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Abstract. W e present a method for the study of the Krein signature in perturbed Hamil-
tonian integrable systems. The method is developed up to first order in the small param-
eter. W e apply this method to a particular instance of the two-body problem in which the 
semi-major axis is not affected by the perturbation. 
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1. Introduction 

Physical systems described by Hamiltonians of the form 

j > 0 

with 0 < ε <C 1, are frequently found in Celestial Mechanics. The standard 

procedure in stability analysis by Krein signatures is to isolate the integrable 

part, 7^o5 and compute the eigenvalues and eigenvectors of the monodromy 

matrix (Hadjidemetriou, 1982 and 1985; Howard, 1990). However, when the 

monodromy matrix for Tio has eigenvalues ± 1 we need an analysis up to 

ϋ ( ε ) , as in the case of the two-body problem. In this problem we know that 

many Hamiltonian perturbations do not destroy the stability. This fact sug-

gests that this disturbance leaves the eigenvalues unchanged or transports 

them to new positions on the unit circle. Therefore, we can have perturbed 

eigenvalues with the same Krein signatures on the same quadrant of the 

unit circle so that, by Krein's theorem, any new small arbitrary pertur-

bation can not destroy the stability. But, if the perturbed eigenvalues have 

different Krein signatures, then a new small arbitrary perturbation may lead 

to collisions between the eigenvalues, which generates instability. 

In the next section we present a method for such analysis and in section 

3 it is applied to the two-body problem under a particular Hamiltonian 

perturbation. 
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2 . T h e M e t h o d 

Firstly, we consider a integrable Hamiltonian system given by ζ = JDTîq, 

with z G TN χ ΤΖΗ (η is the degree of freedom and T n is η-torus), DHq is 

the Jacobian of Wo, and 

O n In 
^ 1 _ Γ / Ί 

( J n and O n are the η χ η unit and zero matrices, respectively). Allied to 

the above systems we have the variational equation (or tangent map) of the 

form 

ξ = (JD2H0)ZTÇ (2) 

where (D27io)zr is the Hessian of Ho restrict to a r-periodic solution, z T , 

supposing it exists. Therefore we have that (2) is a system of linear differ-

ential equations with r-periodic coefficients, as required by Krein's theory 

(Moser, 1958 ;Yakubovich and Starzhinskii, 1975). 

If z0 = zT(t0) is taking as the initial condition for the integrable problem 

then (see for example Hirsch and Smale, 1975 , chap. 15) a solution of the 

equation (2) is 

* = k · <3) 

Now we considérer a Hamiltonian perturbation given by (1) . The Hamil-

ton's equation are now ζ = JDHo + Y^j>i s^JDHj, with solution of the 

form ζ = ζ ( ί , ζ £ ( ε , ζ 0 , ί ) ) , where z'0 is such that for ε — 0, τ!0 — z0. So we 

have the new variational equations: 

ç= (jD2n0 + Y,£JJD27Îj) ί · ( 4 ) 

Therefore, as in the previous case, z T is a r-periodic solution, not neces-

sarily with the same period of the integrable system. The existence of such 

solution is guaranteed, under some conditions, by Poincare's theorem on the 

families of periodic solutions (Poincaré, 1892, chap 3) . 

So we have that the solution of (4) is (3) , which we can write as 

_ dzT dz'ö 

4 " dz'0dz0' 

Let 

Z ^ X V z ; (5) 

where Zj = Zj(z 0 ,£) with j > 1, then 
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If the condition £(t0) = hn does not verify we can multiply ξ by the 

constant matrix [ξ^ο)]"1. Thus, 

m = am(to)r1 . m 

As the matrizant £' is derived of a Hamiltonian system we have the sym-

pletic condition 

(Ο^ ' = J (8) 

with f stands for transpose. From ( 7 ) and (8) , considering the terms until 

(9(ε) , we have 

j*L+[*L]ij = 0 . (9) 

dz0

 Ldz0

J 

where z[ = ζχ(ϊ) — ζχ(ί0). Therefore, if 

dz[ _ (Ax A2 

dz0 ~ \ A 3 A4 

where Ai (i = 1, · · · , 4) are η χ η matrices, from (9) we obtain 

A4 = - A j , (10a) 

A3 = 4, (106) 

A2 = A \ . (10c) 

Considering terms of order up to ö{e) in (10) and ( 7 ) we have 

where Bj are 2n X 2n matrices. 

Finally, the eigenvalues, λ, and eigenvectors, v , are related by 

£ ' (r )v = λν 

and the Krein signatures associated of the eigenvalue λ is the sign of the 

real number given by indefinite scalar product of the form 

< v , v > = i(Jv,v), (11) 

where i = \ / ~ ï a n d ( > ) * s the usual scalar product. 
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3 . A p p l i c a t i o n 

On two-body problem the solution of Hamilton's equation in action-angle 

variables can be described by Delaunay's variables, here referred as L0% ( Z 0 , 

G0 and H0; i = 1 ,2 ,3)G K3 and l o i (Z0(i), g0 and h0\ i = 1 , 2 , 3 ) 6 T 3 . 

Therefore, by (5) we have that the perturbed variables are 

L{ = Loi + Σ £3LJ^ ( 1 2 α ) 

li = loi + J2£JlJi · (12&) 
i > i 

Here, we are supposing that Li(t) and k(t) belong to a r-periodic solution 

of a perturbed two-body problem. 

Considering (12) up to Ο (ε) and (10) , and supposing a particular case 

where the semi-major axis, a, is not affected by the perturbation (Li — 

L0 + 0(ε2)) we obtain 

/ 

M = 

1 0 0 0 0 0 \ 
εα21 1 + εα22 εα23 0 εα25 εα2β 

εα31 εα32 1 + εα33 0 εα26 εα36 

^ + ε α 4 1 εα±2 ε α 4 3 1 - ε α 2 1 -εα3ι 

ε α 4 2 εα53 0 1 - εα22 - ε α 3 2 

εα43 εα53 
εα63 0 - ε α 2 3 1 - εα33 / 

where the α^· are 

dL\i dL\i f--^o\ 

d L ^ { T ) - d L ^ { t o ) ( ΐ ' ^ 3 ) ' 

d L l i -(r) - # ^ ( * o ) (< < 3 , i > 3) , 
U Ô / 0 ( j _ 3 ) V 7 ^ 0 ( j - 3 ) 

a« = ^ W - ^ W ( « , ; > 3 ) . 
™ 0 ( j - 3 ) < " 0 ( j - 3 ) 

The eigenvalues of £' (r) , calculated with symbolic manipulation program 

Maple 4.2 are 

A l 9 = 1. 
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where f(cxij) and g(ctij) are functions of ct{j(i = 2, · · · , 6 e j = 1, · · · , 6 ) . The 

eigenvalues λχ^ = 1 are due to the invariance of the semi-major axis. 

When f(oiij) and g(&ij) are such that yjf ± yfg are purely imaginary, we 

have λβ,.,.,β on the unit circle (at least up to ö ( £ 2 ) ) . T h u s the correspondent 

indefinite scalar products, (11) , are 

±J\f + Vs\ 
< v 3 , 4 , v 3 , 4 > = ( k { a i j ) ) 2 P ^ a i ^ ( 1 3 a ) 

< v 5 ) 6 , V 5 , 6 > = tu,r»..\\2 P 5 , 6 ( « i j ) (136) 
±^/\f-Vg\ 

( k ' ( a i j ) ) 

where Ρ^...β(α^) are real functions and 

P 3 ,4 = A{aij) ( / + ^g)2 + B(aij) ( / + V ? ) + C(aij) (14a) 

P 5 ( 6 = A(aij) (/ - ^g)2 + B{aii) ( / - y/g) + C ( a i i ) (146) 

Therefore, from (13) and (14) we have that the sign of < V 3 , V3 > and 

< v 5 > v 5 > (^3 and As are in same quadrant) depend on the roots 

- B ± V B 2 - 4 A C 
η · 2 = 2A · 

When only one root, r\ or r 2 , is between ( / — y/g) and ( / + yfg) we have 

λ 3 and λ 5 with different signatures. Unlikely, they have equal signatures. 

In the case that X3 and X5 have different signatures, if a perturbation, 

varying / and g, leaves them to collision (g = 0) then / = r\ or / = r 2 

provided that a eigenvalue X{ with multiplicity 1 (g φ 0) has < v t-, v t- >φ 0 

(Moser, 1958). 

Finally, we can conclude, using the Krein's theorem, that if r\ or r 2 

belongs to the interval ( / — yfg,f + ->/#), then an arbitrary perturbation 

that induces a collision of the X3 and X5 produces instability. Otherwise, 

for ri and r 2 not belonging to the interval, all small perturbations generate 

stability. For the probability of collisions of eigenvalues in the unit circle see 

Howard and Mackay (1987). 
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