single

parameter in each replication.

Simulation I: UDIF Detection

We evaluate 2PL-Ri in this simulation, where slope parameters are fixed across

groups. Figure 1 shows the true and false positive rates of Simulation I across 50

replications. Under most conditions, except when S = 10 and Ns = 50, the new method

performs well. Overall, the 2PL-Ri model performs better with more groups and larger

sample sizes per group. As intersectional DIF is modeled by random effects, such results

are not surprising but consistent with the findings from the multilevel modeling literature

(Adam et al., 2021; Maas & Hox, 2005; Moineddin et al., 2007). In addition, the

proportion of DIF items and the presence or absence of intersectional impact has minimal

influence on the results.

Simulation II: UDIF Detection with intersectional impact

We study 2PL-RiM in Simulation II, where intersectional impact is considered. As

shown in Figure 2, the new method follows a pattern similar to Simulation I. That is, the

proposed method performs well under most conditions except when S = 10 and Ns = 50,

and unsurprisingly, it performs better with more groups and larger sample sizes per group.

In addition, the proportion of DIF items has a small effect on performance, with lower

proportion yielding slightly better results. Similarly, the presence or absence of traditional

and intersectional impact has minimal influence on the results.

Simulation III: UDIF and NUDIF Detection

2PL-Ris is evaluated with both UDIF and NUDIF incorporated. Figures 3(a) and

3(b) summarize the DIF detection results on intercept and slope parameters, respectively.

With intersectional NUDIF, the proposed method maintains desirable performance on

intercepts with S = 40 while resulting in worse performance with the smaller group number
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Figure 1
Simulation I results.
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Figure 2
Simulation II results.
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S = 10. The DIF detection results for slope parameters are generally unsatisfactory.

Relatively better performance was observed under conditions involving a large number of

groups and either the absence of traditional impact or the combination of the presence of

traditional impact and a low proportion of DIF items. In general, this is consistent with

prior studies, which found that it is more challenging to identify DIF effects on slope

parameters than on intercepts (Daniel J. Bauer & Cole, 2020; Wang et al., 2023).

Regarding the manipulated factors, while the number of groups and the sample size per

group have consistent effects across Simulations I to III, the influence of DIF proportion

and traditional impact becomes more pronounced in this study. Lastly, compared to

Simulation I, DIF detection results for the intercept exhibit lower TP rates when S = 10.

Additional guidance on the use of this method is provided in the Discussion section.

Simulation IV: UDIF and NUDIF Detection with Intersectional Impact

The final simulation study evaluates the 2PL-RisM model, with the true and false

positive rates summarized in Figure 4. In general, the method results in desirable true and

false positive rates for detecting intersectional UDIF, but performs poorly in detecting

intersectional NUDIF. In fact, the NUDIF detection results are generally unacceptable

across nearly all conditions.

Empirical Study

A real data set from the Programme for International Student Assessment (PISA) is

used to demonstrate the performance of the four methods in this paper. PISA is a

well-known international large-scale assessment that tests the skills and knowledge of

15-year-old students in mathematics, reading, and science (OECD, 2019). In this study, we

use a subset of the PISA 2018 science assessment, including dichotomous responses of 7,002

students on 19 items. Three demographic variables are considered: (1) country (eight

countries in the subset), (2) sex (male or female), and (3) highest parental education (below

or at least college level). These variables are chosen due to their frequent consideration in
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(a) Intersectional NUDIF detection (on intercepts).
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(b) Intersectional NUDIF detection (on slopes).

Figure 3
Simulation III results.
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(a) Intersectional NUDIF detection (on intercepts).
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Figure 4
Simulation IV results.
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studies on educational equity. The full combination of these variables results in 32

intersectional groups, with their corresponding sample sizes summarized in Table 4.

Table 4
Sample size for each group in the empirical study.

Below College At Least College
Male Female Male Female

ALB 175 120 93 94
ARE 300 233 951 927
AUS 258 282 536 522
AUT 110 133 184 189
BEL 115 98 255 293
BGR 71 62 100 111
BIH 68 68 53 86
BLR 38 35 205 237

Before discussing our empirical findings, we introduce a feasible way to tune the

hyperparameter c in GIC (Lyu et al., 2025). Figure 5 illustrates the procedure, where c is

plotted against JDIF, the number of items exhibiting intersectional DIF. Similar to the

scree plots in factor analysis, Figure 5 suggests that the models chosen by GIC with

c = 1.05, which corresponds to the “elbow” of the plot. In practice, the choice of c can also

depend on research goals. In certain high-stakes testing contexts, a higher FP rate may be

acceptable in order to achieve a high TP rate, as undetected DIF can lead to serious

fairness concerns.

The empirical data set is analyzed using each of the four models, and the results are

summarized in Table 5, where a and b refer to (intersectional) NUDIF and UDIF,

respectively. Items 7, 17, 18, and 19 are flagged as UDIF items by most models, and no

item is flagged as NUDIF.

Given the simulation results indicating unsatisfactory performance in detecting

NUDIF, we focus our empirical analysis on the results from the 2PL-Ri and 2PL-RiM

models. To validate the empirical results, we estimate the RiM and Ri model using Markov

chain Monte Carlo (MCMC) via the rstan package (Stan Development Team, 2024),
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Figure 5
Relationship between the number of items exhibiting intersectional DIF and c.

Table 5
DIF detection results of the empirical study.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2PL-Ri b b b b
2PL-RiM b b b b b
2PL-Ris b b b b b
2PL-RisM b b b

Note. b indicates UDIF, and NUDIF is not detected.

allowing random item effects only for the consistently flagged items (i.e., items 7, 17, 18,

and 19). For comparison, we also fit a constrained version of the model without random

item effects. Model comparison based on the leave-one-out information criterion (LOOIC)

reveals that the model with random item effects provides a significantly better fit, with a

LOOIC difference of 107 and a standard error of 21.8. Furthermore, for comparison, a total

score-based method is also employed to examine intersectional DIF (Belzak, 2023).

Specifically, Belzak’s method (2023) uses regularized logistic regression, with total score as

the matching criterion and intersectionality modeled through interactions among

demographic variables. This method is chosen due to its similarity to our proposed

methods, as it accounts for both main and intersectional DIF effects with a primary focus

on UDIF. However, this method has two limitations: (1) it does not automatically account
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for impact, since the total score is not directly regressed on demographic variables; and (2)

it may struggle with a large number of demographic variables, given that interactions are

modeled using fixed effects. Despite these limitations, the method identifies UDIF in items

2, 5, 7, 14, 18, and 19, which largely aligns with the findings from our proposed methods.

Discussion

This study proposes a novel random effects IRT approach for detecting

intersectional DIF and demonstrates the feasibility of applying a regularized GVEM

algorithm in this context. By including both item-level and person-level random effects,

the model accounts for intersectional DIF and impact effects arising from multiple

demographic variables. Through the GVEM framework, all model parameters can be

updated by closed-form solutions when detecting UDIF, resulting in a computationally

efficient model estimation procedure. Simulation results show that the proposed methods

can effectively detect UDIF. We have further extended the method to detect intersectional

NUDIF, which is known to be more challenging. In this setting, all model parameters

except the main and random effects on item discrimination (i.e., γj and σ̄2
aj

) have

closed-form solutions (see Appendix for details). The simulation results reveal that the

number of groups has the most substantial impact on performance, followed by the sample

size per group, the proportion of DIF items, and the presence or absence of impact. In

terms of computational efficiency, the method performs well on standard hardware. On a

laptop with an Intel i7-12700H CPU, the runtimes for a typical setting (i.e., 20 items, 20%

DIF items, 40 groups, and 100 people per group) with a single regularization parameter

range from 7.23 to 12.41 seconds, depending on the model used. These results underscore

the scalability of the proposed approach for large-scale assessments.

In this study, intersectional DIF is modeled using random effects, and variation in

group sizes may influence the methods’ performance. Literature on multilevel modeling has

shown that unequal cluster sizes can reduce both the power to detect true effects and the

efficiency of estimating fixed and random components (Candel & Breukelen, 2009; Kush
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et al., 2022; Manatunga et al., 2001). Specifically, Candel and Breukelen (2009) found that

the relative efficiency (RE) of the random intercept variance estimator can drop to between

84% and 95%, depending on the distribution and range of the cluster sizes. They also

found that the loss in RE can be recovered by increasing the number of clusters, where the

compensatory adjustment is given by 1/RE − 1. For example, if the RE is 84%, then

1/0.84− 1 ≈ 0.19, suggesting that an increase of 19% more clusters is needed to restore the

original efficiency.

While we explore intersectional NUDIF detection alongside UDIF, the results for

intersectional NUDIF detection are unsatisfactory, particularly when the model

simultaneously accounts for intersectional impact. A supplementary simulation study

demonstrate that even when response data are generated from the 2PL-Ris model, which

includes intersectional NUDIF, the 2PL-Ri model still effectively identified items exhibiting

intersectional UDIF. This suggests that, in practice, researchers should mainly rely on the

detection results for intersectional UDIF when using the proposed methods. The results for

intersectional NUDIF should be interpreted with caution and be used primarily in cases

where intersectional impact is not included and when both the sample size and the number

of groups are sufficiently large. Despite these challenges, our framework provides a

foundation for future advances in intersectional NUDIF detection. In a pilot study where

only random effects, but not main effects, were considered, the methods demonstrate better

results for NUDIF detection, suggesting potential for improvement. Future studies could

explore the incorporation of regularization in both random effects and main effects to

overcome estimation challenges. In addition, modeling slope parameters with lognormal

distributions instead of truncated normal distributions may offer further improvement.

Another limitation of the simulation studies is that how demographic variables

affect the variance of ability is not considered. Specifically, while mean latent traits are

allowed to vary across groups, the within-group variance is assumed to be constant.

Although this assumption aligns with most DIF research, several educational studies, such
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as Baye and Monseur (2016) and Gray et al. (2019), have discovered differences in latent

trait variances among demographic groups. Future research may explore how demographic

variables influence the variance of latent traits.

This study employs a variational approach to approximate the log marginal

likelihood. Although parameter estimation may be biased due to the use of a mean-field

Gaussian distribution family to approximate the posterior distribution of the latent

variables, the approximation becomes increasingly accurate with larger sample sizes.

Nevertheless, the estimation of latent variables, including group-specific item parameters

with random effects and person abilities, may not be sufficiently accurate. To address this

issue, we propose applying the standard MCMC procedure for their estimation, as

described in the empirical study. Alternatively, future research could consider using best

linear unbiased prediction (BLUP) as a complementary or alternative approach to MCMC.

Lastly, it is important to recognize that DIF arises within a complex social context.

Each individual carries a unique set of experiences that shape their learning and life

trajectories. However, when patterns of advantage or disadvantage emerge at the group

level, they serve as a reminder that systemic discrimination continues to persist. Thus,

while detecting DIF is a crucial first step in examining issues of fairness, it must be

followed by deeper investigations into the underlying causes of structural inequality.
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Appendix

The derivation of the 2PL-RisM model estimation procedure is shown below. The model is

presented in Equations (1) and (2). Applying the local variational method in Equation (7),

we obtain

∫
[log p(Y , Z)] q(Z)dZ

=
∫

[logP(Y | Z) + log p(Z)] q(Z)dZ

≥
∫ [

S∑
s=1

Ns∑
i=1

J∑
j=1

{
log 1

1 + e−ξijs
+
(

yijs −
1
2

)
(ajsθis − bjs)−

1
2ξijs − η(ξijs)

[
(ajsθis − bjs)2 − ξ2

ijs

] }

− 1
2

S∑
s=1

{
(Ns + 2J + 1) log 2π +

[
log σ2

α0 + α2
0s

σ2
α0

]
+

Ns∑
i=1

[
log σ2

θ + (θis − α0s −αT
1 Xs)2

σ2
θ

]

+
J∑

j=1

[
log σ̄2

aj
+

(ajs − γ̄T
j X̃s)2

σ̄2
aj

+ 2 log Φ
(

γ̄T
j X̃s

σ̄aj

)
+ log 1{ajs ≥ 0}

]

+
J∑

j=1

[
log σ2

bj
+

(bjs − βT
j X̃s)2

σ2
bj

]}]
q(Z)dZ

≡
∫
B(Y , Z)q(Z)dZ

≡Q(Y ).
(A1)

Then, the corresponding optimal variational distributions for the latent variables are

qα0s(α0s) ∝ expEZ\{α0s} [B(Y , Z)]

∝ expEZ\{α0s}

[
− α2

0s

2σ2
α0

−
Ns∑
i=1

(α0s + αT
1 Xs − θis)2

2σ2
θ

]

∼ N (µα0s , σ2
α0s

),
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where

σ2
α0s

=
σ2

α0σ2
θ

Nsσ2
α0 + σ2

θ

,

µα0s =
σ2

α0

Nsσ2
α0 + σ2

θ

(
Ns∑
i=1

µθis
−Nsα

T
1 Xs

)
;

qθis
(θis) ∝ expEZ\{θis} [B(Y , Z)]

∝ expEZ\{θis}

{
J∑

j=1

[(
yijs −

1
2

)
ajsθis − η(ξijs)(ajsθis − bjs)2

]

− (θis − α0s −αT
1 Xs)2

2σ2
θ

}

∼ N (µθis
, σ2

θis
),

where

σ2
θis

= σ2
θ

1 + 2σ2
θ

∑J
j=1 η(ξijs)(µ2

ajs
+ σ2

ajs
)
,

µθis
=

µα0s + αT
1 Xs + σ2

θ

∑J
j=1 µajs

[
yijs − 1

2 + 2η(ξijs)µbjs

]
1 + 2σ2

θ

∑J
j=1 η(ξijs)(µ2

ajs
+ σ2

ajs
)

;

qajs
(ajs) ∝ expEZ\{ajs} [B(Y , Z)]

∝ expEZ\{ajs}

{
Ns∑
i=1

[(
yijs −

1
2

)
ajsθis − η(ξijs)(ajsθis − bjs)2

]

−
(ajs − γ̄T

j X̃s)2

2σ̄2
aj

− log 1{ajs ≥ 0}
2

}

∼ N+(µ̄ajs
, σ̄2

ajs
),
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where

σ̄2
ajs

=
σ̄2

aj

1 + 2σ̄2
aj

∑Ns
i=1 η(ξijs)(µ2

θis
+ σ2

θis
)
,

µ̄ajs
=

γ̄T
j X̃s + σ̄2

aj

∑Ns
i=1

[
yijs − 1

2 + 2η(ξijs)µbjs

]
µθis

1 + 2σ̄2
aj

∑Ns
i=1 η(ξijs)(µ2

θis
+ σ2

θis
)

,

σ2
ajs

= σ̄2
ajs

1−
µ̄ajs

√
2πσ̄ajs

Φ
(

µ̄ajs

σ̄ajs

) exp
(
−

µ̄2
ajs

2σ̄2
ajs

)
− 1

2π
[
Φ
(

µ̄ajs

σ̄ajs

)]2 exp
(
−

µ̄2
ajs

σ̄2
ajs

) ,

µajs
= µ̄ajs

+
σ̄ajs

√
2πΦ

(
µ̄ajs

σ̄ajs

) exp
(
−

µ̄2
ajs

2σ̄2
ajs

)
;

qbjs
(bjs) ∝ expEZ\{bjs} [B(Y , Z)]

∝ expEZ\{bjs}

{
−

Ns∑
i=1

[(
yijs −

1
2

)
bjs + η(ξijs)(bjs − ajsθis)2

]
−

(bjs − βT
j X̃s)2

2σ2
bj

}

∼ N (µbjs
, σ2

bjs
),

where

σ2
bjs

=
σ2

bj

1 + 2σ2
bj

∑Ns
i=1 η(ξijs)

,

µbjs
=

βT
j X̃s − σ2

bj

∑Ns
i=1

[
yijs − 1

2 − 2η(ξijs)µajs
µθis

]
1 + 2σ2

bj

∑Ns
i=1 η(ξijs)

.

Given the optimal variational distributions derived above and the mean-field

variational assumption, the expectation (i.e., the integral) in Equation (A1) can be
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computed as

Q(Y ) =
S∑

s=1

Ns∑
i=1

J∑
j=1

{
log 1

1 + e−ξijs
+
(

yijs −
1
2

)
(µajs

µθis
− µbjs

)− 1
2ξijs

− η(ξijs)
[
(µ2

ajs
+ σ2

ajs
)(µ2

θis
+ σ2

θis
)− 2µajs

µθis
µbjs

+ µ2
bjs

+ σ2
bjs
− ξ2

ijs

] }

− 1
2

S∑
s=1

{
(Ns + 2J + 1) log 2π +

[
log σ2

α0 +
µ2

α0s
+ σ2

α0s

σ2
α0

]

+
Ns∑
i=1

[
log σ2

θ +
σ2

θis
+ σ2

α0s
+ (µθis

− µα0s −αT
1 Xs)2

σ2
θ

]

+
J∑

j=1

log σ̄2
aj

+
σ2

ajs
+ (µajs

− γ̄T
j X̃s)2

σ̄2
aj

+ 2 log Φ
(

γ̄T
j X̃s

σ̄aj

)
+

J∑
j=1

log σ2
bj

+
σ2

bjs
+ (µbjs

− βT
j X̃s)2

σ2
bj

}.

The objective function with log penalty is

Q′(Y ) = Q(Y )− λ
J∑

j=1
(log σ̄2

aj
+ log σ2

bj
).

By setting the derivative of the objective function with respect to each model parameter to
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be zero, we get the following parameters update rules,

ξ2
ijs = (µ2

ajs
+ σ2

ajs
)(µ2

θis
+ σ2

θis
)− 2µajs

µθis
µbjs

+ µ2
bjs

+ σ2
bjs

,

σ2
α0 = 1

S

S∑
s=1

(σ2
α0s

+ µ2
α0s

),

σ2
θ = 1∑S

s=1 Ns

S∑
s=1

{
Ns

[
σ2

α0s
+ (µα0s + αT

1 Xs)2
]

+
Ns∑
i=1

[
σ2

θis
+ µ2

θis
− 2µθis

(µα0s + αT
1 Xs)

]}
,

α1 =
(

S∑
s=1

Ns

σ2
θ

XsX
T
s

)−1 ( S∑
s=1

∑Ns
i=1 µθis

−Nsµα0s

σ2
θ

Xs

)
,

(γ̄j, σ̄2
aj

) = argmin
(γ̄j ,σ̄2

aj
)

S∑
s=1

log σ̄2
aj

+
σ2

ajs
+ (µajs

− γ̄T
j X̃s)2

σ̄2
aj

+ 2 log Φ
(

γ̄T
j X̃s

σ̄aj

)+ 2λ log σ̄2
aj

,

βj =
(

S∑
s=1

X̃sX̃
T
s

)−1 ( S∑
s=1

µbjs
X̃s

)
,

σ2
bj

= 1
S + 2λ

S∑
s=1

[
σ2

bjs
+ (µbjs

− βT
j X̃s)2

]
.
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