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Summary

A method is proposed to infer genetic parameters within a cohort, using data from all individuals

in an experiment. An application is the study of changes in additive genetic variance over

generations, employing data from all generations. Inferences about the genetic variance in a given

generation are based on its marginal posterior distribution, estimated via Markov chain Monte

Carlo methods. As defined, the additive genetic variance within the group is directly related to the

amount of selection response to be expected if parents are chosen within the group. Results from a

simulated selection experiment are used to illustrate properties of the method. Four sets of data

are analysed: directional selection with and without environmental trend, and random selection,

with and without environmental trend. In all cases, posterior credibility intervals of size 95%

assign relatively high density to values of the additive genetic variance and heritability in the

neighbourhood of the true values. Properties and generalizations of the method are discussed.

1. Introduction

A seemingly unresolved problem in experimental

quantitative genetics is as follows. Consider a selection

experiment, or a livestock breeding programme,

spanning several generations. How does one infer the

genetic variance, the heritability, or any other genetic

parameter of interest at any given generation (other

than the initial generation) making use of all the data

available?

A feature of most data sets collected from breeding

programmes, or from designed selection experiments,

is that not all individuals from a given generation are

allowed to reproduce, thus leading to ‘missing data’

in some statistical sense. This problem has been

studied from several perspectives, because such miss-

ing data are prevalent in genetic analysis. Pioneering

work in genetics on inferences about parameters in

populations undergoing selection has been that of

Henderson et al. (1959) and of Curnow (1961). These
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authors did not make formal use of missing data

theory, as developed by Rubin (1976) and Little

(1976). Since then, there has been a growing literature

on the analysis of missing or incomplete data, because

this is a pervasive problem in survey sampling and in

clinical trials. Reviews in the statistical literature up to

the mid-1980s are in Little & Rubin (1987) and in

Rubin (1987). Some of these ideas were introduced in

animal breeding by Im et al. (1989). However, the

topic of inferences under artificial selection continues

to be of major interest in animal breeding and

genetics, where considerable literature on the subject

exists, from several different perspectives. A review

can be found in Gianola et al. (1989). Gianola &

Fernando (1986) proposed a Bayesian solution for a

certain class of selection problems, where ‘missing-

ness ’ is ignorable, and Fernando & Gianola (1990)

discussed it in detail. Sorensen et al. (1994) described

how a Bayesian implementation via Markov chain

Monte Carlo methods could be used to estimate the

posterior distributions of base population parameters

and of measures of the effectiveness of selection under

ignorable ‘missingness ’. An application to a selection

experiment for increased litter size in pigs is in Wang

et al. (1994).
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In this work, a method is presented to infer the

dynamics of genetic variance in the course of artificial

selection. The approach is based on estimating the

posterior distribution of the variance of additive

genetic values at any point in time using the entire

data. The paper is organized as follows. First, since

problems related to inferences about parameters using

selected data are central to the topic, conditions for

ignorability of selection are briefly reviewed. Second,

the logical basis of the procedure is developed,

followed by a description of the model and of the

inferential method. Third, results from a simulation

study are presented, where it is shown that the method

yields posterior distributions that cover well the true

values of the desired variances. Generalizations and

limitations of the approach are discussed in a

concluding section.

2. Ignorable selection

Inferences drawn using the method proposed in this

paper are valid only if it can be established that

selection is ignorable. Here, a result in Gianola &

Fernando (1986) is used, but a different (and more

general) derivation is presented. Suppose that selection

is based on a random vector z, and that a discrete

random variable s(z), which we term the selection

function, takes one of S disjoint values, leading to

mutually exclusive and potentially observed data y
i

(i¯1, 2,…,S ). Each of these data vectors y
i
comprises

the records that would be observed if a specific set of

animals is selected, e.g. to produce additional records

or to become parents of the following generation. For

example, suppose that one of two cows is to be chosen

to produce a second lactation record, based on first

lactation yield. Let y
jk

denote record k of cow j ( j¯
1, 2). Here z¯ [y

""
, y

#"
]«. If y

""
" y

#"
, the additional

record observed is y
"#

and s(z)¯1, leading to y
"
¯

[y
""

, y
#"

, y
"#

]«. Conversely, if y
""

% y
#"

, the additional

observation is y
##

, with s(z)¯ 2 and y
#
¯ [y

""
, y

#"
,

y
##

]«. Hence, the sample space of the discrete random

variable s (z) represents all possible patterns (‘breeding

designs ’), and the selection process amounts to

choosing one among all possible patterns. More

generally, s(z) may pertain to ‘breeding designs ’ in a

multi-generation selection experiment. The random

variable s (z) has an associated probability distribution

indexed by parameters }. These parameters are related

to the selection process but are not necessarily of

scientific interest.

The observed data vector is y
i
, and these records are

used to infer a vector of parameters λ
i
; the parameter

vector is data-specific, because, for example, unknown

breeding values of individuals associated with y
"
, say,

will be different from those associated with y
#
. In the

absence of selection, inferences are based on the

posterior distribution of λ
i
, with density p(λ

i
ry

i
).

Under selection, the posterior density of λ
i
and } is

proportional to:

p
sel

(λ
i
,} r y

i
)£ p(λ

i
,}) 3

S

j="

p(y
j
, s(z)¯ j rλ

j
,}) δ(i®j). (1)

In (1), p(λ
i
,}) is the joint prior density of λ

i
and }, and

δ(0)¯1 (that is, when s(z)¯ i and breeding design i is

chosen) and 0 for any other δ. This yields :

p
sel

(λ
i
,} r y

i
)£ p(λ

i
,}) p(y

i
, s(z)¯ i rλ

i
,})

¯ p(λ
i
,}) p(y

i
rλ

i
) Pr[s(z)¯ i r y

i
,λ

i
,}].

The posterior density of λ
i
is obtained integrating }

out:

p
sel

(λ r y
i
)£ p(y

i
rλ

i
)& p(λ

i
,}) Pr[s(z)¯ i r y

i
,λ

i
}] d}.

(2)

The following two conditions are sufficient for

ignorability of selection for Bayesian inference:

1. The distributions of λ
i

and } are a priori

independent.

2. Conditionally on the observed data y
i

the

probability of choosing design i does not depend

on the parameters to be inferred, λ
i
, so that

Pr[s(z)¯ i r y
i
,λ

i
}]¯Pr[s(z)¯ i r y

i
,}].

If these two conditions are satisfied, (2) can be written

as:

p
sel

(λ
i
, r y

i
)£ p(y

i
rλ

i
) p(λ

i
)& p(}) Pr[s(z)¯ i r y

i
,}] d}

£ p(λ
i
r y

i
).

In this case the Bayesian analysis proceeds in the usual

manner, as though selection had not taken place. The

second condition is satisfied:

E when selection is at random, in which case the

probability distribution of the selection function

s(z) does not depend on λ
i
(or on y

i
) ;

E under data-based selection (all the data or the

relevant subset of it used to make selection

decisions is included in the analysis). In this case,

Pr[s(z)¯ i rλ
i
,}, y

i
]¯1, a degenerate distri-

bution (a constant) ;

E there are cases when selection is based on a

variable w, not included in y
i
. Here, selection will

be ignorable only if Pr[s(w)¯ i rλ
i
,}, y

i
]¯

Pr[s(w)¯ i r}, y
i
] ; that is, when the distribution

of w, given the observed data y
i
, is independent

of λ
i
.

3. Model and method of inference

(i) Bayesian structure

The method used to infer the evolution of genetic

parameters during the course of a genetic experiment

is illustrated using a single-trait model, assuming that
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selection is ignorable in the preceding sense. Extension

to multiple traits is straightforward. It is assumed

that, conditionally on a vector of location parameters

θ, of order (p­q)¬1, the sampling distribution of the

n¬1 data vector y is the Gaussian process :

y r θ,σ#
e
CN(Wθ, Iσ#

e
), (3)

where W is a known incidence matrix, θ is a location

vector, I is an identity matrix and σ#
e

is a residual,

strictly positive, component of variance. Partition the

location parameters as θ«¯ (b«, a«), where b has order

p¬1 and contains parameters whose assigned prior

distribution is a p-dimensional hyper-cube in the

domain b
min

, b
max

, with boundaries chosen appro-

priately. The vector a, of order q¬1, contains additive

genetic values whose prior distribution is assumed to

be multivariate normal, that is :

a rA,σ#
a
CN(0,Aσ#

a
). (4)

In (4), A is a known additive genetic relationship

matrix among the q additive genetic values, and σ#
a

is

the unknown additive genetic variance. In this context

σ#
a
is interpreted as the additive genetic variance in the

base population from which individuals are randomly

sampled at the onset of the selection process.

The unknown variance components are assigned

independent (a priori) scaled inverted chi-square prior

distributions:

σ#
i
r ν

i
,S

i
CS

i
χ−#
vi

, i¯ e, a, (5)

where ν
i
and S

i
are known hyperparameters specifying

the form of the distribution. An improper uniform

distribution can be retrieved from (5) by setting ν
i

¯®2 and S
i
¯ 0.

Drawing Bayesian inferences about parameters of

the probability model characterized by (3), (4) and (5)

is well established in quantitative genetics, and a

Markov chain Monte Carlo (MCMC) implementation

can be found, for example, in Sorensen et al. (1994).

(ii) Genetic considerations

As discussed earlier, it is assumed that the data y

accrue sequentially in time. At time 1, say, an arbitrary

group of individuals is randomly drawn from some

population. These individuals constitute a represen-

tative sample of all possible individuals born in

generation 1. Within the individuals sampled, a

fraction is chosen, either randomly or selectively (on

the basis of their phenotypic values or of any function

thereof), and allowed to reproduce, and a second

generation of individuals is produced. Phenotypic

records of non-parents are kept in the data. This

process is repeated in each generation of offspring. As

phenotypic records of individuals that do not con-

tribute offspring are always kept in the data set, this

satisfies the requirements for ignorability of selection,

as discussed in the preceding section. Therefore,

Bayesian inference about any function of the para-

meters can be drawn ignoring the selection process

entirely.

The genetic model adopted is one of infinitesimally

small, additive effects. In short, breeding values are

postulated to stem from the sum of effects of alleles at

an infinite number of loci, with each of the allelic

contributions being infinitesimally small. The term

Aσ#
a
in (4) is the covariance matrix of the distribution

of the vector of additive genetic values, for a fixed

pedigree structure. Let p(a) represent the probability

density function of a. Then, by definition:

Var(a rA)¯& aa«p(a) da®0 & a p(a) da1 0 & a«p(a) da1
¯Aσ#

a
. (6)

The term σ#
a
is a parameter of the marginal distribution

of the scalar variable a
i
, the ith element of a, which is

the additive genetic value of an individual drawn at

random from the population in question, such that :

Var(a
i
rA

ii
)¯& a#

i
p(a

i
) da

i
®9 & a

i
p(a

i
) da

i:#
¯ (1­F

i
)σ#

a
, (7)

where F
i
is the inbreeding coefficient of an individual

in the ith position in a, and A
ii

is the ith diagonal

element of A.

Consider a group or cohort consisting of a finite

number of individuals. For example, the group could

be composed of individuals born in a given generation,

say t. Here, an experiment proceeding over time is

envisaged, and suppose one is interested in charac-

terizing the additive genetic variance of a breeding

value randomly sampled at generation t. This variance

will be denoted by σ#(t)

a
and the group size by n

t
. The

additive genetic value of an individual sampled from

generation t, a
t
, is a random variable taking n

t
possible

values, each with probability 1}n
t
. By definition, the

variance of a
t
is :

σ#(t)

a
¯E(a#

t
)®[E(a

t
)]#

¯
1

n
t

3
nt

i="

a#
i(t)

®(aa
(t)

)#, (8)

where aa
(t)

¯E(a
t
)¯ "

nt

Σnt
i="

a
i(t)

and a
i(t)

is the ith additive

genetic value in group t.

It is important to emphasize the conceptual

difference between (8) and σ#
a
in (6) or (7). In the case

of (8), the variance pertains to the distribution of a
t
,

conditionally on the particular realization of the n
t

additive genetic values of individuals in the cohort.

The stochastic element here is associated with the

random choice of a particular additive genetic value.

This variance is directly related to the amount of

genetic variability available for selection when choos-

ing among these n
t
additive genetic values. As shown

in Appendix A, the variance defined by (8) corresponds
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to twice the covariance between a randomly chosen

parent from generation t and its offspring. On the

other hand, in (7), the variance is computed for a

particular element i of the randomly sampled a, for a

given pedigree. Contrary to (8), i in (7) is fixed and the

vector of additive genetic values varies from sample to

sample. For example, a Monte Carlo estimate of (7)

would involve sampling repeatedly the q additive

genetic values, conditionally on the pedigree relation-

ship, and then computing the sample variance of a
i

from the realized values at position i.

(iii) Implementation

Since the additive genetic values a
i(t)

are not observed,

in order to learn about σ#(t)

a
from data y, use is made

of the Bayesian paradigm to construct the marginal

posterior distribution of [σ#(t)

a
r y], that is, the dis-

tribution of σ#(t)

a
conditionally on the entire data y.

Because selection is ignorable, the posterior dis-

tribution of interest is as in the absence of selection.

This distribution is not in a recognizable form, but it

can be estimated via a Bayesian MCMC approach.

Here, Gibbs sampling is used because all conditional

posterior distributions are recognizable. The scheme

operates as follows: (8) is computed in each iteration,

substituting a
i(t)

, i¯1, 2,…, n
t

by the Monte Carlo

draws obtained from the fully conditional posterior

distribution of each a
i(t)

. The Monte Carlo estimate of

[σ#(t)

a
r y] can be computed by iterating on the following

Gibbs sampling loop:

E Sample θ«¯ (b«, a«) from N (θ# ,C−"σ#
e
), where

C¯ [W«W­Σ] ;Σ¯ 900
0

A−"k: ;k¯σ#
e
}σ#

a

and [W«W­Σ] θ# ¯W«y.

E Sample σ#
i

from Sh
i
χ−#

νh
i

, i¯ e, a

where

νh
e
¯ n­ν

e
; νh

a
¯ q­ν

a
;Sh

e
¯ (y®Wθ)« (y®Wθ)}νh

e
;

Sh
a
¯ a«A−"a}νh

a
.

E Compute σ#(t)

a
¯ "

nt

Σnt
i="

a#
i(t)

®(aa
(t)

)#, where a
i
is an

appropriate element of θ sampled above.

E Update and return to first step. Repeat as

needed to meet requirements of convergence

diagnostics and to attain a high enough Monte

Carlo precision.

This is illustrated below using simulated data

mimicking a typical laboratory genetic experiment.

4. Simulation study

(i) Design and assumptions

The method proposed is illustrated using simulated

experiments which generated four sets of data as

explained below, without attending here to issues

related to optimality of designs. Each experiment

consisted of a single line monitored over 21

generations. In the first experiment, labelled as

‘Random line’, generation 1 was formed by sampling

200 males and 200 females at random from a

conceptual base population. From these, 10 males and

10 females were randomly sampled and mated to

produce 200 male and 200 female offspring. These

progeny constituted generation 2. This random selec-

tion and mating procedure was repeated 20 times,

leading to 8400 records spread over 21 non-over-

lapping generations.

The second experiment, labelled as ‘Selected line’

and which was independent of the first, differed only

in that the 10 males and 10 females chosen as parents

were those having the largest phenotypic values.

Selected males and females were mated randomly to

produce offspring. As with the Random line, this was

repeated 20 times, leading, again, to 8400 records

spread over 21 non-overlapping generations.

For the 400 records of generation 1, in each of the

two lines, additive genetic values and environmental

deviates were sampled independently from (also

independent) normal distributions with mean zero

and variances σ#
a
¯10 and σ#

e
¯10, respectively, so

heritability (h#) was "

#
. In subsequent generations,

additive genetic values were drawn from a normal

distribution, with mean equal to the average additive

genetic values of the parents of the individual in

question, and with variance equal to "

#
σ#

a
(1®Fa ), where

σ#
a

is the base population genetic variance, and F- is

average inbreeding coefficient of the parents of the

individual. Under the infinitesimal model, the seg-

regation variance is not affected by selection.

In both the Random line and the Selected line, a

phenotypic record was generated by summing the

additive genetic value and the residual deviate. There

was no environmental trend (or other nuisance

location parameters) built in the simulations which

generated these two data sets. The mean phenotypic

value in the Random line was approximately zero in

all generations. In order to study the performance of

the proposed method in the presence of environmental

trend, two additional data sets were generated as

follows. Phenotypic records of the Random and

Selected lines without environmental trend were added

an increasing amount of 2±5 units, starting in

generation 2. Thus in the Random line with en-

vironmental trend, the phenotypic mean at generation

21 was approximately equal to 50 units. Since this is

of about the same magnitude as the total selection

response obtained in the Selected line, the phenotypic

mean of the latter with environmental trend was

approximately 100 units. In summary, four sets of

data were created: two Random lines with and without

environmental trend, respectively, and two Selected
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Table 1. Random line. A�erage inbreeding (Fa
t
), additi�e genetic �ariance

(σ#(t)

a
) and heritability (h#(t)) by generation, and MCMC estimates of

within-generation posterior means of additi�e genetic �ariances (EW (σ#(t)

a
r

y)) and heritability (EW (h#(t) r y). Posterior standard de�iations of additi�e

genetic �ariance and heritability are in parentheses

Generation (t)

5 10 15 20

Fa
t

0±058 0±152 0±228 0±317

σ#(t)

a
8±69 8±47 5±08 5±78

EW (σ#(t)

a
r y) ®ET 8±25 (0±710) 8±63 (0±751) 4±93 (0±549) 5±96 (0±615)

­ET 8±43 (0±733) 8±55 (0±773) 5±39 (0±582) 5±62 (0±640)
h#(t) 0±46 0±46 0±34 0±37

EW (h#(t) r y) ®ET 0±45 (0±029) 0±46 (0±029) 0±32 (0±029) 0±36 (0±028)
­ET 0±46 (0±031) 0±45 (0±031) 0±35 (0±032) 0±35 (0±031)

®ET (­ET ) : model without (with) environmental trend.

lines with and without environmental trend, respect-

ively. The structure of the two sets of data within

Random and Selected lines is identical.

(ii) Model for analysis

The data were analysed according to the model

specified in (3), (4) and (5). In the absence of

environmental trend, b in (3) is a scalar ; otherwise it

contains 20 elements representing the environmental

effects peculiar to each generation. The additive

genetic variances at intermediate generations were

computed as described in Section 3(iii).

(iii) Inferences and interpretation

In the Random and Selected lines, inferences were

drawn about the base population additive genetic

variance (parameter σ#
a
in (6) and (7)) and heritability,

and about the additive genetic variance (the random

variable σ#(t)

a
defined in (8)) and heritability at

generations 5, 10, 15 and 20. The base population

additive genetic variance, σ#
a
, was inferred using

established methods, i.e. Sorensen et al. (1994). The

additive genetic variance (σ#(t)

a
) and heritability (h#(t)

¯σ#(t)

a
}(σ#(t)

a
­σ#

e
)) at intermediate generations were

inferred using the proposed method.

Results from these experiments are interpreted in

the light of well-established quantitative genetic

theory. With random mating, under the infinitesimal

model, the additive genetic variance within a line

declines as a consequence of inbreeding and of the

correlation between additive genetic values that

develops as family structure builds up. Additional

positive or negative changes in additive genetic

variance within the line may result from chance

fluctuations in linkage disequilibrium (Avery & Hill,

0.1 0.2 0.3 0.4

Fig. 1. Histogram of [h#(#!)ry], Selected line, with an
overlaid normal distribution.

1978). In conceptual replications of the experiment,

the expected within-line additive genetic variance at

generation t,σ#(t)

a
, is approximately equal to σ#

a
(1®Fa

t
),

where Fa
t

is the average inbreeding coefficient in

generation t (the exact expression is
σ#
a

nt

tr[(I® "
nt

J)A
t
],

where I is an identity matrix, J is a square matrix of

dimension n
t
with all elements equal to 1, and A

t
is the

numerator relationship matrix between the n
t
additive

genetic values at generation t). In the Selected line, the

same type of forces operate, but there is an additional

reduction in additive genetic variance due to the

generation of negative linkage (or joint) disequi-

librium, the so-called Bulmer effect (Bulmer, 1971).

Several simulation experiments in the literature have

yielded results in agreement with these theoretical

expectations, including Robertson (1977), Sorensen &

Kennedy (1984) and Van der Werf & de Boer (1990).

(iv) Results

Results for the two Random lines are displayed in

Table 1. The figures illustrate the decline in ‘true’
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Table 2. Selected line. A�erage inbreeding (Fa
t
), additi�e genetic �ariance

(σ#(t)

a
) and heritability (h#(t)) by generation, and MCMC estimates of

within-generation posterior means of additi�e genetic �ariances (EW (σ#(t)

a
r

y)) and heritability (EW (h#(t) r y). Posterior standard de�iations of additi�e

genetic �ariance and heritability are in parentheses

Generation (t)

5 10 15 20

Fa
t

0±214 0±313 0±478 0±565

σ#(t)

a
6±37 5±63 3±77 3±18

EW (σ#(t)

a
r y) ®ET 6±79 (0±543) 5±52 (0±464) 3±60 (0±316) 2±94 (0±285)

­ET 6±02 (0±644) 5±99 (0±554) 3±87 (0±380) 3±27 (0±325)

h#(t) 0±39 0±36 0±27 0±24
EW (h#(t) r y) ®ET 0±40 (0±021) 0±36 (0±020) 0±26 (0±018) 0±22 (0±018)

­ET 0±38 (0±029) 0±38 (0±028) 0±29 (0±024) 0±25 (0±023)

®ET (­ET ) : model without (with) environmental trend.

additive genetic variance and heritability (from basal

levels of σ#
a
¯10 and h#¯ "

#
, respectively) under the

infinitesimal model. As pointed out earlier, this is a

result of the build up of covariances among additive

genetic values, and of inbreeding. Also, results reflect

random departures, peculiar to this line, from expec-

tations over conceptual repeated sampling (Avery &

Hill, 1978). The posterior distributions of σ#(t)

a
and of

h#(t) were well approximated by a normal distribution

(not presented) and therefore only posterior standard

deviations are shown. The Monte Carlo estimates of

the mean, standard deviation, and of the 95%

posterior intervals of the posterior distributions of

σ#(t)

a
and of h#(t) (mean³1±96 posterior standard

deviations) indicate very good coverage of the true

additive genetic variance and heritability at each of

the generations monitored. This holds also for the line

in which there is environmental trend. Here, as

expected, the posterior standard deviation is a little

larger than in the line without environmental trend. In

short, the trajectories of additive genetic variance and

of heritability under random selection with or without

environmental trend are inferred correctly using the

method proposed.

Results for the two Selected lines are shown in

Table 2. As expected, inbreeding developed at a faster

rate, and the additive genetic variance and heritability

fell more rapidly in the Selected than in the Random

line. Part of the extra decline in additive genetic

variance and heritability is due to the Bulmer effect.

As for the Random line, the trajectories of genetic

variance and heritability in the course of selection

(with or without environmental trend) were captured

well by the proposed Bayesian method. The difference

in posterior uncertainty with and without environ-

mental trend is considerably larger under directional

selection than under random selection.

As was the case with the Random lines, the posterior

probability intervals were symmetric, which was

confirmed graphically. To illustrate, a histogram of

the posterior distribution of heritability at generation

20 from the Selected line without environmental trend

is shown in Fig. 1, overlaid against a normal

distribution fit based on the posterior mean and

variance. Departures from normality seemed neg-

ligible despite the fact that only 10 pairs of parents

contributed offspring to the next generation. A very

similar pattern but with larger variation was obtained

from the Selected line with environmental trend (not

shown).

The estimate of the posterior mean of the base

population additive genetic variance in the Random

line without environmental trend was 9±58, and the

posterior standard deviation was 0±99. With environ-

mental trend, the posterior mean and standard

deviation were 10±72 and 1±06, respectively. Cor-

responding values for the Selected line without

environmental trend were 9±80 and 0±45 and with

environmental trend 9±67 and 0±81. The posterior

intervals assign relatively high density to values of the

additive genetic variance in the neighbourhood of the

true value of 10. As was the case with the additive

variance at intermediate generations, the fall in

precision of inferences about the base population

additive genetic variance in the presence of environ-

mental trend is relatively larger in the Selected lines

than in the Random lines.

A comparison of these measures of spread and

those in Tables 1 and 2, indicates that posterior

inferences about additive genetic variance and heri-

tability in the base population (or in any of the

generations monitored) were sharper in the Selected

than in the Random line. This is because the variance

of the posterior distribution of additive genetic
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variance decreases as the correlation among the

additive genetic values increases. With the type of

selection practised, this correlation is lower under

random mating, and thus the posterior variance is

higher in the Random line. This is discussed in

Appendix B. On the other hand, the posterior variance

of genetic means increases as additive genetic values

become more correlated (Sorensen et al., 1994).

5. Discussion

A method for inferring the variance within an

arbitrarily defined group of individuals that makes use

of all data (that is, observations from other groups are

also used in the analysis) was presented and evaluated.

In a genetic context, the group is usually composed of

individuals belonging to a certain generation or time

period. Hence, the method can be used to study how

genetic variance evolves during the course of a

selection experiment. As defined, the additive genetic

variance within the group is directly related to the

amount of selection response to be expected if parents

are chosen within that group. A genetic model of

infinitesimally additive effects was posited, and the

validity of the results presented here rests on this

assumption. In order to study the evolution of genetic

variance under other forms of gene action, or if a finite

number of loci is assumed, the same conceptual

framework applies. However, the form of the joint

posterior distribution would differ as well as, possibly,

the implementation. Clearly, if an additive model is to

be used, this must be done after it has been found to

be more plausible than competing models relying on

different genetic assumptions. This process of model

comparison would benefit from the presence of a

control line. Techniques for model selection are not

dealt with in this paper.

The method can be extended in a straightforward

manner to infer genetic covariances or correlations at

given time periods, provided that selection is ignorable.

This would require computing, for example:

Cov(a
i
, a

j
)(t) ¯

1

n
t

3
k

a
k,i(t)

a
k,j(t)

®(aa
i(t)

, aa
j(t)

)

rather than (8), for additive genetic values of traits i

and j in group t.

Inferences about heritability pertaining to inter-

mediate generations of a selection experiment can be

drawn using offspring–mid-parent regressions. This is

a form of inference based on the conditional dis-

tribution of offspring means, given the means of the

parental phenotypic values. That is, to infer heri-

tability at generation t, say, data from generations t

and t­1 only are used, in contrast to the proposed

method, which uses all data available. The posterior

uncertainty about heritability derived from offspring–

parent regressions is inversely proportional to the

variance among parents. If these are selected, resulting

in reduced parental variation, inferences using this

simple method will tend to be very imprecise. This was

examined in the Random and Selected lines (without

environmental trend) at generations 5, 10, 15 and 20.

If non-informative priors are used, the posterior

distribution of heritability is a truncated-t in the

interval (0,1) (Box and Tiao, 1973) ; the degrees of

freedom are the number of pairs of parents, minus 2.

We drew 30000 samples from this distribution using

the method of composition (Tanner, 1996). Results

indicated clearly that the method can be extremely

imprecise. For example, in the Random line at

generation 20, the 2±5 and 97±5 percentiles of the

posterior distribution of heritability were 0±18 and

0±63, respectively. In the Selected line, the respective

values were 0±03 and 0±98. For this setting, the

regression procedure is worthless, and much sharper

inferences can be obtained with the proposed Bayesian

method (Tables 1, 2).

A more elaborate approach was proposed by

Sorensen & Kennedy (1984) using a likelihood-type

estimator. In their study, individuals of the generation

whose variance was of interest (the base individuals)

were treated as unrelated, and data from earlier

generations were omitted from the analysis. Simu-

lation experiments suggested that their method

retrieved estimates of the additive genetic variance

that were in good agreement with the true variance,

on average. In a later study, Van der Werf & de Boer

(1990) found the agreement to be less satisfactory,

however. The ad hoc method lacks the formal

theoretical foundation of the present approach, and

does not make use of all the data available.

A model to study the evolution of genetic para-

meters with selection was presented by Beniwal et al.

(1992) and by Heath et al. (1995). In this model the

conditional additive genetic variance of the offspring,

given the parents, changes with time. Estimation of

these additive genetic variances at each generation can

disclose whether predictions based on the infinitesimal

model hold; the latter assumes that this Mendelian

sampling variance remains constant throughout the

selection process, after accounting for inbreeding. The

model proposed by these authors is different from the

one presented here, both statistically and genetically.

It is different statistically because the variances at each

generation are parameters and, as such, are part of a

likelihood equation. In the method presented here, the

genetic variance within a cohort is a random variable,

and it is therefore not part of a likelihood equation. It

is different genetically, because in the model of Beniwal

et al. (1992), the variances inferred are Mendelian

sampling variances, whereas those inferred with the

proposed method represent the variances available for

selection within the group in question. Of course in

principle the method proposed here could also be used
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with the model proposed by Beniwal et al. (1992). It

would yield a Monte Carlo estimate of the posterior

distribution of the variance available for selection in

the group, under the model posed.

The performance of the new method was illustrated

doing the analysis within the randomly selected line or

within the directionally selected line. While a single

selected line does not necessarily constitute a good

design to infer genetic parameters, especially in the

presence of environmental trend, the selected line may

be all that there is available to draw inferences. It was

shown that even in this unfavourable situation, the

proposed method can give a very adequate picture of

the variance at a particular generation. Often a

selection experiment comprises data from both a

selected and a control line started from a common

base population. The new method can be used to do

a joint analysis using data from both lines. To

illustrate, the additive genetic variance at generations

5, 10, 15 and 20 was inferred in the Selected line,

making use of data from both the Selected and the

Random line, resulting in 16800 records. In the

absence of environmental trend, the mean of the

posterior distribution of the additive genetic variance

(posterior standard deviation) in the Selected line at

generations 5, 10, 15 and 20, was 6±75 (0±53), 5±47

(0±45), 3±64 (0±32) and 2±91 (0±27), respectively. A

comparison with the results using data from the

Selected line only in Table 2 (–ET ), shows that the

gain in efficiency from the extra data is relatively

modest. In the presence of environmental trend, the

corresponding figures are 6±72 (0±56), 5±43 (0±47), 3±57

(0±33) and 2±98 (0±29) ; the gain in efficiency is

considerably more pronounced (compare with results

in Table 2, (­ET )).

The method proposed was formulated within the

Bayesian framework, using a MCMC sampling

scheme; this gives a simple solution. A relevant

question is whether a satisfactory non-Bayesian

alternative exists. From a sampling theory point of

view, any function of the additive genetic variance at

time t, as defined here, is an unobservable random

variable. Hence it is natural to infer this variable from

its conditional distribution, given the data.

Specifically, we are interested in the conditional

distribution of the random variable :

σ#(t)

a
¯

1

n
t

3
nt

i="

a#
i(t)

®(aa
(t)

)#,

given the observations. This conditional distribution

is also a posterior distribution (given the data, the

fixed effects and the dispersion components), so it is

unaffected by ignorable selection, as discussed earlier.

As in the Bayesian setting, the density of the target

distribution cannot be derived in closed form, and

depends on unknown parameters, that is, the fixed

effects and the variance components. However, if one

replaces such parameters by, for example, maximum

likelihood estimates, it is possible to estimate the

conditional distribution of σ#(t)

a
using MCMC

methods. The difference compared with the Bayesian

approach is that the frequentist parameters would not

be involved (updated) in the sampling procedure.

Conceptually, one draws m samples from the con-

ditional distribution:

a r b,σ#
a
,σ#

e
, yCN90Z«Z­A−"

σ#
e

σ#
a

1−"

¬Z«(y®Xb), 0Z«Z­A−"
σ#

e

σ#
a

1−"σ#
e:,

either directly, if feasible, or using MCMC otherwise.

From the sampled a, and for each sample k (k¯1, 2,

…,m), one stores the subvector of breeding values at

generation t, a
(t)

, and forms:

²σ#(t)

a
´[k] ¯

1

n
t

9a!
(t)

a
(t)

®
(1«a

(t)
)#

n
t

:[k] ;k¯1, 2,…,m.

Thus, ²σ#(t)

a
´[k] is a draw from the conditional dis-

tribution σ#(t)

a
r b,σ#

a
,σ#

e
, y. From the collection of

draws, the desired conditional distribution can be

estimated, given values of b,σ#
a
,σ#

e
. If a point predictor

of the random variable σ#(t)

a
is sought, one can follow

Henderson (1973, 1975), and use the best predictor in

the mean squared error sense, that is, the conditional

mean. Alternative point predictors are the conditional

median (minimizing the expected value of the absolute

error of prediction) or the conditional mode. The

conditional mean can be expressed analytically as :

E[σ#(t)

a
r b,σ#

a
,σ#

e
, y]¯

1

n
t

E90a(t)
®1

(1«a
(t)

)

n
t

1
«

¬ 0a(t)
®1

(1«a
(t)

)

n
t

1:
¯

1

n
t

E9a!
(t) 0I®J

n
t

1 a
(t):

¯
1

n
t

(a# !(t) 0I®J

n
t

1 a#
(t)

­tr90I®J

n
t

1
¬Var(a

(t)
r b,σ#

a
,σ#

e
, y):*,

where 1 is an n
t
times 1 vector of ones, J is an n

t
times

n
t
matrix of ones,

a#
(t)

¯E(a
(t)

r b,σ#
a
,σ#

e
, y)

is an appropriate subvector of

0Z«Z­A−"
σ#

e

σ#
a

1−"Z«(y®Xb)

and Var(a
(t)

r b,σ#
a
,σ#

e
, y) is an appropriate submatrix

of (Z«Z­A−"
σ#
e

σ#
a

)−"σ#
e
. Analytical calculation of the

best predictor requires computing the inverse of the

part of the mixed model equations pertaining to the
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additive genetic values only. This can be avoided

using a MCMC approximation to Var(a
(t)

r b,σ#
a
,σ#

e
,

y). Clearly, knowledge of b,σ#
a
,σ#

e
(base population

parameters) is needed for constructing the conditional

distribution, and for deriving a suitable point pre-

dictor. If maximum likelihood estimates are used, this

frequentist approach does not take into account the

uncertainty in the estimation of these parameters.

An alternative frequentist approach would be to

infer the variance at time t, from its conditional

distribution given a vector v of n®rank(X) linearly

independent ‘error contrasts ’, in the REML sense.

Conceptually, one would draw samples of a from the

conditional distribution:

a rσ#
a
,σ#

e
, vCN 90Z«MZ­A−"

σ#
e

σ#
a

1−"

¬Z«My, 0Z«MZ­A−"
σ#

e

σ#
a

1−"σ#
e:

and form the corresponding draws from the con-

ditional distribution of σ#(t)

a
, as before. Above, M¯

I®X(X«X)−"X« is the usual projection matrix. This

sampling procedure permits estimating the entire

conditional distribution. Analytically, the conditional

mean is :

E[σ#(t)

a
rσ#

a
,σ#

e
, v]¯

1

n
t

(a# !(t) 0I®J

n
t

1 a#
(t)

­tr 90I®J

n
t

1Var(a
(t)

rσ#
a
,σ#

e
, v):*,

where now, a#
(t)

¯E(a
(t)

rσ#
a
,σ#

e
, v) is an appropriate

subvector of

0Z«MZ­A−"
σ#

e

σ#
a

1−"Z«My

and Var(a
(t)

rσ#
a
,σ#

e
, v) is an appropriate submatrix of

0Z«MZ­A−"
σ#

e

σ#
a

1−"σ#
e
.

This ad hoc method eliminates the requirement of

having to specify values of the fixed effects (elimination

of nuisance parameters), but still depends on knowl-

edge of the variance components of the base popu-

lation, which must be estimated by some method (e.g.

REML). If such estimates are used in lieu of the true

variance parameters, the method does not take into

account their error of estimation, as in the case of

maximum likelihood. It should be noted that this

second frequentist method also has a Bayesian

interpretation, because the conditional distribution a

rσ#
a
,σ#

e
, v is identical to the posterior distribution a rσ#

a
,

σ#
e
, y obtained by integrating the joint posterior

distribution a, b rσ#
a
,σ#

e
, y with respect to b in a

Bayesian probability model, where b is assigned a flat

(improper) distribution (Gianola & Fernando, 1986).

It is not obvious which of the two frequentist

methods, i.e. infer σ#(t)

a
from an estimated conditional

distribution using maximum likelihood versus re-

stricted maximum likelihood estimates of the base

population parameters, has better repeated sampling

properties. It is even less obvious whether a better

method (with respect to some loss function) exists, in

which case neither of the two frequentist point

predictors would be admissible (Gianola, 1990).

Contrary to the self-contained fully Bayesian ap-

proach, no account is taken of the uncertainty

associated with estimates of the base population

parameters (heritability, residual variance and fixed

effects in an univariate model). Depending on the

dimension of the problem at hand, the frequentist

approaches may be computationally less time-con-

suming than the fully Bayesian solution, in which case

they may be used for approximate inferences. How-

ever, their inability to account for uncertainty of

estimates can be a potentially serious problem in a

highly parameterized, multi-trait model.

It can not be overemphasized that the method

proposed here works provided selection is ignorable,

as discussed earlier. When this is not the case, but

something is known about the form in which selection

alters the data-generating mechanism, attempts should

be made to incorporate such knowledge in the

modelling process. Otherwise, inferences are liable to

be distorted.

Appendix A. The covariance between a randomly

chosen parent at generation t and its offspring is

equal to 1
2σ

2(t)
a

It is shown that the covariance between a randomly

chosen parent from generation t and its offspring is
"

#
σ#(t)

a
, where σ#(t)

a
is the variance of the additive genetic

values of the individuals in generation t.

It is assumed that the trait is additive and that

parents are randomly sampled from generation t.

Without loss of generality, it is supposed that the trait

is controlled by only two loci. The paternal and

maternal alleles at locus l(l¯1, 2) are denoted as pl

i

and ml

i
. For simplicity non-genetic effects on pheno-

typic values will be ignored.

The phenotypic value of individual i in generation t

can be written as:

y
i
¯µ­α

p
"
i

­α
m

"
i

­β
p
#
i

­β
m

#
i

­e
i
, (A1)

where µ is the phenotypic mean in generation 0, α
p
"
i

and α
m

"
i

are the additive effects at the first locus, and

β
p
#
i

and β
m

#
i

are the additive effects at the second locus,

defined using the genetic frequencies in generation 0,

and e
i

is an independently distributed residual. In

generation 0, the additive effects have null expec-

tations. With selection, the expected values of additive

effects will not be null but, in all generations, e
i
will
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have null expectations and are assumed to be

uncorrelated with all other effects. Covariances be-

tween additive effects within and across loci are not

null because parents are sampled from a finite

population and, also, because of selection. Let a
i
be

the sum of the additive effects of individual i. Then the

variance of a
i
is :

Var(a
i
)¯Var(α

p
"
i
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). (A2)

Suppose i is the father of j. Then, because of random

mating, the alleles of maternal origin received by j are

uncorrelated with those of i. This will be true even in

a finite population as long as the parents of j are

mated at random. Further, by assumption, the

residuals of i and j are uncorrelated. Thus, the

covariance between phenotypic values i and j is :
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i
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) (A3).

Because i is the father of j, the set of paternal alleles

(p"
j
, p#

j
) of j is a copy of one of the four sets (p"

i
, p#

i
), (p"

i
,

m#
i
), (m"

i
, p#

i
) or (m"

i
,m#

i
) of i. Let the value of the

random variable Z indicate the set of alleles j received

from i. For example, when j receives (p"
i
,m#

i
) from i, Z

will be equal to 2. Using Z, the above covariance can

be written as:

Cov(y
i
, y

i
)¯E[Cov(y

i
, y

j
) rZ ]

­Cov[E(y
i
rZ ),E(y

j
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The second term of (A4) is null because the expected

value of y
i
(or of y

j
) does not depend on Z. Now, when

Z¯1, p"
j
¯ p"

i
and p#

j
¯ p#

i
. It follows that :

Cov(y
i
, y

j
rZ¯1)¯Var(α

p
"
i

)­Cov(α
p
"
i

,α
m

"
i

)

­Cov(α
p
"
i

,β
p
#
i

)­Cov(α
p
"
i

,β
m

#
i

)

­Cov(β
p
#
i

,α
p
"
i

)­Cov(β
p
#
i

,α
m

"
i

)

­Var(β
m

#
i

)­Cov(β
p
#
i

,β
m

#
i

). (A5)

Note that the first line of (A5) is identical to the first

line of (A2), and the second line of (A5) is identical to

the third line of (A2). The first line of (A2) is the sum

of the covariances of α
p
"
i

with itself and with the effects

of the remaining alleles. The second line of (A2) is the

sum of the covariances of α
m

"
i

with itself and with the

effects of the remaining alleles. In a purebred

population, the paternal and maternal alleles are

identically distributed. Therefore, the sum of the

covariances of line 1 of (A2) is equal to the sum of the

covariances on line 2. Similarly, the sum of the

covariances on line 3 of (A2) is equal to the sum of the

covariances on line 4. Thus, (A5)¯ "

#
Var(a

i
). When Z

¯ 2, p"
j
¯ p"

i
and p#

j
¯m#

i
. So, Cov(y

i
, y

j
rZ¯ 2) is

equal to the sum of the covariances on lines 1 and 4,

and this is equal to "

#
Var(a

i
). Similarly, Cov(y

i
, y

j
rZ¯

k)¯ "

#
Var(a

i
) for k¯ 3, 4. Therefore the first term of

(A4) is "

#
Var(a

i
), from which it follows that the

covariance between a randomly chosen parent from

generation t and its offspring is "

#
σ#(t)

a
.

Appendix B. The posterior variance of σ2(t)
a as a

function of the posterior correlation between breeding

values

If a random vector a is distributed as aCN(µ,V), and

Q is a known square matrix, the quadratic form a«Qa

has variance (Searle, 1971) :

Var(a«Qa)¯ 2tr(QV)#­4µ«QVQµ. (B1)

Assume location and the dispersion parameters of

the base population to be known. Then, the posterior

distribution of the breeding values is multivariate

normal, with mean vector µ and covariance matrix V,

say. The relationship between the variance of σ#(t)

a
and

the posterior correlation between breeding values is

illustrated first in a simple situation and, subsequently,

in a slightly more general setting.

Suppose that at generation t there are two indi-

viduals, with breeding values a
"

and a
#
, respectively.

Then:

σ#(t)

a
¯

1

4
(a

"
®a

#
)#,

which is a quadratic form on the two breeding values.

Using (B1), the posterior variance of σ#(t)

a
is :
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If µ
"
¯µ

#
, the second term to the right of the equals

sign vanishes. Now,

Var(a
"
®a

#
)¯Var(a

"
)­Var(a

#
)

®2ρoVar(a
"
)Var(a

#
),

where ρ is the posterior correlation between breeding

values. In the course of directional selection, the

breeding values become less dispersed, their posterior

correlation increases, and Var(a
"
®a

#
) decreases ; the

increase in correlation is slower under random

selection. Hence, (B2) decreases as ρ increases from 0

to 1. In the limit, when ρ¯1 (fixation), Var(a
"
)¯

Var(a
#
), so Var(a

"
®a

#
)¯ 0, and, consequently,

Var[σ#(t)

a
]¯ 0.
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A slightly more general situation follows. Given the

location and dispersion parameters (of the base

population), let the breeding values at generation t

have the posterior distribution a
t
CN(µ

t
,V

t
). Then:

σ#(t)

a
¯

1

n
t

3
nt

i="

a#
i(t)

®(aa
(t)

)#¯
1

n
t

(a
t
®1aa

t
)«(a

t
®1aa

t
)

¯
1

n
t

a!
t
Ma

t
, (B3)

where 1 is a vector of ones, and M¯ I® "
nt

J is a

projection matrix (idempotent), with J being an n
t
¬n

t

matrix of ones. If µ
t
¯1µ

t
, that is, if all breeding

values of individuals in generation t have the same

posterior expectation, then, a posteriori, from (B1)

one can write :

Var(σ#(t)

a
)¯ 201n

t

1#tr(MV
t
)#

¯ 20s#n
t

1#tr(MRMR), (B4)

where it is assumed that breeding values at generation

t have the same posterior variance (s#) and posterior

correlation matrix R, with constant coefficient of

correlation ρ in all its off-diagonal elements. As the

posterior correlation between breeding values goes to

zero (representing the situation before selection, if a

sample of unrelated animals is drawn), RU I (identity

matrix), so tr (MRMR)U tr(M)¯ n
t
®1. Likewise, s#

Uσ#
a
, the base population (or prior) variance. Hence:

lim
ρU

!

Var(σ#(t)

a
)¯

2σ%
a
(n

t
®1)

n#
t

.

As data accrue and selection proceeds, RUJ (matrix

of ones) because breeding values become inter-

correlated, so tr (MRMR)U tr (MJMJ)¯ 0. Further,

in a Gaussian model, s#%σ#
a
, necessarily, as Bayesian

learning always reduces variance. Hence:

lim
ρU

"

Var(σ#(t)

a
)¯ 0.

However, the trajectory of Var(σ#(t)

a
) as ρ increases is

not trivial. For this specific set of assumptions

(common posterior variance, equi-correlation) con-

sider (B4). Note that :

tr(MRMR)¯ tr(R#)®
2

n
t

tr(JR#)­
1

n#
t

tr(JRJR). (B5)

After algebra, (B5) can be written as:

tr(MRMR)¯ n
t
[1­(n

t
®1) ρ#]®[1­(n

t
®1) ρ]#.

Using this in (B4) :

Var(σ#(t)

a
)¯ 20s#n

t

1#(nt
®1) (1®ρ#). (B6)

The relationship between Var(σ#(t)

a
) and ρ is not

explicit because the posterior variance of breeding

values (s#) depends on ρ as well. Typically, in a

Gaussian linear model such as the one employed here,

s# is an increasing function of ρ, but the relationship

depends on the data structure and the degree of

relatedness between relatives (through the matrix A).

For example, suppose that the available information

consists of phenotypic records on two related indi-

viduals, having an additive relationship equal to a
"#

.

Using standard theory, and assuming a known mean

(0) and that the residual variance is equal to 1, the

posterior covariance matrix between breeding values

a
"

and a
#

is equal to:

[I­A−"]−"¯
1®a#

"#

(1®a#

"#
­α)#®a#

"#
α

¬91®a#

"#
­α

a
"#

α

a
"#

α

1®a#

"#
­α: ,

where α¯ "−h
#

h
#

. The posterior correlation is then:

ρ¯
a
"#

α

1®a#

"#
­α

going to 1 as a
"#

U 1. The posterior variance of any of

the two breeding values is expressible as :

s#¯
α−"®α−"a#

"#

α−"®a
"#

ρ
,

this being an increasing function of ρ. However, the

dependence can be mild, as a
"#

ρ may be negligible

relative to α−", especially for traits of moderate to high

heritability and with a sparse relationship structure.

This indicates that if the posterior variance of the

breeding values is mildly dependent on ρ, the posterior

variance of Var(σ#(t)

a
) will decrease with directional

selection, as it is a decreasing function of ρ. This result

should not be construed as general because, in less

stylized settings, the necessary expressions cannot be

obtained in closed form.
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