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Abstract

The global increase in observed forest dieback, characterized by the death of tree foliage, heralds widespread decline
in forest ecosystems. This degradation causes significant changes to ecosystem services and functions, including
habitat provision and carbon sequestration, which can be difficult to detect using traditional monitoring techniques,
highlighting the need for large-scale and high-frequencymonitoring. Contemporary developments in the instruments
and methods to gather and process data at large scales mean this monitoring is now possible. In particular, the
advancement of low-cost drone technology and deep learning on consumer-level hardware provide new opportun-
ities. Here, we use an approach based on deep learning and vegetation indices to assess crown dieback from RGB
aerial data without the need for expensive instrumentation such as LiDAR. We use an iterative approach to match
crown footprints predicted by deep learning with field-based inventory data from a Mediterranean ecosystem
exhibiting drought-induced dieback, and compare expert field-based crown dieback estimation with vegetation
index-based estimates. We obtain high overall segmentation accuracy (mAP: 0.519) without the need for additional
technical development of the underlying Mask R-CNN model, underscoring the potential of these approaches for
non-expert use and proving their applicability to real-world conservation. We also find that color-coordinate based
estimates of dieback correlate well with expert field-based estimation. Substituting ground truth for Mask R-CNN
model predictions showed negligible impact on dieback estimates, indicating robustness. Our findings demonstrate
the potential of automated data collection and processing, including the application of deep learning, to improve the
coverage, speed, and cost of forest dieback monitoring.

Impact Statement

The global increase in forest dieback threatens vital ecosystem services, including habitat provision and carbon
sequestration. Traditional field and drone-based monitoring techniques are not cost-effective at large scales. We
leverage advancements in low-cost drones and deep learning to assess crown dieback from drone-captured RGB
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aerial data, eliminating the need for costly tools like LiDAR and laborious fieldwork. We achieve high accuracy
in matching predicted crown footprints with actual forest inventory, demonstrating the effectiveness of these
methods for non-expert use in conservation. Our vegetation index-based dieback estimates aligned well with
expert field-based estimates, validating this approach. This work enhances forest monitoring by improving
coverage, accuracy and speed, and reducing costs, thereby providing a promising tool to address large-scale
conservation challenges.

1. Introduction

Forest dieback, the unseasonal loss of crown foliage or mortality of many trees (Mueller-Dombois, 1988),
is an early indicator of declining health in forest ecosystems. This degradation directly affects ecosystem
services and functions such as carbon sequestration (Baccini et al., 2017) and habitat provision (Watson
et al., 2018). Various factors, including the spread of pests, pathogens, and the intensification of drought
conditions due to climate change, contribute to the increasing prevalence of crown dieback around the
world (Carnicer et al., 2011; Liebhold et al., 2013; Senf et al., 2020). These changes in forest health and
structure can result in ecologically significant shifts in composition and function over relatively short time
periods (Allen et al., 2015), which can be difficult to detect using traditional sampling strategies
(McMahon et al., 2019).

The global increase in dieback and its potential impacts on ecosystem services and functions highlight the
urgent need for large-scale, high-frequency monitoring. Large-scale, high-frequency monitoring of forest
health and structure would enhance our ability to detect issues such as pest outbreaks, disease, or stress
caused by climate change (McMahon et al., 2019) at early stages—which would, in turn, support better-
informed decision-making and policy development related to forest management, climate change mitiga-
tion, and biodiversity conservation (Asner andMartin, 2016). Moreover, large-scale monitoring techniques
enable practitioners to better understand the factors driving dieback, informing more effective and targeted
management strategies, and increasing resilience to these threats before they emerge. The instruments and
methods to gather and process data for large-scale, rapid monitoring at the level of individual trees have,
however, only been recently developed (Diez et al., 2021; Kattenborn et al., 2021; Ecke et al., 2022).

Remote sensing can provide high-resolution spatiotemporal data coverage to meet these needs. Leaf
reflectance, including within the visible spectrum, is sensitive to changes in plant physiology, chemistry,
and structure due to insect and pathogen infestation as well as water stress (Huang et al., 2019). Such
changes in leaf reflectance are observable in the canopy from remotely sensed data (Huang et al., 2019) so
high-resolution satellite imagery can likely detect defoliation missed by field-based surveys—for
example, in low-severity areas (Bright et al., 2020). Many existing approaches, however, rely on large
spatial averages of stress indicators—at the approximately 10m spatial scale of common non-commercial
satellite data products such as Sentinel 1/2 (Lastovicka et al., 2020) or Landsat (Zhang et al., 2021)—and
therefore cannot capture information on individual tree health. Tree level information is crucial to
understand future forest dynamics—particularlywhere individual treesmay exhibit significantly different
responses, such as for disease (Fensham and Radford-Smith, 2021; Hurel et al., 2021; Kännaste et al.,
2023) or drought (Teskey et al., 2014; Chen et al., 2022; Fernández-de-Uña et al., 2023). New approaches,
leveraging the increasing availability of high-resolution data (≤ 0:3m), are required to identify individual
trees within imagery for monitoring.

Traditional segmentation methods—based on handcrafted algorithms and manual feature engineering
(Baatz and Schäpe, 2000)—have been used to extract Individual Tree Crown (ITC) polygons from aerial
imagery for use in some downstream tasks useful for monitoring. For example, Onishi and Ise (2021)
applied unsupervised multiresolution segmentation (Baatz and Schäpe, 2000) to RGB (Red, Green, and
Blue) data of a dense forest canopy in urban Japan, combined with Digital Surface Models (DSMs) to
segment ITCs, and classified the results by species or functional type. Although the automatically
extracted ITCs contained mostly canopy of the same species, the segmentation algorithm fragmented
or merged 76% of tree crowns with neighboring individuals within that species. This method did not
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require manual labeling, but the low intra-specific segmentation accuracy means it is not comparable to
traditional inventory-based monitoring, as the ITC polygons cannot be used to accurately extract
measurements relating to individual trees—such as measurement of stress responses including dieback.
Since these responses vary substantially, even within species (Hurel et al., 2021; Fernández-de-Uña et al.,
2023), accurate segmentation is crucial. We suggest that a deep learning-based approach is likely to yield
better results on data with structurally complex canopies from natural forests, where crowns intersect
substantially both within and across species.

Many approaches applying deep learning to segment ITCs exist (Diez et al., 2021). Deep learning was
applied to perform segmentation through bounding box delineation (typically referred to as object
detection in machine learning literature—for example, in Ren et al., 2016) of trees in both open and
closed forest canopies fromRGB images inWeinstein et al. (2019). Object detectionwas performedwith a
single-stage deep learning detector (He et al., 2015; Lin et al., 2018), achieving a precision of 0.69 and
recall of 0.61 in forests from California, at a National Ecological Observation Network (NEON) site. The
network was pre-trained using a very large number of noisy labels extracted from LiDAR data and fine-
tuned on a smaller number of manual annotations. Precise delineation of individual crowns (typically
referred to as instance segmentation in machine learning literature—for example, in He et al., 2017)
through deep learning has also been applied produce the polygons required to quantify stress accurately at
the individual level (Chiang et al., 2020; Hao et al., 2021; Şandric et al., 2022; Sani-Mohammed et al.,
2022; Yang et al., 2022; Ball et al., 2023). Throughout this work, we refer to this type of segmentation,
when applied to tree crowns, as “ITC delineation” to provide clarity to practitioners unfamiliar with
machine learning literature, although “instance segmentation” could be used interchangeably. Hao et al.
(2021), for example, usedMask R-CNN to perform ITC delineation of tree crowns frommultispectral 2D
imagery coupled with a photogrammetry-derived Canopy Height Model (CHM) in a Chinese fir
(Cunninghamia lanceolata) plantation, and achieved an F1 score of 0.85. It was demonstrated that these
delineations could be used successfully for a simple downstream task—the extraction of individual tree
heights by superposing segmentation on the CHM data. The use of data from plantations, however, is
unlikely to yield results that are representative of those from natural woodland; stems are typically evenly
aged and spaced and do not have structurally complex canopy. Şandric et al. (2022) similarly segmented
trees with Mask R-CNN in partly artificial contexts—across five different species in temperate and
Mediterranean orchards. Yang et al. (2022) demonstrated that ITC delineation is possible in the canopy of
greater structural complexity, showing some crown intersection and overlap, in the heavily managed
environment of Central Park in New York City, USA—although delineation was not verified using
ground data—and further demonstrated that a simple structural measurement (crown area) could be
replicated compared to manual measurement from aerial data by using these delineations downstream.
Ball et al. (2023) further demonstrated accurate ITC delineation in tropical forests with a structurally
complex canopy, using Mask R-CNN, although differences in leaf reflectance and canopy structure
corresponding to species differences may facilitate segmentation more easily than in monospecific
canopy, where spectral variation may be relatively lower. Sani-Mohammed et al. (2022) were similarly
able to perform ITC delineation using Mask R-CNN in natural temperate forest in Bavaria although only
segmented dead trees, which may be easier to identify due to lack of foliage. The use of automatically
extracted crown footprints for complex applications such as forest health monitoring, however, is less
comprehensively explored.

Several studies exploiting deep learning for automated forest health measurement have emerged in
recent years. Some work explores the use of classical computer vision, based on manually engineered
algorithms, to perform ITC delineation and then apply deep learning to classify damage levels. Safonova
et al. (2019), for example, applied manual filtering and thresholding to extract rectangular patches of
treetops and applied a number of CNN-based classifiers downstream to classify damage into one of four
levels. Nguyen et al. (2021) similarly applied a manually engineered algorithm for patch extraction,
instead based on normalized Digital Surface Models (nDSMs). The extracted patches were classified by
damage categorically. Although the classification of tree health intomultiple damage levels is a promising
approach, as dieback is a symptom with several continuous stages (Ciesla and Donaubauer, 1994), such
approaches may be limited by their segmentation accuracy, particularly where individual trees differ
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significantly in their response, within and across species. Other works use deep learning-based segmen-
tation for forest health assessment. Schiefer et al. (2023) used a U-net to perform semantic segmentation
(per-pixel classification of all pixels within a target image) of standing deadwood in UAV imagery and
extrapolated this to the landscape level predictions on time series satellite imagery using Long Short Term
Memory Networks (LSTMs). Chiang et al. (2020) and Sani-Mohammed et al. (2022) both used Mask
R-CNN to perform ITC delineation of dead tree crowns from aerial imagery. Where dieback is ongoing,
however, it requires measurement on a continuous scale or by multiple categories, rather than binary
classification (Ciesla and Donaubauer, 1994). Şandric et al. (2022) used deep learning-based ITC
delineation via Mask R-CNN to segment crown footprints and performed post hoc analysis using
vegetation indices derived from color space transformations to measure tree health on a continuous
scale. The approach of using vegetation indices—which do not require additional human labeling—on
footprints extracted via deep learning, shows great promise for dieback measurement, but measurements
of crown health were not verified versus human measurement. Additionally, the use of plantation data
may more easily facilitate this type of forest health measurement—although often monospecific, the
canopy formed by artificially spaced trees is easily delineated, simplifying health monitoring. This
structural simplicity may not reflect performance in many natural ecosystems.

Here, we develop a new approach for early dieback detection from aerial RGB imagery, using deep-
learning based ITC delineation and vegetation indices, and test it in an ecosystem experiencing dieback.
Crucially, unlike in previous work (Şandric et al., 2022), we verify our results by comparison to field-
based dieback measurement by experts. We use drone data collected in aMediterranean stone pine (Pinus
pinea) forest with a structurally complexmonospecific canopy, where some individuals are showing signs
of drought-induced crown dieback (Moreno-Fernández et al., 2022). The severity of drought is projected
to increase across the Mediterranean region (Dubrovský et al., 2014; Hertig and Tramblay, 2017), and
poses a large-scale threat to the functioning of this biodiversity hotspot. Protection through active
monitoring and management of these ecosystems is required (Fernández-Manjarrés et al., 2018; Asti-
garraga et al., 2020)—but is currently limited by reliance on time-consuming expert manual inventories
taken on the ground. In addition to offering a solution to conducting this monitoring at large scale and low
cost, drone-based remote sensing is ideal for the monitoring of drought-induced crown dieback, as effects
at crown extremities are more easily observable from above than from traditional ground-based visual
assessment. We develop a scalable approach based on deep learning and RGB vegetation indices to
monitor this dieback at the individual level, and answer the following questions:

1. Is ITC delineation possible in a structurally complex, monospecific canopy?
2. Does individual health assessment based on vegetation indices (Şandric et al., 2022) correlate with

field-based estimation, and to what degree is this assessment affected by the accuracy of deep
learning-based ITC delineation?

2. Material and methodology

2.1. Data

2.1.1. Study area and inventory
Our dataset covers 1500 ha total ofPinus pinea forest, across nine areas, showing signs of climate-induced
crown dieback. Drone and ground data were collected in Pinar de Almorox, Spain (40.27 °N, 4.36 °W) in
May/June 2021. Amap showing the location of the study site can be seen in Figure 1a. The area is under a
continental Mediterranean climate with a mean annual rainfall of 568 mm, a mean annual temperature of
14°C, and an altitude ranging from 500 to 850 m above sea level. In addition to the dominant canopy
species, P. pinea, a smaller number of Juniperus oxycedrus L. and Quercus ilex can be found in the
midstory. The understory further contains Salvia rosmarinus L., Lavandula stoechas Lam. and Lamiaceae
shrubs, as well as fallen deadwood. Nine distinct, non-overlapping areas were selected to show a gradient
of defoliation, and within these inventory data was taken at 31 sample plots (three to four plots per area).

e18-4 Matthew J. Allen et al.

https://doi.org/10.1017/eds.2024.16 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.16


Sample plots were circular and of 17 m radius, with a total of 453 adult (diameter at breast height, DBH, >
7.5 cm) trees surveyed in total. Each adult tree was assessed by experts in the field for dieback estimation
(percentage defoliation). Crown dieback percentage was estimated visually (with 100% corresponding to
wholly defoliated), taking the average score from two experts for each tree within each plot. A histogram
of dieback/defoliation percentage for all surveyed trees can be seen in Figure 1b. Trunk locations within
each plot were georeferenced using an Emlid Reach RS2 multi-band RTK Global Navigation Satellite
System (GNSS) receiver (Ng et al., 2018). See Moreno-Fernández et al. (2022) for further analysis of
dieback patterns at the site and additional data collected.

Note that each area surveyed by the dronewas not covered entirely by the plot data. Consequently, trees
at the edges of each orthomosaic did not have in situ defoliation estimates or geolocated trunk
coordinates. These trees were still delineated manually from orthomosaic images at a later stage to
provide training data for deep-learning based ITC delineation, but they were not considered in our
analysis of dieback estimation.

2.1.2. Drone imagery
Drone flights were used to obtain images over the nine non-overlapping areas (minimum area 16663 m2,
maximumarea 39736m2), covering all plots, using aDJIMavicMini drone. Theworkwas carried outwith
all relevant permissions, and all national drone regulations and location-specific regulations, including the
use of rotor guards, were observed. As this area is of high conservation value, particularly for birds of prey,
the areas to survey were discussed and approved with land managers in advance of flights. All flights were
performed at a fixed altitude 50 m above take-off location and carried out in May/June 2021 at the same
time as ground data collection. Flight start times varied from 09:30 to 17:00 (local time) and conditions
varied from overcast to clear, resulting in significant differences in lighting conditions and shadowing
between drone flights. Raw images of size 4000 × 2250 px were taken from both nadir and oblique
(55° below horizontal; Nesbit and Hugenholtz, 2019) angles, with 95% front and 80% side overlap.
Ground sampling distance (GSD) was approximately 3 cm for all areas. Between four and six Ground
Control Points (GCPs) were placed in each area and precisely located using the GNSS receiver.

Figure 1. (a) Map showing the location of the site described by our data in the Iberian peninsula.
Map data from OpenStreetMap Contributors (2017). (b) Histogram of visually estimated defoliation
(percentage needles missing) of adult trees in our field data. An estimate of 1.0 corresponds to a tree for
which all foliage is dead, and 0.0 to a tree with completely healthy foliage. A total of 453 adult trees (DBH
> 7.5 cm) were surveyed.
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GCPs were matched across images semi-automatically using Agisoft Metashape 1.8.1.13915 (Agisoft
LLC, 2022). An orthomosaic was generated for each area, also using Agisoft Metashape. These
orthomosaics were cropped to remove edge effects. All data used to train deep learning-based ITC
delineation were based on the orthomosaics rather than the original images.

2.1.3. Manual delineation and training data
Orthomosaics for each area were split into 1024 × 1024 tiles. This resolution was sufficiently large to
preserve the visual context around each crown without downsampling, but small enough not to introduce
excessive computational overhead. To create training data, all crowns visible in the orthoimagery were
delineated manually, including those not covered by field plots, guided by geolocated trunk points where
available. Manual delineation was performed in the full-size orthomosaics and the resulting delineations
split to match the tiled images. We did not delineate understory growth where it was visible in the drone
imagery. A visual example can be seen in Figure 2b. We make this tiled data available in the ubiquitous
COCO format (Lin et al., 2015). A summary table describing our data can be seen in Table 1. Note that

Figure 2. (a) Unlabeled, (b) manual, and (c) automatically predicted crown polygons for both healthy
crowns (left, bottom right) and crowns exhibiting dieback (top center, bottom center). Numbers next to the
class name “tree” denote confidence score corresponding to each prediction. Images in this figure span
approximately 30 m.
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these statistics are derived from the manually delineated polygons, rather than the inventory data, as the
inventory data were not available for all trees, only those in the subplots within each orthomosaic. We did
not perform any hyperparameter tuning and left hyperparameters as specified by the original author for
each component of our methodology (He et al., 2015, 2017; Akyon et al., 2022). We therefore split our
data into training and test sets only using nine-fold cross-validation, geographically, with each of the nine
areas corresponding to the orthomosaic generated by one of the nine non-overlapping drone flights (see
Section 2.1.2). In this approach, each fold uses one specific area as the test set while the remaining areas
were used for training. Thismethodologymeans that the individual predicted footprints, whichwe used to
evaluate segmentation performance and estimate dieback, were not generated by a single, universal
model. Instead, each prediction was produced by a model trained on eight areas and tested on the
remaining area (fromwhich the tile to predict on is drawn). The average performance of our segmentation
approach and the dieback estimation comparisonwas thus calculated by aggregating the results from each
of these nine distinct models, on the area that each model was not trained on, providing a performance
metric that reflects performance across all areas.

2.2. Methods

2.2.1. ITC delineation via instance segmentation
To delineate individual trees from tiled images, we used the ubiquitous Mask R-CNN framework
(He et al., 2017) with a ResNet-101 FPN backbone (He et al., 2015). The backbone was pretrained on
ImageNet (Deng et al., 2009), and both random resizing and flipping were used for augmentation. We
henceforth refer to crown footprints predicted on individual tiled images as “tiled predictions.”

Tiled predictions were recombined using Slicing Aided Hyper Inference (SAHI; Akyon et al., 2022).
We did not change the hyperparameters, used tiles with a relative overlap of 0.2 at inference, and post-
processed predictions using greedy Non-Maximum Merging (NMM) with an Intersection-Over-
Smaller (IOS) match threshold of 0.5. During ITC delineation (instance segmentation), each predicted
crown is given a confidence score, corresponding to how likely it is that it contains a crown. Aminimum
confidence threshold of 0.3 was imposed on predictions before merging, as in the original SAHI
implementation (Akyon et al., 2022). We report segmentation performance using mean Average
Precision (mAP; see Beitzel et al., 2009) at two stages—on the tiled dataset, averaged across all tiles
within each area, and after the tiled predictions are recombined using SAHI, for each of the nine
orthomosaics.

Table 1. Summary information for our dataset of tree crowns in the nine areas covered by drone flights
in Almorox, Spain

Area no. Area (m2) Dimensions (Px) No. crowns Mean crown area (m2) No. of tiles

1 17,942 5491 × 8169 87 51.4 49
2 28,516 6837 × 10427 298 28.7 72
3 28,269 8263 × 8553 366 22.1 77
4 19,225 5835 × 8237 326 27.1 56
5 23,288 7489 × 7774 141 50.5 60
6 16,663 6308 × 6604 202 25.1 45
7 39,736 8781 × 11313 391 20.1 108
8 31,001 8599 × 9013 175 50.9 77
9 39,020 9945 × 9809 177 84.1 104
Total/Avg. 243661 N/A 2163 40.0 648

Note. Crown statistics are derived from manual delineations, rather than inventory, as ground sample plots only covered a small area of each
orthomosaic.
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2.2.2. Vegetation index-based dieback estimates at the tree level
We used an iterative approach to match ITCs to GNSS-measured trunk locations for trees with ground-
truth GPS field locations (positional error < 1 m) and expert dieback assessment (percentage crown
defoliation) in the full-size orthomosaics. To do this, the Euclidean distance was calculated between the
centroid of each ITC and all ground truth trunk locations. The pair with the smallest distance was taken to
be a match, and both ITC and ground truth (field) location for that pair were not considered as part of
further matches. This step was repeated until no ground truth locations remained. We opted to discard
ITC-trunk pairs where the distance from the centroid of the predicted crown to the ground-truth trunk
locationwas greater than the square root of the crown area, to avoid including automatic dieback estimates
that did not reliably correspond to the supposedly matching in situ estimates. See Appendix B for
pseudocode. We repeated this analysis twice—once using the ITCs predicted using the deep learning-
based ITC delineation model, and once using the manually delineated ITCs (which were also used to train
the segmentation model).

For thematched crown-trunk pairs, defoliationwas estimated via GreenChromatic Coordinate (GCC),
a commonmetric that has been used to track phenology successfully in a range of ecosystems (Richardson
et al., 2018), and a similar metric to the vegetation indices used to track tree health in other works (Reid
et al., 2016; Şandric et al., 2022). GCC is defined below in Equation (1).

GCC=
G

R +G+B
(1)

Here, R, G, and B refer to the total red, green, and blue pixel values, respectively, summed across the
region of interest. ITCs were matched to ground-surveyed trunk locations (see Appendix B), and drone-
derived GCC values were then correlated with field-based percentage of defoliation, using GCC values
derived from both the manually labeled and automatically segmented crowns.

3. Results

Our results show that automatic crown delineation was possible in variably packed canopy with low
species variation (Figure 2). We present both per-tile averages and results for full-size orthomosaic
inference using SAHI, per-area in Table 2. Visual results can be seen in Figure 2. An average mAP of
0.519 was achieved on the tiled data, with a minimum of 0.473, a maximum of 0.602, and a standard

Table 2. Summary results (crown segmentation mAP) as mean plus/minus standard deviation for ITC
delineation of our dataset from Almorox, Spain using Nine-fold cross-validation

Tiled (Mask R-CNN) Orthomosaic (Mask R-CNN + SAHI)

Area no. mAP mAP0.5 mAP0.75 mAP mAP0.5 mAP0.75

1 0.602 0.792 0.681 0.490 0.740 0.518
2 0.507 0.715 0.564 0.424 0.630 0.458
3 0.558 0.777 0.641 0.544 0.779 0.610
4 0.496 0.749 0.547 0.439 0.696 0.483
5 0.515 0.763 0.563 0.315 0.544 0.343
6 0.522 0.756 0.576 0.471 0.695 0.537
7 0.486 0.702 0.545 0.460 0.653 0.501
8 0.473 0.661 0.525 0.377 0.580 0.379
9 0.512 0.763 0.563 0.377 0.661 0.325
Mean ± std. 0.519 ± 0.037 0.742 ± 0.039 0.578 ± 0.047 0.433 ± 0.065 0.664 ± 0.070 0.462 ± 0.090

Note.Mean average precision is reported at IoU thresholds of 0.5 and 0.75 and averaged between 0.5 and 0.95 using intervals of 0.05, as in He et al.
(2017).
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deviation of 0.037. When recombined for the full orthomosaic using SAHI, mean mAP was reduced to
0.433, with a minimum of 0.377, maximum of 0.544, and a standard deviation of 0.065. We note that
performance varied somewhat from area to area. We also note that recombining the tiled predictions
increased variation in performance, and decreased mAP for all nine areas.

The correlation between drone and field-based defoliation estimation was strong (Figure 3). We
correlated ground estimates of defoliation with GCC estimates derived from crowns segmented in aerial
imagery, using both crowns segmented using deep learning (Figure 3a) and crowns segmented by hand
(Figure 3b). For the automatically segmented crowns, we found the correlation between calculated GCC
and field-based defoliation estimates was significant (p < 4× 10�32, R2 = 0:35). When the analysis was
repeated using the manually segmented (ground truth) crown polygons (Figure 3b, the correlation was
significant with equivalent performance (p< 2× 10�33, R2 = 0:34).

There was little change in the strength of correlation between field-based defoliation estimation and
aerial GCC-based estimates, when calculated with the automatically extracted crowns (Figure 3a) versus
themanually labeled crowns (Figure 3b). The GCC estimates for each case were matched according to the
corresponding ground truth trunk location obtained for each polygon via Algorithm 1, and showed strong
correlation against each other in Figure 4 (R2 = 0:54, RMSE= 0:01, p< 3 × 10�72).

4. Discussion

We found that, when evaluated on both the tiled and full-orthomosaic crown segmentation data, Mask
R-CNN produced strong results (mAP = 0.519 ± 0.037), comparable or higher to those on machine
learning benchmark data (mAP = 0.371 from Lin et al., 2015). Although results on different data are not
directly comparable, these relatively similar mAP scores indicate that ITC delineation in monospecific
canopy is no less achievable than segmenting everyday objects from curated imagery—althoughwe stress
that the absolute accuracy of the manually annotated training labels is not known. The lack of need for
additional technical development underscores the potential of models such as Mask R-CNN for non-
expert use, proving their applicability to real-world conservation.Whilst segmentation performance could
likely be improved with a more sophisticated or larger model and better postprocessing, these may not be
the limiting factors to using such models in a practical context. Performance decreased in almost all cases
when recombining tiled to full-size orthomosaic prediction using SAHI.

Direct comparison to previous work performing ITC delineation is difficult due to variation in
metrics used to assess performance, differences in canopy structural complexity between ecosystems,
and the inclusion or omission of ground-based data to verify labels. Ground-based data serve as a more
definitive source of accuracy, and the lack of such data in some studies (Yang et al., 2022; Ball et al.,
2023) can potentially lead to misleading performance metrics or less reliable interpretations of model
effectiveness. AlthoughmAP and similar derivativemetrics are widely accepted for measuring instance
segmentation performance on large-scale benchmark datasets such as COCO (Lin et al., 2015), these
metrics are not commonly reported in similar works—with authors commonly opting to report
performance using metrics such as F1-score (Ball et al., 2023) or precision (Weinstein et al., 2019).
The interpretability of these metrics is beneficial, but these are point metrics relying on a single
selection of minimum confidence and Intersection-over-Union (IoU) thresholds—which can be
adjusted arbitrarily to maximize the target metric (Maxwell et al., 2021b). A higher or lower value
of F1-score, precision or recall may not represent a better or worse model for a user, even when trained
on the same data. mAP-based metrics are a better reflection of model performance, and higher values
indicate that a model is likely to be robust to different manual selections of confidence and IoU
thresholds (Maxwell et al., 2021a,b). Given the complex nature of forests, including variation in canopy
structural complexity, a model’s performance across different ecosystems and conditions relies on its
ability to handle observed variability.

We observed a significant negative correlation between field-based defoliation estimates and drone-
derived GCC in our site for both automatic (R2 = 0:35; Figure 3a) and manual segmentation (R2 = 0:34;
Figure 3b), with a high correlation between estimation using the manual labels versus the automatically
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segmented crowns (Figure 4). The difference between the twoGCC estimates for each crown did not grow
substantially when the automatically segmented crown footprint was further from the true location (See
Appendix A for further details). Our findings suggest that even a basic deep-learning approach performs
as effectively asmanual annotations in producing ITC footprints for dieback estimation. Investing inmore
advanced segmentation may not offer significant improvements for estimating dieback or, perhaps, other

Figure 3. Dispersion plots of Estimated Green Chromatic Coordinate (GCC) versus field-based
defoliation at the individual tree level.
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crownmetrics such as Leaf Area Index (LAI)—although further verification would be required to confirm
this. Manual labels are, however, difficult to verify as being accurate, and it may be the case that training
themodel based on crowns labeled by humans from above introduces operator bias (Bai et al., 2018; Geva
et al., 2019). Verifiable ground-truth labels could derived, for example, from additional instruments such
as Terrestrial Laser Scanners (TLS), but such data was not available for this site. Whether it is possible to
match the accuracy of TLS-based segmentation from RGB imagery alone is unknown at this time.

The variance in calculated GCC for a given field-based defoliation percentage may be derived from
physical reasons related to field-based estimates. Dieback is not expected to be uniformwithin each crown
(Denman et al., 2022)—so metrics based on per-pixel color averages, without regard to spatial patterns,
are unlikely to capture the degree of dieback for each crown with perfect accuracy. This effect is
exaggerated by the particular patterns of drought-induced dieback, which typically begins at the
extremities of the crown (Denman et al., 2022)—resulting in substantially different observations when
viewed from above, as in the aerial images used here, and from below, as would be seen in situ. Although
other, similar work, uses different vegetation indices (Şandric et al., 2022), we suggest that the variance in
results is unlikely to diminish significantlywhile still using vegetation indices based on simple color space
transformations. Extracting dieback estimates using the deep learning model directly—akin to classifi-
cation in the context of the original Mask R-CNN model (He et al., 2017), but modified to perform
regression—may improve performance as these estimates could leverage spatial patterns in addition to
color information. We opted not to use this approach to avoid the need to produce dieback labels for trees
visible in orthoimagery that were not already covered by existing field-based estimates.

Our results show that, for data taken with the same instruments, vegetation index-based estimates
correlate significantly with expert field-based estimates. However, care should be taken when making
direct comparisons between estimates for individual trees. For example—comparing dieback estimates
for the same tree from imagery taken at different times, or with different instruments, may generate
confusion as measured color intensities will change due to lighting or camera differences.We suggest that
color calibrating imagery may improve this, although we did not perform color calibration here as all
images were taken with the same instruments and did not make direct comparisons between individual
data points obtained under different conditions.

Figure 4. Correlation between Green Chromatic Coordinate (GCC) estimated using manually labeled
versus automatically segmented crowns. Crowns are matched according to the corresponding inventory
trunk location from the crown matching algorithm. The RMSE between the two GCC estimates was found
to be 0.01, with p< 3× 10�72.
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We successfully automated canopy defoliation measurement in a single-species canopy, comprising
P. pinea, the only species displaying dieback in our ecosystem. Minor modifications are likely to be
required for our approach—based on vegetation indices applied to crown footprints extracted using deep
learning-based instance segmentation—to be applicable to data of multiple species. Since canopy
reflectance may vary due to differences in leaf spectra and crown structure corresponding to species
(Ollinger, 2011), wewould not recommend directly comparing vegetation index-based estimates between
two species. The approach of Şandric et al. (2022) indicates that using the deep learning model to classify
crown footprints by species prior to any health monitoring is promising, although this increases the
labeling burden on practitioners. It is possible that an increase in open ITC delineation data may help to
relieve this problem, by removing the need for site-specific datasets, or by reducing volume requirements
on labels via pretraining on such open data. Alternatively, estimating dieback based on spatial patterns
rather than simple color-space based estimation may prove to be more comparable, as dieback is not
expected to be uniform within each crown (Denman et al., 2022). In the case of our data, the canopy
comprises P. pinea almost exclusively—which is also the only species displaying dieback in this
ecosystem—meaning we do not suffer from such confusion in this work.

Our approach has three important advantages that decrease financial and manual cost to application.
Firstly, an increase in processing speed, secondly, the use of a low-cost, widely available drone platform,
and thirdly, the reduced reliance on expert analysis in the field. The time savings, for example, of using a
large-scale aerial approach such as this rather than a ground method, are significant. Unlike a typical field
campaign, including manual inventory and perhaps the use of other instruments such as laser scanners,
drone flights for a site can be conducted in hours to days rather than weeks to months. With a trained
model, postprocessing these data to extract downstreammetrics requires only a few hours (for a dataset of
this size on consumer hardware). Short, drone-based campaigns also have smaller requirements for
material—with the DJI Mavic Mini used here being available for only a few hundred euros, and being
light enough to fly with minimal legal requirements. Combined with the reduced number of person-hours
required, the cost of conducting and processing data from a drone-based survey is minimal compared with
a traditional field campaign.

Although we used significant manual input at two points during postprocessing, this could be avoided
in practice as more open data becomes available (Lines et al., 2022). Firstly, manual GCPs were used to
stitch together the orthorectified images.We found orthophotos stitched together without the use of GCPs
were of comparable visual quality, although we did not compare the use of these images downstream to
avoid the need to repeat the time-consuming labeling process. It is possible that the orthomosaics may be
georeferenced less accurately without the use of GCPs, although this could be addressed by mounting a
more accurate GPS receiver to the drone, and such RTK systems are increasingly becoming available on
consumer drone systems. Secondly, the manual labeling process was time-consuming and required
several weeks to complete by a single user. Although we used ground truth labels to verify our results,
they may not be required for practitioners to use similar approaches, particularly with community efforts
to provide ground-truth training data for similar applications (Puliti et al., 2023). Large foundation
models, for example, can produce reasonable segmentation in a wide range of unseen contexts when
pretrained on vast quantities of general visual data (Kirillov et al., 2023), although can be difficult to
employ using consumer hardware. Some of these approaches rely on context-specific prompting to
identify rough areas of interest (Kirillov et al., 2023). As accuracy requirements for prompting are less
strict than for full segmentation, methods for generating these prompts developed on open forest data may
be sufficiently accurate on unseen ecosystems. Alternatively, smaller models such as the one used here
could be pretrained on public ITC delineation data, and used without retraining. Both of these solutions,
however, require large-scale data of tree crowns from a diverse set of ecosystems.

In addition to speed and cost savings, the adoption of automated, digitalmethods also benefits accuracy
(Mu et al., 2018) and reduces dataset sampling bias. Typically, an inventory-based approach can gather
only simple structural measurements such as trunk diameter or height, which could be used to produce
crude estimates of difficult to measure quantities such as crown area. A data-driven approach, using
drone-based remote sensing and deep learning, allows for measurement of quantities such as crown area
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far more accurately than hand measurement, but without the laborious time requirements of other highly
accurate instruments such as TLS scanners. The comprehensive nature of automated surveying also
reduces selection bias—for example, vegetation in areas that are difficult to reach by foot, such as on very
steep terrain, may differ physiologically from plants found on flat ground. A drone-based survey can
include a large number of stems from such areas, whereas an inventory-based survey may only include
stems in areas that can be accessed directly.

With these combined improvements in speed, cost, coverage, and accuracy, profound implications for
forest management in deteriorating ecosystems are evident. Real-time detection of tree dieback is
essential, as declining trees become hotspots for primary pests and pathogens to thrive and multiply.
Additionally, such trees are more susceptible to secondary pest attacks (Balla et al., 2021). Regular
updates on tree health are vital for guiding management strategies, such as thinning stands to lessen
resource competition among surviving trees—crucial under extreme climate conditions—or implement-
ing sanitation cuts to eliminate trees harboring pest or pathogen populations (Roberts et al., 2020).

For this paradigm shift toward automation to be applied in practice, two requirements remain. Firstly,
an increase in extensive, diverse open datasets is vital for both training and validation, minimizing the
labeling burden on end-users (Lines et al., 2022). Secondly, open and easy-to-use implementations of
these tools, applied to common forest management data formats, are needed to minimize barriers to
deployment for non-expert users. Some promising initiatives already exist (Ball et al., 2023; Environ-
mental Data Science Book, 2023). With these two requirements fulfilled, the shift to automation in forest
management and conservation could be expedited. Focus should therefore be given to fostering a culture
of data sharing, and to the development of accessible platforms to deploy these methods. Toward these
goals, we make both code and data available for this work, in both common remote sensing and machine
learning-readable formats.

5. Conclusions

In this work, we made three key contributions to the state-of-the-art in aerial tree health assessment.
Firstly, we demonstrated the feasibility of deep learning-based ITC delineation in structurally complex
monospecific natural canopies, where reduced leaf spectra variation between individual trees may result
in relatively lower variation in canopy reflectance compared to mixed canopies. Although verifying
crown segmentation precisely is challenging, we corroborated our segmentation method using ground
truth GPS trunk locations to assess its accuracy. We highlight the need for further verification in future
work, potentially through ground-based tools such as Terrestrial Laser Scanning (TLS).

Secondly, our work found that detecting crown dieback using vegetation indices derived from deep
learning-based crown footprints is feasible, as suggested by Şandric et al. (2022). For the first time, we
validated this type of tree health assessment with field-based expert observations and found that there was
strong correlation between our automatic estimates and field-based estimates.

Lastly, we give evidence that our method of tree health assessment is not overly sensitive to
segmentation accuracy. Repeating the analysis with ground truth segmentation labels in place of model
predictions did not significantly improve the correlation with field-based assessment. This finding
suggests developingmore precise segmentation methods for tree health assessment may not be necessary,
although more verification is required when using more complex or spatially explicit measurements
downstream.

Author contribution. All authors contributed to the conceptualization of the work; M.J.A and E.R.L designed the methodology;
E.R.L., D.M.-F. and R.-B. collected and pre-processed the data; M.J.A. processed the data and wrote the relevant software.
M.J.A. analyzed the data and led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval
for publication.

Competing interest. The authors declare none.

Data availability statement. Our code is available at github.com/mataln/dlncs-dieback. A permanent record is available at http://
doi.org/10.5281/zenodo.10657079. Our data is available at http://doi.org/10.5281/zenodo.10646992.

Environmental Data Science e18-13

https://doi.org/10.1017/eds.2024.16 Published online by Cambridge University Press

http://github.com/mataln/dlncs-dieback
http://doi.org/10.5281/zenodo.10657079
http://doi.org/10.5281/zenodo.10657079
http://doi.org/10.5281/zenodo.10646992
https://doi.org/10.1017/eds.2024.16


Ethics statement. The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

Funding statement. M.J.A.was supported by theUKRICentre for Doctoral Training inApplication ofArtificial Intelligence to the
Study of Environmental Risks (EP/S022961/1). S.W.D.G. and E.R.L. were funded by a UKRI Future Leaders Fellowship awarded
to E.R.L. (MR/T019832/1). P.R-B. was supported by the Community of Madrid Region under the framework of the multi-year
Agreement with the University of Alcalá (Stimulus to Excellence for Permanent University Professors, EPU-INV/2020/010). P.R-
B. and E.R.L. are supported by the Science and Innovation Ministry (subproject LARGE and REMOTE, N PID2021-123675OB-
C41 and PID2021-123675OB-C42).

Abbreviations

CHM Canopy Height Model
COCO Common Objects in COntext
ExG Excess Green Index
GCC Green Chromatic Coordinate
GCP Ground Control Point
GNSS Global Navigation Satellite System
GSD Ground Sampling Distance
IOS Intersection-Over-Smaller
IoU Intersection-Over-Union
ITC Individual Tree Crown
LAI Leaf Area Index
LiDAR Light Detection and Ranging
LSTM Long Short-Term Memory
mAP Mean Average Precision
nDSM normalized Digital Surface Model
NEON National Ecological Observation Network
NMM Non-Maximum Merging
OLS Ordinary Least Squares
R-CNN Region-based Convolutional Neural Network
RGB Red, Green, and Blue
RMSE Root-Mean-Square Error
RTK Real-Time Kinematic
SAHI Slicing Aided Hyper Inference
TLS Terrestrial Laser Scanning

References
Agisoft LLC (2022) Agisoft Metashape Pro 1.8.3.

Akyon FC, Altinuc SO and Temizel A (2022) Slicing aided hyper inference and fine-tuning for small object detection. In 2022
IEEE International Conference on Image Processing (ICIP). Bordeaux, France: IEEE, pp. 966–970. https://doi.org/10.1109/
ICIP46576.2022.9897990.

Allen CD,Breshears DD andMcDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off
from hotter drought in the anthropocene. Ecosphere 6(8), art129. https://doi.org/10.1890/ES15-00203.1.

Asner GP andMartin RE (2016) Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity
and remote sensing. Global Ecology and Conservation 8, 212–219. https://doi.org/10.1016/j.gecco.2016.09.010.

Astigarraga J, Andivia E, Zavala MA,Gazol A, Cruz-Alonso V, Vicente-Serrano SM and Ruiz-Benito P (2020) Evidence of
non-stationary relationships between Climateand Forest responses: Increased sensitivity to climate change in Iberian forests.
Global Change Biology 26(9), 5063–5076. https://doi.org/10.1111/gcb.15198.

Baatz M and Schäpe A (2000) Multiresolution segmentation: An optimization approach for high quality multi-scale image
segmentation. In Strobl J, Blaschke T and Griesbner G (eds.), Angewandte Geographische Informations-Verarbeitung, XII.
Karlsruhe, Germany: Wichmann Verlag, pp. 12–23.

Baccini A, Walker W, Carvalho L, Farina M, Sulla-Menashe D and Houghton RA (2017) Tropical forests are a net carbon
source based on aboveground measurements of gain and loss. Science 358(6360), 230–234. https://doi.org/10.1126/science.
aam5962.

e18-14 Matthew J. Allen et al.

https://doi.org/10.1017/eds.2024.16 Published online by Cambridge University Press

https://doi.org/10.1109/ICIP46576.2022.9897990
https://doi.org/10.1109/ICIP46576.2022.9897990
https://doi.org/10.1890/ES15-00203.1
https://doi.org/10.1016/j.gecco.2016.09.010
https://doi.org/10.1111/gcb.15198
https://doi.org/10.1126/science.aam5962
https://doi.org/10.1126/science.aam5962
https://doi.org/10.1017/eds.2024.16


Bai Y, Zhang Y,DingM and Ghanem B (2018) Finding tiny faces in the wild with generative adversarial network. In 2018 IEEE/
CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, pp. 21–30. https://doi.
org/10.1109/CVPR.2018.00010

Ball JGC, Hickman SHM, Jackson TD, Koay XJ, Hirst J, Jay W, Archer M, Aubry-Kientz M, Vincent G and Coomes DA
(2023) Accurate delineation of individual tree crowns in tropical forests from aerial RGB imagery using Mask R-CNN. Remote
Sensing in Ecology and Conservation 9, 641–655. https://doi.org/10.1002/rse2.332.

Balla A, Silini A,Cherif-Silini H,Chenari Bouket A,MoserWK,Nowakowska JA,Oszako T,Benia F andBelbahri L (2021)
The threat of pests and pathogens and the potential for biological control in forest ecosystems [number: 11 Publisher:
Multidisciplinary Digital Publishing Institute]. Forests 12(11), 1579. https://doi.org/10.3390/f12111579.

Beitzel SM, Jensen EC and Frieder O (2009) Map. In Liu L and Özsu MT (eds.), Encyclopedia of Database Systems. New York,
NY: Springer, pp. 1691–1692. https://doi.org/10.1007/978-0-387-39940-9_492.

Bright BC, Hudak AT, Egan JM, Jorgensen CL, Rex FE, Hicke JA and Meddens AJH (2020) Using satellite imagery to
evaluate bark beetle-caused treemortality reported in aerial surveys in amixed conifer Forest inNorthern Idaho, USA.Forests 11,
529. https://doi.org/10.3390/f11050529.

Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G and Peñuelas J (2011) Widespread crown condition decline, food web
disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of
Sciences 108(4), 1474–1478. https://doi.org/10.1073/pnas.1010070108.

Chen Z, Li S, Wan X and Liu S (2022) Strategies of tree species to adapt to drought from leaf stomatal regulation and stem
embolism resistance to root properties. Frontiers in Plant Science 13, 926535. https://doi.org/10.3389/fpls.2022.926535.

Chiang C-Y,Barnes C,Angelov P and Jiang R (2020) Deep learning-based automated forest health diagnosis from aerial images.
IEEE Access 8, 144064–144076. https://doi.org/10.1109/ACCESS.2020.3012417.

Ciesla WM and Donaubauer E (1994) Decline and Dieback of Trees and Forests: A Global Overview [Google-Books-ID:
FDgYfi1G8L0C]. Rome, Italy: UN FAO.

Deng J,DongW, Socher R,Li L-J,LiK and Fei-Fei L (2009) ImageNet: A large-scale hierarchical image database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, pp. 248–255. https://doi.org/10.1109/
CVPR.2009.5206848.

Denman S, Brown N, Vanguelova E and Crampton B (2022) Chapter 14 - Temperate oak declines: Biotic and abiotic
predisposition drivers. In Asiegbu FO and Kovalchuk A (eds.), Forest Microbiology. Cambridge, MA, USA: Academic Press,
pp. 239–263. https://doi.org/10.1016/B978-0-323-85042-1.00020-3.

Diez Y,Kentsch S,FukudaM,CaceresMLL,MoritakeK andCabezasM (2021) Deep learning in forestry using UAV-acquired
RGB data: A practical review [number: 14 Publisher: Multidisciplinary digital publishing institute]. Remote Sensing 13(14),
2837. https://doi.org/10.3390/rs13142837.

DubrovskýM,HayesM,Duce P,TrnkaM, SvobodaMandZara P (2014)Multi-GCMprojections of future drought and climate
variability indicators for the Mediterranean region. Regional Environmental Change 14(5), 1907–1919. https://doi.org/10.1007/
s10113-013-0562-z.

Ecke S, Dempewolf J, Frey J, Schwaller A, Endres E, Klemmt H-J, Tiede D and Seifert T (2022) UAV-based forest health
monitoring: A systematic review [number: 13 Publisher: Multidisciplinary digital publishing institute]. Remote Sensing 14(13),
3205. https://doi.org/10.3390/rs14133205.

Environmental Data Science Book (2023) Environmental Data Science Book: A living, open and community-driven online
resource to showcase and support the publication of data, research and open-source tools for collaborative, reproducible and
transparent Environmental Data Science. https://doi.org/10.5281/zenodo.7951713.

Fensham RJ and Radford-Smith J (2021) Unprecedented extinction of tree species by fungal disease. Biological Conservation
261, 109276. https://doi.org/10.1016/j.biocon.2021.109276.

Fernández-de-Uña L, Martínez-Vilalta J, Poyatos R, Mencuccini M and McDowell NG (2023) The role of height-driven
constraints and compensations on tree vulnerability to drought. New Phytologist 239(6), 2083–2098. https://doi.org/10.1111/
nph.19130.

Fernández-Manjarrés JF,Ruiz-Benito P,ZavalaMA,Camarero JJ,Pulido F,ProençaV,NavarroL, Sansilvestri R,Granda
E,Marqués L,TemunovičM,Bertelsmeier C,Drobinski P,Roturier S,Benito-GarzónM,Cortazar-Atauri IGd,SimonL,
Dupas S, Levrel H and Sautier M (2018) Forest adaptation to climate change along steep ecological gradients: The case of the
Mediterranean-temperate transition in South-Western Europe. Sustainability 10(9), 3065. https://doi.org/10.3390/su10093065.

GevaM,Goldberg Yand Berant J (2019) Are wemodeling the task or the annotator? An investigation of annotator bias in natural
language understanding datasets. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processin-
gand the 9th International Joint Conference on Natural Language Processing, 1161–1166. https://doi.org/10.48550/
arXiv.1908.07898

Hao Z, Lin L, Post CJ,Mikhailova EA, Li M, Chen Y, Yu K and Liu J (2021) Automated tree-crown and height detection in a
young forest plantation using mask region-based convolutional neural network (mask R-CNN). ISPRS Journal of Photogram-
metry and Remote Sensing 178, 112–123. https://doi.org/10.1016/j.isprsjprs.2021.06.003.

Harris CR,Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D,Wieser E, Taylor J, Berg S, Smith NJ,
KernR, PicusM,Hoyer S, vanKerkwijkMH,BrettM,Haldane A, del Río JF,WiebeM, Peterson P,Gérard-Marchant P,
SheppardK,ReddyT,WeckesserW,AbbasiH,GohlkeC,Oliphant TE (2020)Array programmingwithNumPy.Nature 585
(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2.

Environmental Data Science e18-15

https://doi.org/10.1017/eds.2024.16 Published online by Cambridge University Press

https://doi.org/10.1109/CVPR.2018.00010
https://doi.org/10.1109/CVPR.2018.00010
https://doi.org/10.1002/rse2.332
https://doi.org/10.3390/f12111579
https://doi.org/10.1007/978-0-387-39940-9_492
https://doi.org/10.3390/f11050529
https://doi.org/10.1073/pnas.1010070108
https://doi.org/10.3389/fpls.2022.926535
https://doi.org/10.1109/ACCESS.2020.3012417
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/B978-0-323-85042-1.00020-3
https://doi.org/10.3390/rs13142837
https://doi.org/10.1007/s10113-013-0562-z
https://doi.org/10.1007/s10113-013-0562-z
https://doi.org/10.3390/rs14133205
https://doi.org/10.5281/zenodo.7951713
https://doi.org/10.1016/j.biocon.2021.109276
https://doi.org/10.1111/nph.19130
https://doi.org/10.1111/nph.19130
https://doi.org/10.3390/su10093065
https://doi.org/10.48550/arXiv.1908.07898
https://doi.org/10.48550/arXiv.1908.07898
https://doi.org/10.1016/j.isprsjprs.2021.06.003
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1017/eds.2024.16


He K, Gkioxari G, Dollár P and Girshick R (2017) Mask R-CNN. 2017 IEEE International Conference on Computer Vision
(ICCV), 2980–2988.

He K, Zhang X, Ren S and Sun J (2015) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 770–778.

Hertig E and Tramblay Y (2017) Regional downscaling of Mediterranean droughts under past and future climatic conditions.
Global and Planetary Change 151, 36–48. https://doi.org/10.1016/j.gloplacha.2016.10.015.

HuangC-y,AndereggWRandAsnerGP (2019) Remote sensing of forest die-off in the Anthropocene: From plant ecophysiology
to canopy structure. Remote Sensing of Environment 231, 111233. https://doi.org/10.1016/j.rse.2019.111233.

Hurel A, de Miguel M, Dutech C, Desprez-Loustau M-L, Plomion C, Rodríguez-Quilón I, Cyrille A, Guzman T, Alía R,
González-Martínez SC and Budde KB (2021) Genetic basis of growth, spring phenology, and susceptibility to biotic stressors
in maritime pine. Evolutionary Applications 14(12), 2750–2772. https://doi.org/10.1111/eva.13309.

Kännaste A, Jürisoo L,Runno-Paurson E,Kask K, Talts E, Pärlist P,Drenkhan R and Niinemets Ü (2023) Impacts of Dutch
elm disease–causing fungi on foliage photosynthetic characteristics and volatiles in Ulmus species with different pathogen
resistance. Tree Physiology 43(1), 57–74. https://doi.org/10.1093/treephys/tpac108.

Kattenborn T, Leitloff J, Schiefer F and Hinz S (2021) Review on convolutional neural networks (CNN) in vegetation remote
sensing. ISPRS Journal of Photogrammetry and Remote Sensing 173, 24–49. https://doi.org/10.1016/j.isprsjprs.2020.12.010.

Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, Xiao T, Whitehead S, Berg AC, Lo W-Y, Dollár P and
Girshick R (2023) Segment Anything. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), 3992–4003.
https://doi.org/10.48550/arXiv.2304.02643.

Lastovicka J, Svec P, Paluba D, Kobliuk N, Svoboda J, Hladky R and Stych P (2020) Sentinel-2 data in an evaluation of the
impact of the disturbances on Forest vegetation. Remote Sensing 12(12), 1914. https://doi.org/10.3390/rs12121914.

Liebhold AM, McCullough DG, Blackburn LM, Frankel SJ, Von Holle B and Aukema JE (2013) A highly aggregated
geographical distribution of forest pest invasions in the USA. Diversity and Distributions 19(9), 1208–1216. https://doi.
org/10.1111/ddi.12112.

Lin T-Y,Goyal P, Girshick R, He K and Dollár P (2018) Focal Loss for Dense Object Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence 42(2), 318–327. https://doi.org/10.48550/arXiv.1708.02002

Lin T-Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL and Dollár P (2015)
Microsoft COCO: Common Objects in Context. ECCV (5) (2014), 740–755. https://doi.org/10.48550/arXiv.1405.0312

Lines E,AllenM,Cabo C,Calders K,Debus A,Grieve S,MiltiadouM,Noach A,Owen H and Puliti S (2022) AI applications
in forest monitoring need remote sensing benchmark datasets. 2022 IEEE International Conference on Big Data (Big Data),
pp. 4528–4533. https://doi.org/10.1109/BigData55660.2022.10020772.

Maxwell AE, Warner TA and Guillén LA (2021a) Accuracy assessment in convolutional neural network-based deep learning
remote sensing studies—Part 1: Literature review. Remote Sensing 13(13), 2450. https://doi.org/10.3390/rs13132450.

Maxwell AE, Warner TA and Guillén LA (2021b) Accuracy assessment in convolutional neural network-based deep learning
remote sensing studies—Part 2: Recommendations and best practices. Remote Sensing 13(13), 2591. https://doi.org/10.3390/
rs13132591.

McMahon SM, Arellano G and Davies SJ (2019) The importance and challenges of detecting changes in Forest mortality rates.
Ecosphere 10(2). https://doi.org/10.1002/ecs2.2615.

Moreno-Fernández D, Camarero JJ, García M, Lines ER, Sánchez-Dávila J, Tijerín J, Valeriano C, Viana-Soto A, Zavala
MÁ and Ruiz-Benito P (2022) The interplay of the tree and stand-level processes mediate drought-induced Forest dieback:
Evidence from complementary remote sensing and tree-ring approaches. Ecosystems 25(8), 1738–1753. https://doi.org/10.1007/
s10021-022-00793-2.

MuY,Fujii Y,TakataD,ZhengB,NoshitaK,HondaK,Ninomiya S andGuoW (2018) Characterization of peach tree crown by
using high-resolution images from an unmanned aerial vehicle. Horticulture Research 5, 74. https://doi.org/10.1038/s41438-
018-0097-z.

Mueller-Dombois D (1988) Forest decline and dieback — A global ecological problem. Trends in Ecology & Evolution 3(11),
310–312. https://doi.org/10.1016/0169-5347(88)90108-5.

Nesbit PR and Hugenholtz CH (2019) Enhancing UAV–SfM 3D model accuracy in high-relief landscapes by incorporating
oblique images. Remote Sensing 11(3), 239. https://doi.org/10.3390/rs11030239.

Ng KM, Johari, J., Abdullah, S. A. C., Ahmad A and Laja BN (2018) Performance evaluation of the RTK-GNSS navigating
under different landscape. In 2018 18th International Conference on Control, Automation and Systems (ICCAS). Pyeongchang,
South Korea: IEEE, 1424–1428. Available at https://ieeexplore.ieee.org/document/8571729 (accessed 18 January 2024).

Nguyen HT, Lopez Caceres ML, Moritake, K, Kentsch, S., Shu, H., & Diez Y (2021) Individual sick fir tree (Abies mariesii)
identification in insect infested forests by means of UAV images and deep learning [Number: 2 Publisher: Multidisciplinary
Digital Publishing Institute]. Remote Sensing 13(2), 260. https://doi.org/10.3390/rs13020260.

Ollinger SV (2011) Sources of variability in canopy reflectance and the convergent properties of plants. New Phytologist 189(2),
375–394.

Onishi M and Ise T (2021) Explainable identification and mapping of trees using UAV RGB image and deep learning. Scientific
Reports 11(1), 903. https://doi.org/10.1038/s41598-020-79653-9.

OpenStreetMap Contributors (2017) Planet dump Available at https://planet.osm.org.

e18-16 Matthew J. Allen et al.

https://doi.org/10.1017/eds.2024.16 Published online by Cambridge University Press

https://doi.org/10.1016/j.gloplacha.2016.10.015
https://doi.org/10.1016/j.rse.2019.111233
https://doi.org/10.1111/eva.13309
https://doi.org/10.1093/treephys/tpac108
https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/10.48550/arXiv.2304.02643
https://doi.org/10.3390/rs12121914
https://doi.org/10.1111/ddi.12112
https://doi.org/10.1111/ddi.12112
https://doi.org/10.48550/arXiv.1708.02002
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.1109/BigData55660.2022.10020772
https://doi.org/10.3390/rs13132450
https://doi.org/10.3390/rs13132591
https://doi.org/10.3390/rs13132591
https://doi.org/10.1002/ecs2.2615
https://doi.org/10.1007/s10021-022-00793-2
https://doi.org/10.1007/s10021-022-00793-2
https://doi.org/10.1038/s41438-018-0097-z
https://doi.org/10.1038/s41438-018-0097-z
https://doi.org/10.1016/0169-5347(88)90108-5
https://doi.org/10.3390/rs11030239
https://ieeexplore.ieee.org/document/8571729
https://doi.org/10.3390/rs13020260
https://doi.org/10.1038/s41598-020-79653-9
https://planet.osm.org
https://doi.org/10.1017/eds.2024.16


Puliti S, Pearse G, Surový P, Wallace L, Hollaus M, Wielgosz M and Astrup R (2023) For-instance: A UAV laser scanning
benchmark dataset for semantic and instance segmentation of individual trees.

Reid AM, Chapman WK, Prescott CE and Nijland W (2016) Using excess greenness and green chromatic coordinate colour
indices from aerial images to assess lodgepole pine vigour, mortality and disease occurrence. Forest Ecology and Management
374, 146–153. https://doi.org/10.1016/j.foreco.2016.05.006.

Ren S,HeK,Girshick R and Sun J (2016) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (2015), 1137–1149. https://doi.org/10.48550/
arXiv.1506.01497.

Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Chen M, Gray JM, Johnston MR, Keenan TF, Klosterman ST,
Kosmala M, Melaas EK, Friedl MA and Frolking S (2018) Tracking vegetation phenology across diverse North American
biomes using Pheno Camimagery. Scientific Data 5(1), 180028. https://doi.org/10.1038/sdata.2018.28.

RobertsM,GilliganCA,Kleczkowski A,HanleyN,WhalleyAEandHealey JR (2020) The effect of forest management options
on Forest resilience to pathogens. Frontiers in Forests and Global Change, 3. https://doi.org/10.3389/ffgc.2020.00007.

Safonova A, Tabik S, Alcaraz-Segura D, Rubtsov A,Maglinets Yand Herrera F (2019) Detection of fir trees (Abies sibirica)
damaged by the bark beetle in unmanned aerial vehicle images with deep learning [number: 6 Publisher:Multidisciplinary digital
publishing institute]. Remote Sensing 11(6), 643. https://doi.org/10.3390/rs11060643.

Şandric I, IrimiaR,PetropoulosGP,AnandA,Srivastava PK,PleşoianuA,Faraslis I,StaterasD andKalivasD (2022) Tree’s
Detection & Health’s assessment from ultra-high resolution UAV imagery and deep learning. Geocarto International 37(25),
10459–10479. https://doi.org/10.1080/10106049.2022.2036824.

Sani-Mohammed A, Yao W and Heurich M (2022) Instance segmentation of standing dead trees in dense Forest from aerial
imagery using deep learning. ISPRS Open Journal of Photogrammetry and Remote Sensing 6, 100024. https://doi.org/10.1016/j.
ophoto.2022.100024.

Schiefer F, Schmidtlein S, Frick A, Frey J,Klinke R,Zielewska-Büttner K, Junttila S,Uhl A and Kattenborn T (2023) UAV-
based reference data for the prediction of fractional cover of standing deadwood from sentinel time series. ISPRSOpen Journal of
Photogrammetry and Remote Sensing 8, 100034. https://doi.org/10.1016/j.ophoto.2023.100034.

Senf C,Buras A,ZangCS,RammigA and Seidl R (2020) Excess forest mortality is consistently linked to drought across Europe.
Nature Communications 11(1), 6200. https://doi.org/10.1038/s41467-020-19924-1.

Teskey R,Wertin T, Bauweraerts I, Ameye M,Mcguire MA and Steppe K (2014) Responses of tree species to heat waves and
extreme heat events. Plant, Cell & Environment 38(9), 1699–1712. https://doi.org/10.1111/pce.12417.

Watson JEM, Evans T,Venter O,Williams B, Tulloch A, Stewart C, Thompson I,Ray JC,Murray K, Salazar A,McAlpine
C, Potapov P,Walston J,Robinson JG, Painter M,Wilkie D, Filardi C, LauranceWF,Houghton RA,… Lindenmayer D
(2018) The exceptional value of intact forest ecosystems. Nature Ecology & Evolution 2(4), 599–610. https://doi.org/10.1038/
s41559-018-0490-x.

Weinstein B,Marconi S, Bohlman S, Zare A andWhite E (2019) Individual tree-crown detection in RGB imagery using semi-
supervised deep learning neural networks. Remote Sensing 11(11), 1309. https://doi.org/10.3390/rs11111309.

YangM,Mou Y, Liu S,Meng Y,Liu Z,Li P,XiangW, Zhou X and Peng C (2022) Detecting and mapping tree crowns based on
convolutional neural network andGoogle earth images. International Journal of Applied Earth Observation andGeoinformation
108, 102764. https://doi.org/10.1016/j.jag.2022.102764.

Zhang Y, Ling F, Wang X, Foody GM, Boyd DS, Li X, Du Y and Atkinson PM (2021) Tracking small-scale tropical forest
disturbances: Fusing the Landsat and Sentinel-2 data record. Remote Sensing of Environment 261, 112470. https://doi.
org/10.1016/j.rse.2021.112470.

Appendix

A. Residual Plots
A plot of the residuals corresponding to the OLS of Figure 3, as a function of centroid-trunk match distance, can be seen in Figure 5.
The magnitude of the residuals does not seem to increase with match distance for distances less than 1, as per Algorithm 1.
We suggest, for this reason, that thematching procedure outlined in Algorithm 1 is not the source of any variation in calculatedGCC.
This is despite the observation that P. pinea trunks often display curvature where the crown center does not coincide with the trunk
position. The linear model overestimates GCC for larger in situ defoliation estimates. There is no reason a priori to expect GCC to be
a linear function of the in situ visual defoliation estimates.
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B. Crown Matching
We outline the iterative approach used to match ITCs with ground-surveyed trunk locations in Algorithm 1. Refer to https://
numpy.org/doc/ for further details regarding specific functions (Harris et al., 2020).

Algorithm 1 NumPy-like pseudocode for crown matching

# pred_polys—list of predicted polygons
# n_trunks—number of ground-truth trunk locations
# n_poly—number of ITCs

dist np.empty(n_trunks,n_poly)

while dist.shape[0] > 0 do
i, j np.where(dist == np.min(dist))
gcc calculate_gcc(pred_polys[j])
dist np.delete(dist, i, axis =0)
dist np.delete(dist, j, axis =1)
pred_polys.pop( j)

end while

Cite this article: Allen MJ, Moreno-Fernández D, Ruiz-Benito P, Grieve SWD and Lines ER (2024). Low-cost tree crown
dieback estimation using deep learning-based segmentation. Environmental Data Science, 3: e18. doi:10.1017/eds.2024.16

Figure 5. Plot of GCC residuals from OLS versus Distance from inventory trunk location to matched
polygon.
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