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Abstract
The structure of space–time is examined by extending the standard Lorentz connection
group to its complex covering group, operating on a 16-dimensional “spinor” frame.
A Hamiltonian variation principle is used to derive the field equations for the spinor
connection. The result is a complete set of field equations which allow the sources of
the gravitational and electromagnetic fields, and the intrinsic spin of a particle, to appear
as a manifestation of the space–time structure. A cosmological solution and a simple
particle solution are examined. Further extensions to the connection group are proposed.
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1. Introduction

The geometric structure of space–time has long been regarded as settled by general
relativity: a four-dimensional pseudo-Riemannian manifold with signature 3+1,
equipped with appropriate field equations. Connection and parallel displacement have
played a comparatively minor role in this development. The significance of affine
connection for space–time geometry was recognized quite early by Weyl [13], but
the development of the theory remained largely unaffected by it. Among the few
attempts to attribute a greater independent role to affine connection perhaps the best
known is the Palatini [8] suggestion (see also Schrödinger [10, Chapter 12]) to treat
affine connection as the fundamental field quantity of the geometry and to derive its
relation to the (nonsymmetric) metric tensor from a variation principle. The pseudo-
Riemannian character of space–time appears somewhat artificially however, through a
metric tensor supplied by the symmetric part of the Ricci tensor.

In more recent times there has been renewed interest in affine connections with
torsion, notably in the U4 theory of Sciama [11], Kibble [4] and Hehl et al. [3].
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144 G. Szekeres and L. Peters [2]

The appearance of torsion in the connection is motivated by physical rather than
geometrical necessity: the spin angular momentum tensor of the matter field generates
torsion and through it spin itself becomes the source of the gravitational field. The
electromagnetic field forms no part of the affine connection and U4 theory makes no
claim to be a “unified” field theory. The principal gain derived from the theory is
that it definitively establishes the form in which torsion and spin angular momentum
must appear in both the gravitational equations and in Dirac’s equation. There is an
excellent account of that theory in [3], including an extensive list of references.

Our purpose here is to examine the structure of space–time from a predominantly
geometric point of view. In spite of the remarkable success of general relativity as a
physical theory, Einstein’s model of space–time is not wholly satisfactory. The field
equations of nonempty space–time require a matter tensor which is not an inherent
part of the geometric structure but injected from the outside so to speak into the
geometrical framework. In this respect we are no better off than in Newton–Galilei
space–time where the geometric structure is also a mere framework for the phenomena
of the physical world. The gravitational field itself appears as a curious hybrid between
“geometry” and “matter”.

A second, even more disturbing shortcoming of the Einstein model is that the
group of connection of the underlying pseudo-Riemannian manifold is the real pseudo-
orthogonal group with signature 3+1 (the Lorentz group) and therefore inherently
incapable of accommodating particles with spin as manifestations of the space–time
structure. For that we need (at least) the covering group of the Lorentz group L,
that is, the complex spin representation of L, as the group of connection. The
ensuing geometrical structure is of course far more complex than a pseudo-Riemannian
geometry, but the return is also far greater. In carrying out the program we need
to work with complex representation spaces upon which the spin representation can
act. As a result, two distinct types of field quantities will appear in the description
of the geometry. The first are structure entities, that is, complex-valued fields over a
base manifold M with appropriate tensorial properties with respect to certain abstract
spaces. The second are proper geometric quantities, that is, real fields with tensorial
properties with respect to the underlying 4-manifold M (the space-like manifold) with
coordinates xµ, µ= 1, 2, 3, 4 in some local neighbourhood of M. Only the geometric
quantities will represent physically observable entities.

As it turns out, quantities of the first type (the structure entities) are not really
tensor fields in the ordinary sense but classes of equivalent tensor fields which,
however, produce the same real tensor fields in the underlying space–time manifold.
No individually selected representation of the equivalence class can therefore be
considered as an “observable” field quantity. A good analogue is the electromagnetic
potential in Maxwell’s theory which is only defined modulo an arbitrary gradient field.

Two fibre bundles over M will describe the structure entities: one termed the
“metric bundle” (Section 2) which serves as a messenger between structure and
geometry (and on the way supplies the pseudo-Riemannian metric tensor for M),
and the “spinor bundle” (Section 3) which carries the spin representation of an
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[3] Space–time structure and spinor geometry 145

appropriate extension of L. The first of these replaces Einstein’s Vierbein device using
Minkowski’s representation of the Lorentz group with three real space coordinates
and one imaginary time coordinate. The second bundle is a spinor version of the
Vierbein, namely a tetrad of orthonormal Dirac spinor fields which arise naturally in
this representation of spinors by a method that goes back to Eddington [2]. The fibres
of this bundle will be an equivalence class of fibres.

The quantities which describe spinor connection (Section 4), when converted
into real geometric fields, represent both the electromagnetic field and a form of
Hehl’s torsion field. The physical role of these tensor fields emerges when we
postulate a variation principle in Section 5 which supplies the field equations of the
geometry. Dirac’s equation (in a general relativistic form) appears as a constraint in
the Hamiltonian of the variation integral, and a Lagrangian factor in the constraint
(actually, its reciprocal) can be interpreted as “cosmic time” which, contrary to the
usual coordinate time, is here a scalar physical quantity.

The theory is “unified” in so far as it provides the sources of the electromagnetic
and gravitational fields, as well as being able to represent particles with spin. A
further interesting result is that separate equations arise for the material and intensity
components of the electromagnetic field, compared to the classical Maxwell equations
where these components are not separated.

Finally, we provide here just two simple examples of the types of solutions possible.
In Section 6 we describe a cosmological solution to the field equations with a
Robertson–Walker line element and nonzero spinor field tetrad, corresponding to the
Einstein–de Sitter model.

In Section 7 we describe one of the simplest possible elementary particle solutions,
namely, a neutral spherical symmetric (spinless) solution with mass. Whether or not
this represents a real particle, it is illustrative in that the spinor and gravitational fields
generate an internal structure which is highly nontrivial. Of further interest is the
fact that the magnitude of the spinor field, and hence the mass, is “quantized” by the
requirement that the solution be singularity-free.

The example solutions presented here are torsion-free; however, more complex
particle solutions have also been examined by the authors [9]. These include a
spherically symmetric charged particle (“meson-like”), an axially symmetric charged
particle with spin (“electron-like”), and a magnetic monopole particle with charge.
These solutions illustrate how charge and spin arise naturally from the geometry, but
have required extensive computer-based numerical integration and the results are not
reproduced here.

Lynch, an early collaborator with Szekeres, has also explored particle solutions
using this type of approach and has attempted to make more definite identifications
with known particles. (See [7] for an electron/positron solution and [6] for a neutrino
solution.)

The discussion throughout is in an explicit coordinatized (nonaxiomatic) form, in
the spirit of Descartes rather than that of Hilbert.
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2. The metric bundle

To describe the metric (or Vierbein) bundle we introduce the symbols

j1 = j2 = j3 = i, j4 = 1

and define εn = j2
n , so that

ε1 = ε2 = ε3 =−1, ε4 = 1.

The Minkowski representation space of the Lorentz group L≡ O+(3, 1) can then
be described as a 4-vector space V with elements ν = (ν1, ν2, ν3, ν4) with reality
conditions jnνn real, n = 1, 2, 3, 4. The effect of σ ∈L upon ν ∈ V is then
described by

(σv)m =

4∑
n=1

Mmnνn,

where M = (Mmn) is a complex orthogonal matrix satisfying∑
k

Mmk Mnk =
∑

k

Mkm Mkn = δmn (the Kronecker symbol)

with reality conditions jm jn Mmn real, det M = 1.
The advantage of using the Minkowski instead of the standard Lorentz

representation of L is that there is no need to distinguish (in terms of components)
between vectors and their duals: the action of σ ∈L upon u∗ = (un) ∈ V∗ (the dual
space of V ) is

(u∗σ−1)n =
∑

k

uk M̆kn =
∑

k

Mnkuk, (M̆kn)= M−1.

The inner product (u∗, v)=
∑

n unvn is invariant under the action of L and will be
denoted (u, v)= unvn . We have used here the summation convention for repeated
Roman indices, even though both appear in the lower position (they always will
be). This summation convention will be used forthwith, except in conjunction with
the symbols jn , εn (such as stating reality condition for vectors or matrices). It is
understood that k, l, m, n, p, q and so on run from 1 to 4. Later on the Roman suffices
a, b, c, will also appear; they will run from 0 to 5.

The fibre of the metric (or Vierbein) bundle is expressed now by the matrix (gnµ),
1≤ n, µ≤ 4 where the index n indicates that for fixed µ, (gnµ) is a vector in V and for
fixed n, (gnµ) is a covector with respect to a change of coordinates in the underlying
base manifold M, that is, gnµ transforms into gnµ∂xµ/∂xν . We assume that

g
=
= i det(gnµ) 6= 0.

Clearly g
=

is real and transforms into g
=
∂(x)/∂(y) under a change of coordinates in M.

Hence g
=

is what Weyl and Schrödinger call a density over M, the first instance of a

real geometric quantity. Under a transformation of the basis in V by (Mmn), g
=

gets

multiplied by det M = 1, that is, g
=

is invariant with respect to the choice of basis in V.
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[5] Space–time structure and spinor geometry 147

We shall refer to such transformations of the V-base as anholonomic transformations;
true M-vectors and tensors must be invariant to them.

Our second example of a real tensor field over M is

gµν = gmµgmν = gνµ

which is a real symmetric covariant tensor of rank two. Here g = (gnµ) can be
interpreted as a nonsingular linear mapping from the tangent vector space at p ∈M
to V and vice versa. It converts complex vectors in V into real tangent vectors in M.
Associated with g is a dual mapping

g∗ = (gµn ), jngµn real

from the cotangent vector space at p to V with the property that

gµm gmν = δ
µ
ν , gµm gnµ = δmn

that is, (gµm) is the inverse of the matrix (gmµ). Here of course the Einstein summation
convention on repeated upper and lower Greek indices is used and the equations
express the fact that (gmµ), µ= 1, 2, 3, 4, represents a Vierbein of four orthonormal
vectors over M.

One feature of the metric bundle g = (gmµ) is that its components are not uniquely
determined by gµν . In fact if M(x)= (Mmn(x)) is a field of Minkowski orthogonal
matrices (with the appropriate reality conditions) then g∗mµ = (Mmngnµ) is equivalent
to gnµ in the sense that it produces the same metric tensor and density g

=
. We shall

refer to such a Minkowski transformation as a reorientation of the Vierbein frame and
we may regard the fibre of the metric bundle as the equivalence class of the (gnµ)

under reorientation.
We conclude this section with a remark on the space W of skew tensors generated

by the wedge products u ∧ v of vectors in V which will play an important part in the
following sections. If w = (wmn) ∈W then wnm =−wmn with the reality conditions
jm jnwmn real. The effect of σ ∈L on w is

(σwσ−1)mn = Mmp Mnqwpq .

3. The spinor bundle

A spinor tetrad has an obvious representation by means of 4× 4 complex matrices
in which each column represents a Dirac spin vector. To express the relevant algebraic
transformation properties of the tetrad it is more convenient to use an alternative model
which goes back to Eddington (see also Benn [1]) and which utilizes the equivalence
of 4× 4 matrices and a 16-dimensional complex Clifford algebra � with identity
element I .

To obtain a convenient vector basis for � we introduce the Dirac symbols
01, 02, 03, 04 satisfying

0m0n + 0n0m = 2δmn I.
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We also introduce the 15 symbols 0ab =−0ba , 0≤ a < b ≤ 5, by

00m =−0m0 = 0m, 005 =−050 =−01020304,

0ab =−0ba =−i00a00b 0≤ a < b ≤ 5,

with multiplication rules

0ab0ab = I, 0ba =−0ab,

0ab0ac = i0bc a 6= b 6= c 6= a,
0ab0cd0e f = I (abcde f ) an even permutation of (012345).

(3.1)

See Appendix B for a correspondence between the Dirac gamma matrices and
elements of the 0ab.

These multiplication rules can be concisely expressed by

0ab0cd = (δacδbd − δadδbc)I + 1
2 Eabcde f 0e f

+ i(δac0bd + δbd0ac − δad0bc − δbc0ad).

I and the 0ab form a complex vector space over C for �, and every ω ∈� has a
unique representation

ω = α I + 1
2γab0ab, α, γab ∈ C, γba =−γab.

The algebra� is equipped with an involutary anti-isomorphism † :�→� with the
following properties

(ω†)† = ω, (ω1 + ω2)
†
= ω

†
1 + ω

†
2, (ω1ω2)

†
= ω

†
2ω

†
1

(cω)† = c∗ω† c ∈ C, c∗ the complex conjugate.
(3.2)

To express the † mapping in terms of the 0ab we first define the complex conjugate of
ω = α I + (1/2)γab0ab as ω∗ = α∗ I + (1/2)γ ∗ab0ab and set

ω†
= 004ω

∗004. (3.3)

With this definition, the properties (3.2) readily follow from (3.1). We call ω†

the adjoint of ω ∈�, and ω is said to be self-adjoint if ω†
= ω, and skew-adjoint if

ω†
=−ω. The self-adjoint elements of � form a 16-dimensional real vector space

spanned by I and the elements

ja jb0ab 0≤ a < b ≤ 5

(no summation for the symbols ja), where

j0 = 1, j1 = j2 = j3 = i, j4 = 1, j5 = i.

The skew-adjoint elements

i

2
ja jb0ab, 0≤ a < b ≤ 5 (3.4)
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[7] Space–time structure and spinor geometry 149

form the basis of a 15-dimensional Lie algebra k under the usual Lie product, [A, B] =
AB − B A, isomorphic to the Lie algebra of a six-dimensional proper pseudo-
orthogonal group with signature (+,−,−,−,+,−). The Lie group K generated
by k is the covering group of this pseudo-orthogonal group; indeed exp(2π(i/2)0mn)

for 1≤ m < n ≤ 4 and exp(2π(i/2)005) are both −I , not I .
Since the elements of k are skew-adjoint it follows that σ †

= σ−1, for all σ ∈K .
Extending the basis (3.4) by i I we obtain a 16-dimensional Lie algebra k0 and a
Lie group K0 which will ultimately serve as the group of spinor connection of the
geometry.

The elements
i

2
jm jn0mn, 1≤ m ≤ n ≤ 4 (3.5)

span a six-dimensional Lie subalgebra l of k, generating the covering group L̂ of the
proper Lorentz group L.

Under conjugation by elements of L̂, � as a complex vector space is the direct sum
of five invariant subspaces

�I , � Î , �V , �V̂ , �W

of complex dimensions one, one, four, four, six respectively, and spanned by the
following basis elements of �:

�I : {I }, � Î : {005},

�V : {0n5}, 1≤ n ≤ 4, �V̂ : {00n}, 1≤ n ≤ 4,

�W : {0mn}, 1≤ m < n ≤ 4.

This is easily seen by conjugating with the infinitesimal generators of L̂, using the
commutator rules:

[�W , �W ] =�W , [�V , �W ] =�V , [�V̂ , �W ] =�V̂ , [� Î , �W ] = 0.

The rest of the commutator rules (easily checked) are:

[�V , �V ] =�W , [�V̂ , �V̂ ] =�W , [�V�V̂ ] =� Î ,

[� Î , �V ] =�V̂ , [� Î , �V̂ ] =�V .

In particular, �0 =�I ⊕� Î ⊕�W is an eight-dimensional (associative)
subalgebra over C with centre �I ⊕� Î , and the Lie group L̂ lies in �0. More
specifically, it lies in the eight-dimensional subalgebra over R spanned by the
elements I , i005, i jm jn0mn , 1≤ m ≤ 4.

The algebra � admits L̂ as a group of operators, the action of σ ∈ L̂ on ω ∈�
being the ring product σωσ−1, and

�=�I ⊕� Î ⊕�V ⊕�V̂ ⊕�W (3.6)
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is a decomposition into irreducibles under this action. To express the action in
coordinatized form, let us define the R-linear mappings

φV : V→�V , φV̂ : V̂→�V̂ , φW :W→�W ,

by
φVu = un0n5, φV̂v = vn00n, φWw =

1
2wmn0mn,

where u ∈ V, v ∈ V̂, w ∈W . Then for σ ∈ L̂

σ(φVu)σ−1
= φV(σ̄u), σ (φV̂v)σ

−1
= φV̂(vσ̄

−1),

σ (φWw)σ
−1
= φW (σ̄wσ̄

−1),
(3.7)

where on the left we have ring multiplication in �, and on the right σ̄ denotes the map
of σ in L. Indeed if

σ = exp
(

i

4
Pmn0mn

)
, jm jn Pmn real,

and if M = exp(P), M = (Mmn), P = (Pmn), then M is orthogonal with jm jn Mmn
real, and we have to verify

σ
(
vn00n + un0n5 +

1
2wmn0mn

)
σ−1

= (Mnpvp)00n + (Mnpu p)0n5 +
1
2 (Mmp Mnqwpq)0mn. (3.8)

It is sufficient to check (3.8) for infinitesimal operators σ = I + (i/4)εPmn0mn
using (3.1).
� as a complex vector space also admits L̂, and in fact the whole of �, as a left

operator. Denote by �l this 16-dimensional (left) representation space, the action
ω ∈� on ψ ∈�l being the ring product ωψ . Similarly, define�r , the complex vector
space � with � as a right operator domain. The action of ω ∈� upon ψ†

∈�r is the
ring product ψ†ω† where ω† is the adjoint of ω.

The dagger mapping is now extended to

† :�l
→�r and † :�r

→�l

according to the definition
ψ†
= ψ∗ 004,

where ψ∗ is the Hermitian conjugate of ψ . Note that for ω ∈�, ψ ∈�l we have

(ωψ)† = ψ†ω† but (ψω)† = ω∗ψ†.

Next we define an inner product 〈ψ1ψ2〉 for ψ1, ψ2 ∈�
l . Denote by qs(ω) the

I -component of ω in the decomposition (3.6), that is

qs
(
α I + 1

2γab0ab
)
= α.
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[9] Space–time structure and spinor geometry 151

The notation comes from the fact that the 0ab have a trace-free standard matrix
representation (see Appendix A). Now define the inner product

〈ψ1ψ2〉 = qs(ψ†
1ψ2). (3.9)

This inner product has the obvious properties

〈(ψ1 + ψ2)ψ〉 = 〈ψ1ψ〉 + 〈ψ2ψ〉, 〈ψ(ψ1 + ψ2)〉 = 〈ψψ1〉 + 〈ψψ2〉,

〈ψ1(cψ2)〉 = c〈ψ1ψ2〉 = 〈(c
∗ψ1)ψ2〉,

〈ψ2ψ1〉 = 〈ψ1ψ2〉
∗, 〈ψ1(ωψ2)〉 = 〈(ω

†ψ1)ψ2〉,

for any ψ, ψ1, ψ2 ∈�
l , ω ∈�. The last expression will be denoted 〈ψ1ωψ2〉. Note

that 〈ψωψ〉 is real if ω is self-adjoint, and imaginary if ω is anti-adjoint. Also note
that if σ ∈K then

〈(σψ1)(σψ2)〉 = 〈ψ1σ
−1σψ2〉 = 〈ψ1ψ2〉,

that is, the inner product is invariant under the action of K .
In (3.7) we have established, through the φ-mappings, an association between

vectors of V, V̂, or W and elements of �. The mappings were expressed in terms
of the components of vectors, therefore the resulting elements of � depended on
the orthonormal basis in V. If this basis is changed by the transformation σ ∈L,
the elements ω ∈� associated with u, v, w by means of (3.7) transform into
σωσ−1. Consequently ψ ∈�l must transform into σψ , and ψ†

∈�r into ψ†σ †
=

ψ†σ−1. This association of the anholonomic Vierbein frame transformations with
“spinor frame transformations” ψ→ σψ achieves that inner products 〈ψ1ωψ2〉 are
independent of the basis of the anholonomic coordinates.

We are now in the position to define spinor tetrads. First note that �l decomposes
into the 4 minimal left ideals,

�l
=�(++) ⊕�(+−) ⊕�(−+) ⊕�(−−), (3.10)

where for η =±, ζ =±, each �(ηζ ) is spanned by

Y (ηζ )1 =
1
4 (001 + iη015 + iζ002 − ηζ025),

Y (ηζ )2 =
1
4 (003 + iη035 − ζ045 + iηζ004),

Y (ηζ )3 =
1
4 (023 + η014 + iζ031 + iηζ024),

Y (ηζ )4 =
1
4 (012 + η034 − ζ I − ηζ005).

A multiplication table for the 0abYm is given in Appendix C. It can be easily verified
that the ideals �(ηζ ) are mutually orthogonal under the inner product (3.9).

A Dirac spinor ψ (ηζ ) is an element of one of these ideals, and for fixed η and ζ

ψ (ηζ ) = u(ηζ )n Y (ηζ )n (summing for n)

where u(ηζ )n is a complex function on M.
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Dirac spinors are complex 4-vectors and with this basis have the representation:

ψ++ =


0 u1 −u1 0
0 u2 −u2 0
0 u3 −u3 0
0 u4 −u4 0

 , ψ+− =


0 u1 u1 0
0 u2 u2 0
0 u3 u3 0
0 u4 u4 0

 ,

ψ−+ =


u1 0 0 u1
u2 0 0 u2
u3 0 0 u3
u4 0 0 u4

 , ψ−− =


u1 0 0 −u1
u2 0 0 −u2
u3 0 0 −u3
u4 0 0 −u4

 ,
with each un = u(ηζ )n ∈ C.

A spinor tetrad ψ is simply an element of �l . It is uniquely written as the sum of
the four Dirac spinors

ψ =
∑
ηζ

ψ (ηζ ) =
∑
ηζ

u(ηζ )n Y (ηζ )n . (3.11)

If ψ is given by (3.11), and

φ =
∑
ηζ

v(ηζ )n Y (ηζ )n each vn = v
(ηζ )
n ∈ C,

then

〈ψφ〉 =
i

4

∑
ηζ

η(u∗1v3 − u∗3v1 + u∗2v4 − u∗4v2).

In particular,

|ψ |2 ≡ 〈ψ004ψ〉 =
1
4

∑
ηζ

∑
n

∣∣u(ηζ )n

∣∣2. (3.12)

A table of all relevant inner products is given in Appendix D.
The decomposition (3.10) into minimal left ideals is of course not unique, not even

if orthogonality of the members is required. A right transformation ψ→ ψτ by some
invertible element τ ∈� carries the decomposition (3.10) into a new one provided that
〈(ψ1τ)(ψ2τ)〉 = 〈ψ1ψ2〉, for all ψ1, ψ2 ∈�

l . This will be so if τ is unitary, that is, if
ττ (∗) = 1.

The transformations
τ = eiλ005 λ ∈ R (3.13)

form a subgroup H of unitary transformations, and have the effect of multiplying ψ
by a phase factor eiηλ.

Finally, we note for later reference that

ψ (ηζ )005 = ηψ
(ηζ ), ψ (ηζ )012 =−ζψ

(ηζ ), ψ (ηζ )034 =−ηζψ
(ηζ ), (3.14)

hence the ideals of the decomposition admit multiplication from the right by 005, 012
and 034.
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TABLE 1. Possible charge and spin properties for various types of spinor field tetrad combinations.

Ideals Charge Spin Form of the tetrad

4 Neutral Spinless ψ = ψ++ + ψ+− + ψ−+ + ψ−−

2 Positive Spinless ψ = ψ++ + ψ+−

Negative Spinless ψ = ψ−+ + ψ−−

2 Neutral Spinless ψ = ψ++ + ψ−−

Neutral Spinless ψ = ψ−+ + ψ+−

2 Neutral Up ψ = ψ++ + ψ−+

Neutral Down ψ = ψ+− + ψ−−

1 Positive Up ψ = ψ++

Negative Up ψ = ψ−+

1 Positive Down ψ = ψ+−

Negative Down ψ = ψ−−

Considering now just the action of 005 (whose connection field we will later
associate with the electromagnetic field), the fact that two of the ideals receive a
phase factor of the opposite sign means that both neutral and oppositely charged
pair solutions can arise from a single geometry. For example, a 2-ideal solution
can be used to give the oppositely charged pair ψ = ψ++ + ψ+− (ψ005 = ψ) and
ψ = ψ−+ + ψ−− (ψ005 =−ψ).

We note also that spin-up/spin-down pairs can be constructed from 1-ideal or
2-ideal combinations. In an appropriate coordinate system, the z-component of
the spin angular momentum operator Jz =−i h̄(∂/∂φ)+ (h̄/2)012. Provided the
coefficients un have the appropriate eiφ factor, and using Appendix C, we can achieve
Jzψ = (h̄/2)ψ (spin-up) from ψ = ψ++ + ψ−+, and Jzψ =−(h̄/2)ψ (spin-down)
from ψ = ψ+− + ψ−−. Similarly for the 1-ideal tetrads ψ = ψη+ and ψ = ψη− for
fixed η.

The possible charge and spin properties for various types of spinor field tetrad
combinations are listed in Table 1. Note that either a 4-ideal or 2-ideal tetrad could be
used for a neutral, spinless solution.

4. Spinor connection

Under parallel displacement of a spinor tetrad, both a left and right connection
group are admitted. For the left connection group we take not just the covering group L̂
of the Lorentz group, but the full conformal group which is � itself. We therefore
admit the infinitesimal transformations

i

4
jm jn0mn 1≤ m < n ≤ 4,

i

2
jn005 1≤ n ≤ 4,

1
2

jn0n5 1≤ n ≤ 4,
1
2
005,

(4.1)

in the virtual displacement of the spinor field.

https://doi.org/10.1017/S1446181109000108 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000108


154 G. Szekeres and L. Peters [12]

It is important to note that the only transformations of the connection group �
that are assumed to have real counterparts are those of the reorientation group L̂, due
to its linkage with the Vierbein frame. (See an earlier paper by Szekeres [12] for a
description of the problems that one otherwise encounters.) In particular, we do not
admit transformations of the left connection group that would lead to nonmetricity of
the generated 4-vector covariant derivative. See Leuhr et al. [5] for a classification
of general spinor connections and their resulting 4-vector connections, indicating that
transformations (4.1) may still not be the most general, even allowing for the metricity
constraint.

For the right connection group we take the one-parameter Lie group of unitary
transformations H with Lie algebra generator i005 defined in (3.13). We will see
that this introduces a four-potential that can be identified with the electromagnetic
potential.

From (3.14), the right connection group could be extended to include the generators
i012 and i034, in fact the full eight-parameter group SU(3), which could then possibly
represent the potentials of the “strong” and “weak” forces. For simplicity, this
extension is not considered here. See [6] for an example of the use of this extension to
represent the strong charge.

The simplification of the field equations that results from ignoring these extensions
will not however affect the two simple solutions presented in Sections 6 and 7.

Accordingly, the covariant derivative of a spinor field tetrad is given by

ψ/µ = ψ,µ −
i

4
Smnµ0mnψ −

i

2
Bnµ00nψ −

1
2

Cnµ0n5ψ

−
1
2

Hµ005ψ −
i

2
Kµψ005, (4.2)

where for fixed m and n, jm jn Smnµ, jn Bnµ, jnCnµ, Hµ, Kµ are real, Snmµ =−Smnµ
and ψ,µ stands for ∂µψ = ∂ψ/∂xµ.

For the adjoint tetrad we have

ψ
†
/µ = ψ

†
,µ +

i

4
Smnµψ

†0mn +
i

2
Bnµψ

†00n

+
1
2

Cnµψ
†0n5 +

1
2

Hµψ
†005 +

i

2
Kµ005ψ

†.

Spin curvature tensors are obtained from

ψ/µ/ν − ψ/ν/µ = −
i

4
Rmnµν0mnψ −

i

2
R0mµν00mψ −

1
2

R05µν005ψ

−
1
2

Rm5µν0m5ψ −
i

2
Pµνψ005,

where

Rmnµν = Smnµ,ν − Smnν,µ + SmpµSpnν − SmpνSpnµ − BmµBnν

+ BmνBnµ + CmµCnν − CmνCnµ (4.3)

https://doi.org/10.1017/S1446181109000108 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000108


[13] Space–time structure and spinor geometry 155

and

R0mµν = Bmµ,ν − Bmν,µ + BpµSpmν − BpνSpmµ − CmµHν + CmνHµ,

Rm5µν = Cmµ,ν − Cmν,µ + C pµSpmν − C pνSpmµ − BmµHν + BmνHµ,

R05µν = Hµ,ν − Hν,µ − BnνCnµ + BnµCnν and

Pµν = Kµ,ν − Kν,µ.

For fixed m and n, jm jn Smnµ, jn Bnµ, jnCnµ, Hµ, and Kµ are covectors of M. Let
us examine their transformation under a change of the anholonomic (Vierbein) base in
V and the associated spin transformation in �l .

A re-orientation of the Vierbein and spinor frames is a field of group elements
σ :M→ L̂,

σ(x)= eπ(x), π(x) ∈ l

(l defined in (3.5)), representing these changes of spin frames over a region of M. The
transformed spinor field tetrad is ψ̃(x)= σ(x)ψ(x), and for this to remain a spinor
field tetrad we must have

ψ̃/µ = σ(ψ/µ),

that is

(σψ),µ −
i

4
S̃mnµ0mnσψ −

i

2
B̃nµ00nσψ −

1
2

C̃nµ0n5σψ

−
1
2

H̃µ005σψ −
i

2
K̃µσψ005

= σ

(
ψ,µ −

i

4
Smnµ0mnψ −

i

2
Bnµ00nψ −

1
2

Cnµ0n5ψ

−
1
2

Hµ005ψ −
i

2
Kµψ005

)
for arbitraryψ , where S̃mnµ, B̃nµ, C̃nµ, H̃µ, K̃µ are the components after reorientation.
This gives immediately H̃µ = Hµ, K̃µ = Kµ, that is, neither are affected by re-
orientation. The transformation law for the left connection is well known: if

σ = exp
(

i

4
Pmn0mn

)
, jm jn Pmn real, Pnm =−Pmn

and if P = (Pmn), M = eP , then

S̃mnµ = Mmp Mnq Spqµ + Mmp,µMnp

and similarly Bnµ and Cnµ transform as vectors. We also get, using the orthogonality
of M

R̃mnµν = Mmp Mnq Rpqµν .
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This shows that for given µ, ν, (Rmnµν) ∈W . It follows that Rµνρσ = gmµgnνRmnρσ
is a real tensor, with the symmetries

Rµνρσ =−Rνµρσ =−Rµνσρ .

For convenience we call it the curvature tensor although it has no such geometrical role
as far as tangent vectors and tensors of the manifold are concerned. Only the metric
(Riemannian) curvature tensor has such a role.

Next we consider changes in the connection under a phase transformation field

τ(x)= exp
{

i

2
λ(x)005

}
, λ(x) real,

acting from the right on the spinor tetrad. We require

(ψτ),µ −
i

2
K̃µψτ005 =

(
ψ,µ −

i

2
Kµψ005

)
τ

which gives
K̃µ005 = (Kµ + λ,µ)005

noting that 005τ = τ005. Hence

K̃µ = Kµ + λ,µ. (4.4)

This shows that Kµ is not an ordinary covector field but an equivalence class of such
fields under the transformation (4.4) (a gauge transformation). This is precisely the
behaviour of an electromagnetic four-potential. Note that Smnµ, Bnµ, Cnµ and Hµ are
invariant under phase transformations.

A “metric” connection can now be defined for spinor tetrads. Define

Nmnν ≡ gρm gnµ{
µ
νρ} − gλm gnλ,ν (4.5)

where
{
µ
νρ} =

1
2 gλµ(gλρ,ν + gλν,ρ − gρν,λ)

is the usual Riemann–Christoffel affinity pertaining to gµν .
It is straightforward to check that Nmnµ is a covector for each m and n, and

that Nnmν =−Nmnν . From (4.5) it can also be seen that under reorientation, Nmnν
transforms like a (left) connection. Hence Nmnν can be regarded as the metric part
of Smnν , although it has no such geometrical role, and separating it off from Smnν is
just a computational convenience. Indeed, if we define

Tmnν = Smnν − Nmnν (4.6)

then Tmnν (for fixed ν) transforms as a skew tensor in W , with jm jnTmnν real. Hence
Tµνρ = gmµgnνTmnρ is a real contortion tensor with the skew symmetry

Tνµρ =−Tµνρ . (4.7)
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We can also define a metric derivative for spinor fields, namely

ψ;µ = ψ,µ −
i

4
Nmnµ0mnψ. (4.8)

Although it is a legitimate spinor field with respect to reorientations of the spinor
frame, it does not behave like a spinor field tetrad with respect to (right) phase
transformations.

The tensor Tµνρ can be used to express the relation between Rµνρσ and the
Riemannian curvature tensor

Gµ
νρσ =−{

µ
νρ},σ + {

µ
νσ },ρ + {

µ
λρ}{

λ
νσ } − {

µ
λσ }{

λ
νρ}

namely, using (4.3),

Rµνρσ = Gµνρσ + Tµνρ;σ − Tµνσ ;ρ + TµλρT λνσ − Tµλσ T λνρ − BµρBνσ
+ Bµσ Bνρ + CµρCνσ − CµσCνρ, (4.9)

where semicolon denotes covariant differentiation with respect to the Christoffel
affinity. That is,

Aαβ;γ = Aαβ,γ + {
α
σγ }A

σ
β − {

σ
βγ }A

α
σ

is the covariant derivative of a tensor field Aαβγ . The Ricci tensor is given by

Gµν =−{
λ
µν},λ + {

λ
µλ},ν + {

ρ
λν}{

λ
µρ} − {

λ
ρλ}{

ρ
µν}

with the gravitational scalar
G = gµνGµν .

Finally we define the Dirac (scalar) differential of ψ ∈�l

Dψ = 0µψ/µ where 0µ = gµn 00n. (4.10)

It is clearly a spinor tetrad, and will play a crucial role in the field equations in the
following section.

To facilitate the transition from a purely geometrical to a physical description of
the field equations, it is useful to introduce the notion of a metric index. We note
that for a given coordinate system, the metric tensor gµν is only determined up to a
scaling factor, depending on the “unit of length” chosen for the manifold. Suppose we
change the unit of length by a factor of λ, without changing the coordinate system.
Since gµν dxµdxν is the square of a length, we must multiply gµν by λ−2 so that the
same length is expressed in the new, rescaled unit. We express this by saying that gµν
has a metric index of 2. Similarly, the metric indexes of gnµ and gµn are 1 and −1
respectively. Hence note from (4.10) that the metric index of D is also −1. Since any
equation expressing a law of nature must be valid independently of the unit of length
chosen, we shall provide the appropriate factor to ensure that all terms appearing in
such an equation have the same metric index.
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5. Field equations

The field equations of the geometry are obtained from a Hamiltonian variation
principle, applied to suitable action integrals and linked together in a single world
Lagrangian. We assume that the 4-manifold M is equipped with a metric field,
a connection field and a spinor field tetrad. The field quantities to be varied
independently are the components of the metric and connection fields, namely, gnµ,
Smnµ, Bnµ, Cnµ, Kµ and Hµ. The spinor field tetrad enters the variation principle
only in the form of a homogeneous constraint, expressing the condition that the Dirac
differential of an admissible ψ should satisfy the generalized Dirac equation

Dψ +3−1005ψ = 0. (5.1)

Here 3 is a positive constant, denoting the unit length chosen for the manifold, and
required as the metric index of D is −1.

To incorporate this constraint into the variation principle, we construct the real
scalar density

L
=
=

i

2
g
=

〈
(Dψ +3−1005ψ)ψ − ψ(Dψ +3

−1005ψ)
〉
. (5.2)

Using (4.2), this expands to

L
=
=

i

2
g
=
〈ψ,µ0

µψ − ψ0µψ,µ〉 −
1
2

g
=

Kµ〈ψ0
µψ005〉

−
1
8

Smnµ g
=
〈ψ(0mn0

µ
+ 0µ0mn)ψ〉 −

1
4

Bnµ g
=
〈ψ(00n0

µ
+ 0µ00n)ψ〉

−
i

4
Cnµ g
=
〈ψ(0n50

µ
+ 0µ0n5)ψ〉 − i3−1 g

=
〈ψ005ψ〉. (5.3)

(Note that there is no Hµ term.) It is not difficult to check that variation of (5.2) with
respect to ψ gives (5.1), provided that the symmetry conditions,

Smnµ(0
µ0mn − 0mn0

µ)= 0, Bmµ(0
µ00m − 00m0

µ)= 0,
Cmµ(0

µ0m5 − 0m50
µ)= 0,

(5.4)

are satisfied. Conversely, if (5.1) is satisfied, then clearly L
=
= 0. To obtain the field

equations for the connection fields, we first vary Smnµ freely in∫ (
R
=
+
32

T
L
=

)
d4x (5.5)

where
R =−Rµνµν =−gµm gνn Rmnµν

is the curvature scalar formed from the curvature tensor (4.3) and R
=
≡ g
=

R is the

corresponding density. The Lagrangian factor (1/T )32 is not necessarily a constant,
but may be a function of the cosmological epoch, and we take this into account in
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Section 6. The term 32 is introduced to make T dimensionless. Although T is
independent of the unit of length, its value depends on the normalization of theψ fields
which at this stage is wholly arbitrary. As L

=
is homogeneous of degree two in ψ , it is

in fact (1/
√

T )ψ which is able to be determined from the variational principle.
Using (5.3), the relevant terms in (5.5) for the variation of Smnµ are

−gµm gνn (Smnµ,ν − Smnν,µ + SmpµSpnν − SmpνSpnµ)

−
32

8T
Smnµ〈ψ(0mn0

µ
+ 0µ0mn)ψ〉.

Variation of Smnλ gives, when converted to real tensors using (4.6),

gλµT ρνρ − gλνT ρµρ + Tλµν − Tλνµ =
32

4T
Eλµνσ 〈ψ0050

σψ〉, (5.6)

where
Eλµνσ = i gkλ gmµ gnν gpσ E0kmnp5 = g

=
sig(λµνσ)

is the real alternating tensor. Contraction of (5.6) with respect to λ and µ gives

T ρνρ = 0

which means that the first of the symmetry conditions (5.4) is satisfied. Equation (5.6)
simplifies to

Tλµν − Tλνµ =
32

4T
Eλµνσ 〈ψ0050

σψ〉

and finally, from the symmetry (4.7),

Tλµν =
32

8T
Eλµνσ 〈ψ0050

σψ〉, (5.7)

that is, the contortion tensor is fully skew-symmetric.
Note that although the contortion tensor appears in the general form of these

field equations, the right-hand side of (5.7) may vanish identically depending on the
assumptions made about the form of the metric and the spinor tetrad for a given
solution. That type of solution will then be torsion-free. The simple solutions given in
Sections 6 and 7 are examples of this.

Variation of Bnµ in (5.5) gives

Bµν =
32

12T
gµν〈ψψ〉,

which shows that Bµν is symmetric, satisfies the second condition of (5.4), and has the
simple contraction

B ≡3Bρρ =
33

3T
〈ψψ〉,

where the additional 3 factor makes B scale-free.
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Variation of Cnµ in (5.5) gives

Cµν = i
32

8T
Eµνλσ 〈ψ0

λ0σψ〉

which shows that Cµν is skew-symmetric, and satisfies the last of the conditions (5.4).
Unlike the contortion tensor, we do not hazard any “physical” interpretation of

the Bµν or Cµν tensors.
The generalized Dirac equation (5.1) now takes the form

0 = 0µψ;µ −
i

4
T αβγ Eαβγµ0050

µψ (0n5 term)

−
i

4
CαβEαβγµ0

γ0µψ (0mn term)

−
i

2
Kµ0

µψ005 (00n term)

−
i

2
3−1 Bψ (I term)

+3−1005ψ (005 term). (5.8)

Note that each type of element of� appears as a left operator, and this is the motivation
for the 005 operator with the “mass” term3−1ψ in the Dirac equation (5.1). Also note
that Hµ does not enter the equation explicitly at all. Defining the skew-symmetric
tensors

Qµν = Hµ,ν − Hν,µ

and
Pµν = Kµ,ν − Kν,µ

the electromagnetic Lagrangian is taken to be

P
=
=− g
=

PµνQµν . (5.9)

As before, we vary Kµ and Hµ in∫ (
P
=
+

1
b

L
=

)
d4x (5.10)

where the Lagrangian factor 1/b is dimensionless. The value of b again depends on
the normalization of ψ , but b/T is independent of spinor normalization and is likely
to be a function of the cosmological epoch, as we shall see later.

The variation gives the electromagnetic field equations with an explicit source term,
namely,

Jµ ≡ Qµν

;ν
=

1
4b
〈ψ0µψ005〉 (5.11)

and
Pµν
;ν
= 0. (5.12)
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The form of the electromagnetic equations suggests that Qµν be interpreted as
a “density” or “material” field, and Pµν as a pure “intensity” field. These
electromagnetic equations have a very satisfactory appearance in the sense that they
address one of the crucial problems of unified field theories. Consider Maxwell’s
equations

curl H − D = I , divD = ρ, curl E − Ḃ = 0, divB = 0,

where I is the current, ρ is the charge, H and D are the magnetic and displacement
(“material”) fields, and E and B are the electric and magnetic (“intensity”) fields.

Instead of the usual identifications

H = B, D = E (5.13)

(apart from proportionality constants), which cannot be justified by geometrical
considerations alone (see [10, Page 25]), (5.11) and (5.12) provide separate equations
for the material and intensity fields respectively. The Maxwell identifications (5.13)
are only possible in a region where the spinor field is negligible, that is remote from
the centre of a particle, and correspond to

Kµ = Hµ. (5.14)

This does not follow from the geometry itself, and it is only by considering particular
solutions to the field equations that the boundary conditions (5.14) could possibly be
enforced.

There is also a striking geometric difference between the two connection vectors Kµ
and Hµ constituting the electromagnetic potential. The unitary group H of right
connection with Lie generator (i/2)005 pertaining to Kµ is compact, and its members
are indeed phase transformations (see (3.13)). However the one-parameter left
connection group with Lie generator (1/2)005 pertaining to Hµ is noncompact. It
is similar in effect to Weyl’s original gauge group of “length curvature”, that is scale
transformations. It is interesting to note how both versions of Weyl’s gauge group
appear here in a very natural fashion, one representing the electromagnetic intensity,
the other material electromagnetic field density.

Finally, to derive the field equations for the metric field, we first note that by
contracting the curvature tensor (4.9) we obtain

Rµν − 1
2 gµνR = Gµν −

1
2 gµνG + TαβµT αβν −

1
2 gµνT αβγ Tαβγ

−
3
43
−1 BµνB − CµρCρ

ν +
1
2 gµνCρσCρσ . (5.15)

We now vary gνm in ∫ (
R
=
+
32

T

(
L
=
+b P
=

))
d4x,
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where the world Lagrangian is obtained from the Lagrangians (5.5) and (5.10). The
variation is particularly simple to perform (in contrast to ordinary relativity) since gνm
appears only algebraically in the expression. We get

Gµν −
1
2

gµνG

=
b32

T

[
gρσ (PµρQνσ + PνρQµσ )−

1
2

gµνPρσ Qρσ

]
+

b32

2T
[Kµ Jν + Kν Jµ] +

3
8

gµν3
−2 B2

+
1
2

gµνT λρσ Tλρσ

−
1
2

gµνCλρCλρ −
i32

8T
〈ψ;µ0νψ + ψ;ν0µψ − ψ0µψ;ν − ψ0νψ;µ〉.

(5.16)

The right-hand side of this equation is the “energy–momentum” tensor in a perfectly
explicit form, comprising of electromagnetic, torsion and matter components. Note
that of the ten equations defined by (5.16), only six are independent. The rest follow
from the contracted Bianchi identities(

Gν
µ −

1
2 gνµG

)
;ν
= 0.

Taking the inner product of ψ with (5.8), one finds

i〈ψ;µ0
µψ〉 = 2T3−2T λρσ Tλρσ + 2bKµ Jµ + 3

2 T3−4 B2

− 2T3−2CλρCλρ + i3−1
〈ψ005ψ〉.

Contracting (5.16) and (5.15) one finds the gravitational and curvature scalars

G =−T λρσ Tλρσ −
3
4
3−2 B2

+ CλρCλρ +
i3

2T
〈ψ005ψ〉, R =

i3

2T
〈ψ005ψ〉.

(5.17)
We now have the complete set of field equations, namely, the generalized Dirac
equation (5.8), the electromagnetic equations (5.11) and (5.12), and the gravitational
equations (5.16). To get an idea of the actual values of b, T and 3, compare with
Dirac’s

− i h̄c0µψ,µ − q Aµ0
µψ + Mc2ψ = 0, (5.18)

where h̄ is Planck’s constant, c is the speed of light, q is the elementary charge, and
M is the mass of a particle represented by this equation. Comparison with (5.8) gives

Kµ =
2q

h̄c
Aµ, Pµν =

2q

h̄c
Fµν, (5.19)

where Aµ is the electromagnetic four-potential and Fµν the electromagnetic field
tensor using Lorentz–Heaviside units. Furthermore

3=
h̄

Mc
≈

0.352× 10−42

M
(5.20)
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(3 in m, M in kg), is the Compton wavelength associated with a particle of mass M.
For example, if M is of the order of the proton mass (10−27 kg), then 3 is of order
10−15 m.

Although presumably (5.19) is the correct conversion between our geometric
quantities and electromagnetic intensities, the analogy with Dirac’s (5.18) is largely
formal. For instance, Kµ here denotes the four-potential of the total electromagnetic
field, including the particle itself, and not merely the potential of the external field.
Similarly, there is no need to regard ψ as a probability amplitude.

Comparison of (5.16) with Einstein’s gravitational equations for pure electromag-
netic fields, namely

Gµν −
1
2

gµνG =
8πK

c4

(
gρσ FρµFσν −

1
4

gµνFρσ Fρσ

)
gives

T

b
=
32q2c2

π h̄2K

where K ≈ 6.674× 10−11m3 kg−1 s−2 is Newton’s constant of gravitation. In
Lorentz–Heaviside units

q2
= 4π h̄cα,

where α ≈ 1/137.036 is the fine structure constant. Hence

T

b
=

432αc3

h̄K
≈ 1.118× 106832. (5.21)

If 3 is of order 10−15 m for example, then T/b is of order 1038. The age of the
universe is about 4× 1017 s which in absolute units of time 3c−1 is of order 1041.
This suggests that T/b may be related to the cosmological epoch.

The value of b depends on the normalization of the spinor field. Compare (5.11)
with Maxwell–Dirac’s

Fµν,ν = q〈ψ0µψ〉, (5.22)

which holds for an particle with elementary charge q if ψ consists of just one member
of the tetrad and a conventional normalization for ψ is used. Provided we can describe
the particle field in a stationary coordinate system in which “space” and “time” are
separated, and using (3.12), the requirement is that∫

g
=

∗
|ψ |2 d3x =

∫
g
=

∗
〈ψ004ψ〉 d3x = 1 (5.23)

where the integral is extended over a 3-space region outside which the metric field of
the particle is flat. Here g

=

∗ is the 3-space coordinate density. From (5.11), (5.22)

and (5.19) we obtain

b =
h̄c

8q2 =
1

32πα
≈ 1.363 (5.24)
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which can be regarded as a defining equation for the (local) conventional normalization
of the spinor field tetrad in terms of the fine structure constant α. We shall refer
to (5.23) as the normalization hypothesis which all charged particles (perhaps also
neutral particles) are supposed to satisfy when b is given by (5.24). There is no hope
to “prove” the normalization hypothesis as long as only isolated particle solutions are
considered; any such proof must come from the study of interactions between particles.

With the normalization of ψ induced by (5.24) we obtain from (5.20) and (5.21)

T =
32c3

8π h̄K
=

3c2

8πM K
. (5.25)

If the unit of length (that is, the metre) is fixed in terms of 3, the unit of time (the
second) fixed so that c should have the value ≈ 3× 108 m s−1, and the unit of mass
(kg) fixed so that Planck’s constant should have the value ≈ 6.626× 10−34 kg m s−1,
then (5.25) tells us that the gravitational constant is proportional to 1/T . This is the
precise meaning of the statement that “the gravitational constant is decreasing in time”.
If T has settled down to a practically constant value in the latter stages of the evolution
of the universe, then so did the gravitational constant.

We also note from (5.25) that the gravitational radius ν of a particle with mass µM
is given by

ν = µM
K

c2 =
µ3

8πT
. (5.26)

We now have a complete correspondence between the geometrical objects and the
physical quantities that they represent. Further determinations of the values of these
quantities must come from solutions of the field equations, specifically from particle
solutions with certain symmetries which could be identified with known particles.

6. A cosmological solution

We consider a solution with a simple cosmological line element of the form

32dt2
−32 f (t)2(dx2

1 + dx2
2 + dx2

3) (6.1)

and we seek to determine f (t) in the presence of a global cosmological spinor field.
The factor 32 makes the t-coordinate independent of the unit of length chosen, and
the unit on the t-axis corresponds to 3/c seconds. The coordinate on the x-axes can
be fixed for example by the condition

f (t0)= 1 (6.2)

for the current epoch t = t0. The simplest orientation of the Vierbein metric field gmβ
generating line element (6.1) is

gmβ = i3 f δmβ 1≤ m, β ≤ 3, g4τ =3 τ = 4.

Assuming ψ only depends on t , from (4.8) we have

ψ;β =−
1
2δmβ f ′(t)0m4ψ 1≤ β ≤ 3, ψ;τ = ψ,τ . (6.3)
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The Einstein–Ricci tensor components are

−Gαβ +
1
2

gαβG =−δαβ f 2
(

2
f ′′

f
+

(
f ′

f

)2)
α, β = 1, 2, 3,

−Gττ +
1
2

gττG = 3
(

f ′

f

)2

.

(6.4)

Requiring an electrically neutral (Kµ = Hµ = 0), torsion-free (Tλµν = 0) field,
from (5.7) and (5.11) we have

〈ψ00mψ005〉 = 〈ψ0m5ψ〉 = 0 m = 1, 2, 3, 4 (6.5)

and the gravitational equations (5.16) become

− Gµν +
1
2

gµνG =
i32

8T
〈ψ;µ0νψ + ψ;ν0µψ − ψ0µψ;ν − ψ0νψ;µ〉. (6.6)

Allowing for T to be a function of t on the cosmological scale, which we did not allow
for in (5.5), the variation of ψ in ∫

32

T
L
=

d4x

adds a cosmological term to the generalized Dirac equation (5.1), that is,

Dψ +3−1005ψ −3
−1 T ′

2T
004ψ = 0

which gives using (6.3)

004ψ,τ +

(
3
2

f ′

f
−

1
2

T ′

T

)
004ψ + 005ψ = 0. (6.7)

It is convenient here to use a spinor tetrad with components in all four ideals (see
Table 1), that is,

ψ =3−3/2T 1/2 f −3/2ψ0 where ψ0 = eiεt
∑
η,ζ

u(η,ζ )m Y (η,ζ )m

and where ε and the um are scale-free constants.
Equations (6.5) and (6.7) are satisfied if

u1 = u2 =−u3 =−u4 =U 6= 0 ∀uk = u(η,ζ )k , ε2
= 1,

where U is a positive constant. The only surviving term on the right-hand side of (6.6)
is

i32

4T
〈ψ;τ0τψ − ψ0τψ;τ 〉 =

ε33

2T
〈ψ004ψ〉 = 2εU 2 f −3 (6.8)
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which gives, from (6.4),

2
f ′′

f
+

(
f ′

f

)2

= 0 (6.9)

and

3
(

f ′

f

)2

= 2εU 2 f −3, (6.10)

which forces ε = 1.
Equation (6.9) with the scaling condition (6.2) gives

f (t)=

(
t

t0

)2/3

,

which is the well known zero-pressure Einstein–de Sitter model. This is a “pure”
model in the sense that all contribution to the energy–momentum tensor comes from
the spinor field, and no account is taken of the effect of local disturbances such as
galaxies or radiation which would require additional matter tensors. These would of
course interact with the cosmological background (spinor) field which thus replaces
Mach’s principle in a concrete form. If Hubble’s constant is about 2× 10−4 per
megaparsec, then t0 ≈ 10263−1.

Equation (6.10) gives
U 2
=

2
3 t−2

0

and so we obtain

1
√

T
ψ =3−3/2

(
2
3

)1/2

t−1ei t
∑
η,ζ

(
Y (η,ζ )1 + Y (η,ζ )2 − Y (η,ζ )3 − Y (η,ζ )4

)
.

Note that neither T nor ψ can be determined from the equation, only (1/
√

T )ψ as
indicated in Section 5.

It is interesting to consider a particle ensemble source for the line element (6.1).
Suppose that the line element is produced on the average by neutral particles of
mass µM . The energy in a region occupied by just one of these particles is
simply µMc2.

However, this equals the integral over that region of the energy density given by the
contracted energy–momentum tensor S

=

τ

τ
, as follows:

µMc2
=

∫
S
=

τ

τ
d3x

=

∫
−

c4

8πK
3−1 g
=

(
Gτ
τ −

1
2

gττ G

)
d3x

=

∫
c434

16πK T
〈ψ004ψ〉 d3x from (6.8)

=
c43

16πK T
assuming (5.23). (6.11)
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Hence

µ=
c23

16πK T M
=

1
2

from (5.25). That is, the normalization hypothesis (5.23) would imply a simple
constraint on the mass of particles in such an ensemble.

7. A neutral spherically symmetric particle solution

There are two types of neutral spherically symmetric solutions of interest: one
representing an elementary particle and the other a massive body. We shall only
consider here a particle-like “pure” solution in which the energy–momentum tensor
is given wholly by the right-hand side of the gravitational equations (5.16). A massive
solution would clearly require an additional matter tensor coming from the averaged-
out field of matter.

Using spherical coordinates, the following standard line element will be assumed:

32g(r)2 dt2
−32( f (r)2dr2

+ r2dθ2
+ r2 sin2 θdφ2). (7.1)

The simplest orientation of the Vierbein metric field generating this line element is

g1r = i3 f, g2θ = i3r, g3φ = i3r sin θ, g4τ =3g,

with all other components zero. The indices r, θ, φ, τ stand for 1, 2, 3, 4 respectively.
As in (6.1), the 3 factor has again been introduced to make the coordinates
independent of the unit of length chosen. With this metric, the nonzero components of
the Einstein–Ricci tensor are

−Grr +
1
2

grr G =
2
r

g′

g
−

1

r2 ( f 2
− 1),

−
f 2

r2

(
Gθθ −

1
2

gθθG

)
=

g′′

g
−

f ′g′

f g
+

1
r

(
g′

g
−

f ′

f

)
,

Gφφ −
1
2

gφφG =

(
Gθθ −

1
2

gθθG

)
sin2 θ,

−
f 2

g2

(
Gττ −

1
2

gττG

)
=

2
r

f ′

f
+

1

r2 ( f 2
− 1).

(7.2)

A neutral, spinless solution requires a spinor field tetrad with components in at least
two of the minimal left ideals (see Table 1). However, the simplest such solution
is without torsion, again requiring the vanishing of the inner products (6.5), and so
leading to the four-ideal tetrad

33/2ψ =
1
√

g
eiεt

∑
η,ζ

e(i/2)ζφu(η,ζ )m Y (η,ζ )m ,
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with

u1 = ηζ Pe(i/2)ζ θ − i Qe−(i/2)ζ θ , u2 =−ηζ Pe−(i/2)ζ θ + i Qe(i/2)ζ θ ,

u3 =−ηζ Pe(i/2)ζ θ − i Qe−(i/2)ζ θ , u4 = ηζ Pe−(i/2)ζ θ + i Qe(i/2)ζ θ ,

where P and Q are real functions of r , and ε2
= 1. We anticipate ε =+1 so that the

solution can merge into the cosmological background field, but do not assume this at
this stage. The only relevant nonzero inner products are, using (3.12) and Appendix D,

〈ψ005ψ〉 =
4i

g
3−3(Q2

− P2) and (7.3)

〈ψ004ψ〉 =
4
g
3−3(Q2

+ P2). (7.4)

The particular form of the tetrad has also been designed to satisfy the Dirac
equation (5.1), which here takes the simple form

0µ
(
ψ,µ −

i

4
Nmnµ0mnψ

)
+3−1005ψ = 0. (7.5)

Using Appendix C and the nonzero Nmnµ values, which are

N12θ =
1
f
, N13φ =

1
f

sin θ, N23φ = cos θ, N14τ =−i
g′

f
,

(7.5) is expanded. Equating the coefficients of each of the four ideals, we get four sets
of identical equations each defining P and Q, which are

P ′ =
1
r
( f − 1)P − ε

f

g
Q − f Q and Q′ =−

1
r
( f + 1)Q + ε

f

g
P − f P. (7.6)

Finally, the gravitational equations

Gµµ −
1
2

gµµG =
i

4T
32
〈ψ0µψ;µ − ψ;µ0µψ〉 µ= r, θ, φ, τ

give, from (7.2),

2
r

g′

g
−

1

r2 ( f 2
− 1)=

2
T

f 2

g2

(
ε(P2

+ Q2)+ g(Q2
− P2)−

2
r

g P Q

)
,

2
r

f ′

f
+

1

r2 ( f 2
− 1)=

2ε
T

f 2

g2 (P
2
+ Q2).

(7.7)

The second-order equation in (7.2), coming from the Gθθ and Gφφ components, can
be shown to be a consequence of the other two (that is, a Bianchi identity).

Equations (7.6) replace the usual equations of state for the matter and pressure
density distribution; they represent, with (7.7), a “pure” or particle-like field in which
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there is no separate matter tensor in Einstein’s equations to account for the averaged-
out distribution of matter.

The right-hand side of the second equation in (7.7) represents a matter density.
Taking the cosmologically determined value of ε, namely ε = 1, the matter density
will be positive as it should be. That is, the cosmological background spinor field not
only supplies the local inertial frames but also imposes positivity of the mass of the
particle.

At large distances where we can ignore the right-hand sides of (7.7), we can set
f ≈ g−1

≈ 1+ ν/r as in the Schwarzschild solution. For a particle solution, the
gravitational radius ν is expected to be extremely small. Indeed if the mass is of
the same order as the elementary mass M , then according to (5.26), ν is of order 1/T
in units of 3.

Equations (7.6) have a solution as r→∞ in which P and Q tend to zero of order
at least 1/r . For small r , but still large relative to ν, Q grows like 1/r2 and totally
dominates P . The critical behaviour occurs near the Schwarzschild radius 2ν, and it
is convenient to rescale r and Q according to

r = νy, Q =
Q̃

ν
. (7.8)

We then have from (7.6) and (7.7) with sufficient approximation

d P

dy
=

1
y
( f − 1)P −

f

g
(1+ g)Q̃,

d Q̃

dy
=−

1
y
( f + 1)Q̃, (7.9)

d f

dy
+

f

2y
( f 2
− 1)= 0,

dg

dy
−

g

2y
( f 2
− 1)= 0. (7.10)

Equations (7.10) are of course satisfied by Schwarzschild’s f −1
= g = γ =

√
(1− 2/y). The second equation of (7.9) is then solved by

Q̃ =
q0

y

1− γ
1+ γ

, q0 constant. (7.11)

We may assume q0 > 0. As y approaches the critical value 2, Q̃ approaches q0/2
and P grows like 2q0 log(1/γ ). P can therefore be neglected in comparison with Q
provided that g = γ is large compared with e−1/ν . On the other hand, the right-hand
terms in (7.7) become significant and the equations are replaced by

d f

dy
=−

1
4

f 3
(

1−
1

T1g2

)
and

dg

dy
=

1
4

f 2g

(
1+

1

T1g2

)
,

where we have defined

T1 =
T

2q2
0

. (7.12)

Assuming that T1 is large, these give

f =
gT1

g2T1 + 1
(7.13)
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and
g2T1 − 1+ log(g2T1)=

1
2 T1(y − 2). (7.14)

In (7.14), the constant of integration has been chosen so that f should reach its
maximum value of

√
T1/2 at y = 2, corresponding to g = 1/

√
T1. This maximum is

quite sharp, and f crashes down steeply inside the critical shell of width 1y = 1/T1,
(which replaces the Schwarzschild singular sphere). To see this, note that as we cross
into the interior of the critical shell, but still close to y = 2, f/g becomes very nearly T1
by (7.13), and we get from (7.7)

1
f

d f

dy
+

1
4
( f 2
− 1)=

1
4

T1

which is solved (to order T1) by

f =

√
T1√

2(1+ eT1(2−y)/2)
.

Hence when 2− y� log T1/T1, both f and g become very small. Neglecting f
against 1 and setting

u = ν
f

g
, P =

1
yν

p, Q =
1
yν

q, (7.15)

(7.6) and (7.7) can be replaced in the interior by

p′ =−uq, q ′ = up, (7.16)

y
f ′

f
=

1
2
+

1

T ν2 u2(p2
+ q2), (7.17)

y
u′

u
= 1. (7.18)

Noting that u = νT at y = 2, (7.18) implies

u =
ν

2
T1 y. (7.19)

Now (7.16) gives pp′ + qq ′ = 0 hence p2
+ q2

= constant. However, at y = 2,

p2
+ q2

= 4ν2 Q2
=

T

2T1
(7.20)

by (7.8). Equation (7.17) then gives

1
y

f ′

f
=

1

2y2 +
T1

8

which is solved by

f =
1
2

√
T1 y

2
e−(T1/4)(1−y2/4).
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From (7.16) and (7.20) we get

p =

√
T

2T1
sin
(
νT1

4
(4− y2)

)
, q =

√
T

2T1
cos
(
νT1

4
(4− y2)

)
. (7.21)

Finally, from (7.15) and (7.19) we have g = 2 f /yT and so

g =
1
√

T1 y
e−(T1/4)(1−y2/4).

This shows that in the immediate neighbourhood of the origin, g behaves like c0/
√

y
for an exceedingly small c0. Nevertheless it indicates a singular behaviour of the
metric tensor at the origin, at least in the coordinates of the line element (7.1). To
check whether this is a true space–time singularity, we need to see if the curvature
scalar remains finite at y = 0. From (5.17) and (7.3)

32G =
2

gr2T
(p2
− q2).

From (7.21)
1
T
(p2
− q2)=−

1
2T1

cos
(
νT1

2
(4− y2)

)
,

which vanishes, to the order y2, provided that

2νT1 =

(
k +

1
2

)
π

for an integer k. From (7.12) the condition therefore becomes

q2
0 =

2νT

(2k + 1)π
.

Thus q0 can only take certain discrete values, given the Schwarzschild mass ν, a
phenomenon not unlike quantization. The lowest value k = 0 is distinguished by the
property that the curvature scalar does not change sign (remains negative) throughout
the solution. Accepting this criterion for the solution, q0 is uniquely determined by

q2
0 =

2ν
π

T . (7.22)

To determine the mass, we must calculate the normalization integral

I0 =

∫
g
=

∗
〈ψ004ψ〉 d3x

= 4π33
∫
∞

0
〈ψ004ψ〉 f r2 dr

= 16π
∫
∞

0
(P2
+ Q2)

f

g
r2 dr, using (7.4). (7.23)
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Outside the critical shell there is only a negligible contribution of order 1/T , hence
from (7.15) we have

I0 = 16π
∫ 2

0
(p2
+ q2)u dy

= 8πq2
0νT

∫ 2

0
y dy

= 8πνT, using (7.12) and (7.19). (7.24)

Suppose the mass is µM , and noting that the gravitational radius ν is in units of 3,
then by (5.26)

I0 = µ. (7.25)

The mass of the particle is therefore I0 M = M if we accept the normalization
hypothesis (5.23). Note that this is twice the value obtained for the cosmological
particle. As in (6.11), the energy density is given by

S
=

τ

τ
≡−

c4

8πK
3−1 g
=

(
Gτ
τ −

1
2

gττ G

)
.

and from (7.2) we have

− g
=

(
Gτ
τ −

1
2

gττ G

)
= 32 g

f

(
2
r

f ′

f
+

1

r2 ( f 2
− 1)

)
r2 sin θ

= 32 2
T

f

g
(P2
+ Q2)r2 sin θ.

Hence we have ∫
S
=

τ

τ
d3x =

c43

K T

∫
f

g
(P2
+ Q2)r2 dr

=
c43I0

16πK T
from (7.23)

=
1
2

M I0c2 from (5.25)

=
1
2
µMc2 from (7.25).

This shows that the field energy–momentum tensor supplies exactly half of the total
energy of the particle, the other half supplied of course by the energy–momentum
pseudo-tensor.

With the normalization hypothesis I0 = 1, the mass of the particle is M , giving
νT = 1/8π from (7.24) and q0 = 1/2π from (7.22). Using (7.8) and (7.11) hence

Q ≈
q0ν

2r2 =
1

32π2r2T

https://doi.org/10.1017/S1446181109000108 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000108


[31] Space–time structure and spinor geometry 173

for r ≈ 1. Therefore P and Q reach in this region the intensity of the cosmological
background field which then takes over from both. Hence the effective radius of the
particle is of order 3.

In some respect the solution has simpler properties than Schwarzschild space–time,
in particular, it is free from the weird properties associated with the singular sphere.
For example, in contrast to “black hole” solutions, the particle is transparent. The
coordinate time required for a light signal to reach the critical shell from the centre is

t1 =
∫ 2ν

0

f

g
dr =

∫ 2

0
u dy = νT1 =

π

4

and to cross the shell

t2 =
∫ 3

2ν

T1

1+ g2T1
dr = 2ν

∫ T1

1/T1

dτ

τ
= 4ν log

π

4ν

as τ = g2T1. That is, the crossing time is negligible and so it requires π3/2c seconds
to completely traverse the particle.

However the main interest of the solution, irrespective of whether or not it
represents a realistic particle, is that it provides an example of a particle-like solution
with a highly nontrivial and singularity-free internal structure. It is noteworthy and
of no small significance that both the gravitational and spinor fields play a role in
producing this structure.

Appendix A. Matrix representation of the 0ab

The standard Hermitian matrix representation of the the 0ab is conveniently given
in terms of the Pauli spin matrices:

I =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The following table lists the standard Hermitian matrix representation of the 0ab;

they establish an isomorphism between W and the algebra of 4× 4 matrices:

001 =

[
σ2 0
0 −σ2

]
, 002 =

[
0 I
I 0

]
, 003 =

[
0 −i I
i I 0

]
,

004 =

[
σ1 0
0 −σ1

]
, 005 =

[
−σ3 0

0 σ3

]
, 012 =

[
0 −iσ2

iσ2 0

]
,

013 =

[
0 −σ2
−σ2 0

]
, 014 =

[
−σ3 0

0 −σ3

]
, 015 =

[
−σ1 0

0 −σ1

]
,

023 =

[
I 0
0 −I

]
, 024 =

[
0 iσ1
−iσ1 0

]
, 025 =

[
0 −iσ3

iσ3 0

]
,

034 =

[
0 σ1
σ1 0

]
, 035 =

[
0 −σ3
−σ3 0

]
, 045 =

[
σ2 0
0 σ2

]
.
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Appendix B. Correspondence of Gamma matrices to 0ab

The standard Gamma matrices (shown below in the covariant Dirac representation)
correspond to the following 0ab:

γ 0
=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

= 023, γ 1
=


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

=−i024,

γ 2
=


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

= i012, γ 3
=


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

= i025.

Appendix C. Multiplication table for 0abY (ηζ )m

Y1 Y2 Y3 Y4

001 −ζY4 −ζY3 −ζY2 −ζY1
002 −iY4 iY3 −iY2 iY1
003 ζY3 −ζY4 ζY1 −ζY2
004 −iηY3 −iηY4 iηY1 iηY2
005 −ηY1 −ηY2 ηY3 ηY4
015 −iηζY4 −iηζY3 iηζY2 iηζY1
025 ηY4 −ηY3 −ηY2 ηY1
035 iηζY3 −iηζY4 −iηζY1 iηζY2
045 Y3 Y4 Y1 Y2
012 ζY1 −ζY2 ζY3 −ζY4
013 iY2 −iY1 iY4 −iY3
014 ηζY2 ηζY1 −ηζY4 −ηζY3
023 −ζY2 −ζY1 −ζY4 −ζY3
024 iηY2 −iηY1 −iηY4 iηY3
034 −ηζY1 ηζY2 ηζY3 −ηζY4

Appendix D. Inner products

〈ψ001ψ005〉 =
1
4

∑
ηζ

iζ(−u∗1u2 − u∗2u1 + u∗3u4 + u∗4u3)

〈ψ002ψ005〉 =
1
4

∑
ηζ

(−u∗1u2 + u∗2u1 + u∗3u4 − u∗4u3)

〈ψ003ψ005〉 =
1
4

∑
ηζ

iζ(u∗1u1 − u∗2u2 − u∗3u3 + u∗4u4)
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〈ψ004ψ005〉 =
1
4

∑
ηζ

η(u∗1u1 + u∗2u2 + u∗3u3 + u∗4u4)

〈ψ004ψ〉 =
1
4

∑
ηζ

(u∗1u1 + u∗2u2 + u∗3u3 + u∗4u4)

〈ψ005ψ〉 =
1
4

∑
ηζ

i(u∗1u3 + u∗3u1 + u∗2u4 + u∗4u2)

〈ψ015ψ〉 =
1
4

∑
ηζ

ζ(u∗1u2 + u∗2u1 + u∗3u4 + u∗4u3)

〈ψ025ψ〉 =
1
4

∑
ηζ

i(−u∗1u2 + u∗2u1 − u∗3u4 + u∗4u3)

〈ψ035ψ〉 =
1
4

∑
ηζ

ζ(−u∗1u1 + u∗2u2 − u∗3u3 + u∗4u4)

〈ψ045ψ〉 =
1
4

∑
ηζ

iη(u∗1u1 + u∗2u2 − u∗3u3 − u∗4u4)

〈ψ014ψ〉 =
1
4

∑
ηζ

iζ(u∗1u4 + u∗4u1 + u∗3u2 + u∗2u3)

〈ψ024ψ〉 =
1
4

∑
ηζ

(−u∗1u4 + u∗4u1 + u∗2u3 − u∗3u2)

〈ψ034ψ〉 =
1
4

∑
ηζ

iζ(u∗1u3 + u∗3u1 − u∗2u4 − u∗4u2)

〈ψ013ψ〉 =
1
4

∑
ηζ

η(u∗1u4 + u∗4u1 − u∗2u3 − u∗3u2)

〈ψ023ψ〉 =
1
4

∑
ηζ

iηζ(−u∗1u4 + u∗4u1 − u∗2u3 + u∗3u2)

〈ψ012ψ〉 =
1
4

∑
ηζ

iηζ(u∗1u3 − u∗3u1 − u∗2u4 + u∗4u2)

〈ψψ〉 =
1
4

∑
ηζ

iη(u∗1u3 − u∗3u1 + u∗2u4 − u∗4u2)
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