
Recently a paper authored by ourselves and a
number of co-authors about the proportion of

phenotypic variation in height that is explained by
common SNPs was published in Nature Genetics
(Yang et al., 2010). Common SNPs explain a large
proportion of the heritability for human height (Yang
et al.). During the refereeing process (the paper was
rejected by two other journals before publication in
Nature Genetics) and following the publication of
Yang et al. (2010) it became clear to us that the
methodology we applied, the interpretation of the
results and the consequences of the findings on the
genetic architecture of human height and that for
other traits such as complex disease are not well
understood or appreciated. Here we explain some of
these issues in a style that is different from the
primary publication, that is, in the form of a number
of comments and questions and answers. We also
report a number of additional results that show that
the estimates of additive genetic variation are not
driven by population structure.
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Rationale for the Study

Genome-wide association studies (GWAS) have found
hundreds of SNPs that are significantly associated
with complex traits such as height (Gudbjartsson et
al., 2008; Lango Allen et al., 2010; Lettre et al.,
2008; Weedon et al., 2007) and diseases such as age-
related macular degeneration (Jakobsdottir et al.,
2009; Maller et al., 2006). However, in most cases,
the published SNPs reliably associated with a trait
explain only a small proportion of the known genetic
variance. For instance, the heritability of human
height is about 80% (Fisher, 1918; Visscher et al.,
2008) but the published SNPs that are significantly
associated with height explain only ~10% of the phe-
notypic variance (Lango Allen et al., 2010). This has
been called the ‘missing heritability’ problem (Maher,
2008). We proposed two, not mutually exclusive,

hypotheses that could explain this missing heritability.
It could be that the SNPs used in GWAS explain some
or all of the additive genetic variance but most of
them have such a small effect that they are not signif-
icant and therefore not reported. Alternatively, it
could be that some or all of the mutations causing
variation in height are not in perfect linkage disequi-
librium (LD) with any of the SNPs and therefore part
of the genetic variance is undetected by the SNPs. We
provided evidence to support both hypotheses.

What was the Purpose of the Study?

The purpose of the study was to estimate the propor-
tion of variation in height that is captured by the
SNPs that are used in GWAS. Our study differs from
published GWAS in that we estimate the total vari-
ance explained by the SNPs without focussing on
individual SNPs. Consequently, our estimate is not
diminished by the failure of individual SNP effects to
reach a significance threshold. If most causal variants
for human height have such low frequency in the
population that they are not in LD with the
(common) SNPs on the commercial SNP arrays then
the method we used would not detect much more
additional variance than already accounted for by the
published genome-wide significant loci. If, however,
there are many causal variants that are in LD with
the common SNPs but the effect sizes are too small
to be detected with genome-wide significance, then
our method would pick up their contribution to
additive genetic variation.

What Were the Main Results?

We found that the SNPs explain ~45% of the pheno-
typic variance (Yang et al., 2010). This is substantially
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more than the ~10% explained by published, significant
SNPs but less than the heritability of 80%. Thus the
SNPs track approximately half of the known additive
genetic variance. The difference between 10% and 45%
is due to many SNPs with such small effects that they
are not individually significant in GWAS. However,
about half the genetic variance is left unaccounted for.
We showed that this amount of missing heritability is
expected if the mutations causing variation in height are
similar to SNPs with minor allele frequency (MAF) <
0.1. The causal variants are expected to have lower
MAF than common SNPs because they are more likely
to be subject to some form of natural selection that
leads to variants negatively associated with reproductive
fitness to be at low frequency.

Our study is the first to show that at least half of
the heritability for height (typically estimated using
twin and family studies) is captured by common SNPs.

What was the Experimental Design?

Our design was the same as that used for GWAS: a
sample from a population of individuals not know-
ingly related to each other were measured for height
and genotyped for 300,000 to 600,000 SNPs.

What was the Analysis?

We fit a statistical model for height that includes all
the SNPs but the SNP effects (bi) are treated as
random variables from a distribution with variance
σb

2. The model is y = ∑wibi + e where y is the pheno-
typic value, bi is the effect of the i-th SNP, wi = (xi –
2pi) / √[2pi(1 – pi)] with pi the allele frequency and xi

the genotype indicator of the i-th SNP (xi = 0, 1 or 2),
and e is a random environmental effect. The scaling
factor wi is chosen because var(wibi) = var(wi)var(bi) =
var(xi – 2pi) var(bi) / [2pi(1 – pi)] = var(bi) = σb

2, since
var(xi – 2pi) = 2pi(1 – pi) under Hardy-Weinberg pro-
portions of genotype frequencies. Using matrix
notation this can be written y = Wb + e. We imple-
ment this analysis by an equivalent model in which y =
g + e where g = Wb is a vector of genetic values calcu-
lated from the SNP alleles each individual carries, and
var(g) = WW’σb

2. WW’ is a matrix of the relationships
between all the individuals calculated from the SNPs
(Goddard, 2009; Hayes et al., 2009). The variance of
the genetic effects (the effects in vector g) in this model
is the same as the variance explained by all the SNPs
together in the original model that fits SNP effects
directly. In the twin (or behavior genetics) literature
the fitted model y = g + e would be called an AE
model (with g a vector of latent additive genetic
values), but with the difference that the additive rela-
tionships between individuals do not come from
pedigree data but are estimated from marker data
(and we do not use close relationships). The statistical
equivalence of the two models (fitting SNP effects or
fitting whole genome additive genetic effects) means
that the inference (and, e.g., likelihood) of the two
models is identical. For example, one could predict the

effects of genome-wide additive values and then trans-
form the estimates to those for individual SNP effects
(Strandén and Garrick, 2009; VanRaden , 2008).

How Does This Study Relate to Traditional
Designs to Estimate Genetic Variation?

Traditional designs to estimate genetic variation are
based upon the resemblance between relatives in pedi-
grees. From pedigree data we can derive the expected
proportion of the genome that is shared between rela-
tives, from probability theory (Lynch & Walsh, 1998).
The probabilities that relatives share alleles that are
identical-by-descent (IBD) are calculated with respect
to a base (reference) population, which is usually
defined as the founders in the pedigree. If the model of
analysis is correct then the traditional design based
upon the pedigree gives an unbiased estimate of the
additive genetic variance. The unbiasedness does not
depend on the genetic architecture of the trait (e.g.,
common or rare variants) because the IBD coefficients
calculated from the pedigree are the correct probabili-
ties of sharing alleles by descent, whether common or
rare. Our design was the same as that used for GWAS:
a sample of a population of individuals that are not
knowingly related to each other. Therefore it differs
from traditional methods of estimating heritability in
that we used supposedly unrelated individuals.
However, all members of a species are related to some
degree because they share common ancestors. We use
SNPs to trace small chromosome segments back to a
common ancestor in the distant past and hence esti-
mate the relationship between individuals as tracked
by the SNPs.

It is also possible to estimate genetic variance from
an analysis of within-family segregation in a known
pedigree, by correlating actual relationships with phe-
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Table 1

Estimates of the Variance Explained by the SNPs on Even Chromosomes
from 10 Simulation Replicates

Replicate h2 SE

1 0.045 0.055
2 0.025 0.057
3 0.0 0.058
4 0.0 0.057
5 0.0 0.059
6 0.0 0.056
7 0.057 0.056
8 0.0 0.062
9 0.0 0.057
10 0.0 0.054

Note: A total of 1,000 causal variants were simulated on the odd chromosomes, with a
total heritability of 0.8. Genetic variance was estimated from a relationship
matrix constructed from all SNPs on the even chromosomes. The same geno-
types were used as in Yang et al. (2010). If there is population structure then
estimated relatedness on the even chromosomes is correlated with relatedness
on the odd chromosomes (where the causal variants are simulated) and there-
fore genetic variance will be associated with the even chromosomes.
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notypic similarity. We performed such analyses using
sibling pairs, estimating genome-wide IBD (actual or
realised relationships) from microsatellite markers,
and estimated a heritability of ~80% (Visscher et al.,
2007; Visscher et al., 2006). As in pedigree analyses,
these analyses capture the contribution of all variants,
common or rare in the population, because the IBD
probabilities are correct for all variants.

What are the Main Innovations in the Paper?

There are a number of new elements in the paper that
had not been used before in the human genetics litera-
ture. They include (1) The definition of ‘relatedness’
with respect to a base population that is the current
population (Powell et al., 2010), (2) Estimating the
genetic variance explained by the SNPs by using a sta-
tistically equivalent model with relationships
calculated from SNP genotypes, (3) Allowing for
imperfect LD between the common SNPs and causal
variants of a given MAF spectrum.

How Do You Allow for Imperfect LD Between
Common SNPs and Causal Variants?

When we found that only half the genetic variance for
height was explained by the genotyped SNPs we rea-
soned that might be due to imperfect LD between
SNPs and causal variants. For the case of a single geno-
typed SNP and a single ungenotyped causal variant the
effect of imperfect LD is easy to quantify, since the
variance explained at the SNP is r2 times the variance
explained at the causal locus, with r2 the standard LD
(squared) correlation of alleles at two loci (Hill and
Robertson, 1968). The maximum value that r2 can
reach is strongly determined by the allele frequencies at
the two loci (Wray, 2005) and the more different the
allele frequencies the lower the value of r2. Therefore,
since most genotyped SNPs are common, if causal vari-
ants have low minor allele frequency then the amount
of variation (heritability) explained at the genotyped
SNPs can be substantially lower than the variation
explained by the causal variant.

We cannot measure the LD between causal variants
and genotyped SNPs directly because we do not know
the causal variants. However, we can estimate the LD
between SNPs. If the causal variants have similar char-
acteristics to the SNPs in terms of allele frequency
spectra and linkage disequilibrium, the LD between
causal variants and SNPs should be similar to that
between the SNPs themselves. One causal variant can
be in LD with multiple SNPs and so the SNPs collec-
tively could trace the causal variant even though no one
SNP was in perfect LD with it. Therefore we divided
the SNPs randomly into two groups and treated the
first group as if they were causal variants and asked
how well the second group of SNPs tracked these simu-
lated causal variants. This can be judged by the extent
to which the relationship matrices calculated from the
SNPs agree with the relationship matrix calculated
from the ‘causal variants’. The covariance between the
estimated relationships for the two sets of SNPs equals

the true variance of relatedness whereas the variance of
the estimates of relatedness for each set of SNPs equals
true variation in relatedness plus estimation error.
Therefore, from the regression of pairwise relatedness
estimated from one of the set of SNPs onto the esti-
mated pairwise relatedness from the other set of SNPs
we can quantify the amount of error and ‘regress back’
or ‘shrink’ the estimate of relatedness towards the mean
to take account of the prediction error. This is standard
practice in making predictions of random effects
(Goddard et al., 2009; Lynch & Walsh, 1998;
Robinson, 1991).

We found that the relationship between two indi-
viduals estimated from the SNPs had to be regressed
back towards the mean by about 16% to provide an
unbiased estimate of the relationship calculated from
the ‘causal variants’. This means that the variance
explained by causal variants that had similar character-
istics, in terms of MAF and LD structure, to common
SNPs, would be 54% [~ 45 / (1 – 0.16)] of phenotypic
variance not the 45% tracked by the SNPs. It may
seem odd that relationships based on 300,000 SNPs
are not accurate but this is because the relationships
being estimated are very small as the people are ‘unre-
lated’ and so small sampling errors caused by a finite
but large number of SNPs are still important.

If causal variants have a lower MAF than
common SNPs the LD between SNPs and causal vari-
ants is likely to be lower than the LD between
random SNPs. To investigate the effect of this possi-
bility we used SNPs with low MAF to mimic causal
variants. We found that the relationship estimated by
random SNPs (with MAF typical of the genotyped
SNPs on the array) was a poorer predictor of the
relationship at these ‘causal variants’ than it was of
the relationship at other random SNPs. When the
relationship matrix at the SNPs is shrunk to provide
an unbiased estimate of the relationship at these
‘causal variants’, we find that the ‘causal variants’
would explain 80% of the phenotypic variance which
is our conventional estimate of the heritability. This
does not prove that the causal variants are similar to
SNPs with MAF < 0.1 but it shows the data are con-
sistent with this hypothesis.

What Would Happen if a Much Denser SNP Chip
is Used?

Denser SNPs would provide higher LD with causal
variants and so the proportion of variance explained
by the SNPs would increase. However, if the charac-
teristics of causal variants differ systematically from
those of the genotyped SNPs (e.g., because of lower
MAF), then the genotyped SNPs will still not perfectly
track the causal variants and so will still explain less
than all the genetic variance. This problem can be
described in two equivalent ways. As already stated it
can be viewed as incomplete LD between SNPs and
causal variants due to different MAF distributions.
Alternatively, it can be viewed as a difference between
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the relationships between people at causal variants
and the relationships between individuals at the geno-
typed SNPs. For instance, if causal variants have low
MAF because they are recent mutations, then common
genotyped SNPs that trace very ancient relationships
do not correctly reflect the relationships at the causal
variants. As stated previously, estimates of genetic
variance from pedigree relationships do not suffer
from this lack of LD because pedigree relationships
employ the correct probabilities of IBD at all causal
variants, rare or common.

What Would Happen if the Experimental Sample
Size is Larger?

Larger sample size would mean that we estimate the
variance explained by the SNPs with a lower standard
error but it would not systematically affect it because
the current estimate is unbiased. A larger sample size
in the context of prediction analysis would result in
more accurate estimates of individual marker effects
and therefore a larger correlation between predictor
and outcome (detailed further below and in the
Appendix A).

What Would Population Structure 
do to These Estimates?

Structure in the population, whether due to unknown
close relatives in the sample or population substruc-
ture, has the effect that the marker similarity for a pair
of individuals at one location on the genome is corre-
lated with their similarity at other locations. That is
easily seen for very close relatives; for example, full
sibs. They share approximately 50% of their genes by
descent on all autosomes. So if there are causal vari-
ants on one chromosome then they could be ‘detected’
by SNPs on other chromosomes. This means that LD
exists even between genes on different chromosomes.
The analysis would still calculate the variance
explained by the SNPs but this could include the effect
of causal variants that were not even linked to the
SNPs being used. Similarly, if we had individuals with
ancestry from Holland (tall) and Italy (less tall), then,
because Italians are more similar on all chromosomes
than they are to the Dutch (and vice versa), causal
variants would be correlated with SNPs even if they
are not on the same chromosome. We are not inter-
ested in these kinds of associations because we want
to estimate genetic variance due to causal variants that
are in close LD with the SNPs.

What is the Evidence That Population Structure
is not Causing the Observed Effects?

We took several steps to avoid population structure
inflating the estimate of the variance explained by the
SNPs. We excluded one individual from any pair that
had an estimated relationship > 0.025 (approximately
equivalent to between 3rd and 4th cousins). We fitted
the first 20 principal components from the relation-
ship matrix in the statistical model so that any
population substructure that they picked up was

excluded from the variance explained by the SNPs.
Critically, we then estimated the correlation between
the relationship matrices estimated from different
chromosomes and did not find significant correlation.
We tested a set of SNPs that are ancestry-informative
in Europe for association with height and did not
observe inflation of the test-statistics.

For the purpose of this article, we performed an
additional simulation experiment (inspired by com-
ments from Dan Stram) by assuming that the causal
variants were all carried on one set of chromosomes
(odd numbers) and another set of chromosomes (even
numbers) carried SNPs from which we estimated relat-
edness. If there is structure in the population then this
would imply that a pair of individuals that are closely
related on odd chromosomes will also be closely related
on even chromosomes. We used the observed genotype
data of 3,925 individuals and 295K SNPs as the basis
of the simulation, and simulated 1,000 causal variants
on the odd chromosomes with a total heritability of
80%. Then we performed a restricted maximum likeli-
hood (REML) analysis of the simulated phenotypes on
the genetic relationship matrix estimated from the SNPs
on the even chromosomes. The estimates and standard
errors (SEs) from 10 simulation replicates are shown in
Table 1. Since REML estimates of variance are always
positive, if the true variance explained is zero, we
expect half the replicates to return an estimate of 0.0
and half to return an estimate with mean value 0.8
times the standard error. This is exactly what happened.
Therefore we conclude (again) that there is no structure
in the data that would inflate the estimate of the vari-
ance explained by the SNPs.

What about G × G and G × E Interactions?

The narrow sense heritability of height is estimated to
be around 0.8. This is the additive genetic variance as a
proportion of the phenotypic variance — it does not
include non-additive genetic variance (G × G or domi-
nance) or genotype × environment interactions (G × E).
These may form part of the 20% of phenotypic vari-
ance that is not additive genetic.

What are Our Results Consistent With?

Our results are consistent with a highly polygenic
model because we detect variation across the entire
genome. In the published GWAS for height, the largest
proportion of variance explained by any one SNP is
about 0.003, that is, 0.3% (Lango Allen et al., 2010).
This means there must be many genes affecting height
and consequently most must explain a small propor-
tion of the variance. We estimate that half of the
additive genetic variation in height is tagged by
common SNPs. This does not mean that causal vari-
ants are necessarily common or necessarily SNPs, only
that they are in sufficient LD with the genotyped SNPs
to be detected. Since we do not explain all genetic
variation that we believe exists in the population, our
results are consistent with a model in which the
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remainder of variation is caused by variants not in
strong LD with the SNPs. One reason why such vari-
ants are not in strong LD with the SNPs is because
they have lower MAF. Another reason could be that
they are in regions of the genome not well covered by
SNPs; for example, structural/repetitive variation. Our
results could be caused by causal variants that have
MAF < 0.1.

What are our Results not Consistent With?

It is possible that some causal variants are due to a
very rare allele that has a large effect on height. For
instance, many mutations causing dwarfism are
known. Mutations at the gene FBN1 that causes
Marfan syndrome increase height by approximately
10cm, but their frequencies are low (~1/5000 or less).
Under the (unrealistic) assumption of no selection,
these mutations explain about 0.2 to 0.3% of the vari-
ance for height (using 2p(1 – p)[a + (1 –2p)d]2, with a
and d the additive and dominance effects and p the
frequency of the mutation). It is unlikely that any
mutation with such a large effect explains a large pro-
portion of the variance because they are rare. Our
results show that half the genetic variance is tracked
by common SNPs and this variance is split among
hundreds or even thousands of SNPs. The remaining
half of the genetic variance could well be split among
a large number of causal variants with MAF < 0.1 but
there is no reason to believe that this missing variance
is explained by only a few variants and therefore most
must explain a small amount of the variance. This has
implications for the design of resequencing studies.
Genome sequence data will include causal variants
and so increase the power to detect rare variants.
However, the power will still be limited by the propor-
tion of variance explained by each variant and
therefore large sample size will still be needed.

Why are the Same Proportions of Variance 
Not Found When Doing Prediction Analyses?

From the prediction analyses in Lango Allen et al.
(2010), the regression analysis explains only ~10%-
12% of variation in height. This is not at all
inconsistent with estimating that 45% of phenotypic
variation is explained by common SNPs. The predic-
tion equation depends on the effects of individual
SNPs being estimated accurately. Since these effects
are small, even small standard errors are important
and reduce the accuracy of a prediction equation
based on SNPs (Goddard et al., 2009).

The prediction analyses in Lango Allen et al. (and
in other published papers) are from a regression of the
phenotype (y) on a predictor (ŷ). The predictor is typ-
ically a linear combination of estimated SNP effects
(b̂i for the i-th SNP) and genotype indicator variables
(xi for the i-th SNP, with, for example, xi = 0, 1 or 2
for genotypes AA, AB and BB). That is, ŷ =  ∑xi b̂i.
Importantly, the SNP effects are usually estimated
using least squares. SNPs that are in the predictor can
be variants that are known to be associated with the

trait or a subset of all GWAS SNPs, for example
ranked on statistical significance (Purcell et al., 2009;
Wray et al., 2007).

Let us take the extreme but illustrative example
that we know m causal variants and that these variant
together explain h2 of the phenotypic variation in the
population. That is, Σ[2pi(1 – pi)bi

2] / var(y) = var(g) /
var(y) = h2, with pi the frequency of the causal variant
at the i-th locus and var(g) the additive genetic vari-
ance explained by these m causal variants. However,
although we know which loci contribute additive
genetic variation, we do not know the true effects (bi),
we only have their estimates (b̂i). Now we can contrast
the estimate of the proportion of variance explained
by these loci with the prediction accuracy when we
estimate the effects in a discovery sample and use
those estimated effects in an independent test sample.
Details are given in Appendix A. They show that the
proportion of variance explained by all SNPs in the
population is a different parameter to the squared
correlation between phenotype and a predictor con-
structed from the causal variants when the effects are
estimated with error. The measurement error on the
causal variants (or SNPs) decreases the correlation
between predictor and phenotype whereas the esti-
mate of the total variance explained by all SNPs is not
influenced by these errors.

Why Did We Leave Out Close Relatives?

The reason for leaving out closer relatives (e.g., 3rd
cousins or closer) was to avoid the possibility that the
resemblance between close relatives could be due to
non-genetic effects (shared environment) so that we
would be picking up environmental rather than
genetic effects. In fact, leaving these few pairs in or
out made very little difference to the results. If we had
included many close relatives such as twin pairs (MZ
and DZ pairs), fullsibs and parents and offspring, then
the estimate of heritability would be dominated by the
phenotypic resemblance of these relatives because their
estimated relationships (1 for MZs, and approximately
1/2 for first-degree relatives) are so much larger than
the estimates of relatedness between ‘unrelated’ pairs
(on average zero with a SD of approximately 0.004).
The estimate of heritability from an analysis with many
close relatives would be similar to the estimate using
only those relatives and fitting an AE model. Such an
analysis would not tell us something new and would
not be informative with respect to variation due to
causal variants that are in LD with common SNPs.

Concluding Remarks

In Yang et al. (2010) we focussed on the estimation of
additive genetic variation explained by all SNPs
together, using the standard model of quantitative (bio-
metrical) genetics. We relied on the use of a statistical
equivalent model of fitting all SNPs in the model of
analysis (with their effects random, i.e. from a distribu-
tion of effect sizes) and a model that fits random effects
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of individuals and uses all SNPs to estimate relation-
ships between people. The method we used differs
from standard GWAS in that there is no selection of
SNPs based upon test statistics for association
between height and SNPs. Consequently, we do not
suffer from the ‘Winner’s Curse’ and we have shown
elsewhere (Goddard et al., 2009) that treating SNPs
effects as random (rather than fixed, as is done in
standard GWAS analysis) is logical and leads to unbi-
ased estimated of their effects, in the sense that E(b| b̂) =
b̂. Statistical analysis of genome-wide effects of individ-
uals or of individual markers effects when fitting all
markers in the model is routinely done in plant and
animal breeding (Goddard & Hayes, 2009; Meuwissen
et al., 2001).

Why have we encountered so much apparent misun-
derstanding of the methods and results in the human
genetics community? The core of our method is heavily
steeped in the tradition of prediction of random effects
and the estimation of variance due to random (latent)
effects. While estimation and partitioning of variance
has a long history in human genetics, in particular in
twin research, the prediction of random effects is alien
to many human geneticists and, surprisingly, also to sta-
tisticians (Robinson, 1991). Another reason could be
the simultaneous use of population genetics and quanti-
tative genetics concepts and theory in our paper, since
these are usually applied in different applications, e.g.,
gene mapping or estimation of heritability. All concepts
and methods that we used are extensively described in
the textbooks by Falconer and Mackay (1996; chapters
1, 3, 4, 7–10) and Lynch and Walsh (1998; chapters 4,
7, 26, 27).
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APPENDIX A

Contrasting the Estimate of Genetic Variance With Accuracy of Prediction

From the theory in Yang et al. (2010) and the description in the main text of the current paper we have an esti-
mate of the relationship between individuals j and k defined at the causal variants are,

Ajk= 
1 Σ cov(xij, xik)
m var(xi)

We also have the covariance between their phenotypes:

cov(yj, yk) = cov(Σxijbi + ej, xikbi + ek) = Σ[bi
2cov(xij, xik)]

= Σ[bi
2var(xi) cov(xij, xik) / var(xi)]

= var(g)Ajk

Hence, the phenotypic resemblance between any pair of individuals is proportional to the relationship at the
causal variants. This is exactly analogous to using pedigree relationships (instead of the Ajk from identity at the
causal variants) and contrasting phenotypic resemblance with identity at the causal variants will lead to an unbi-
ased estimate of genetic variance contributed by all these variants.

Now we contrast the estimate of heritability from relatives to the proportion of variance that is explained by
the predictor in the least squares regression analysis (R2). Least squares estimates have the properties of E(b̂ | b) =
b and var(b̂ |b) is the sampling variance that depends on the allele frequency and sample size: var(b̂ | b)~ var(y) /
[2p(1 – p)N] with N being the sample size of discovery set. Hence the expected value of the covariance between
predictor and phenotype is

E{Σ[bi b̂i 2pi(1 – pi)]} = Σ[2pi(1 – pi) bi
2] = var(g).

R2(y, y ̂ ) = cov(y, y ̂ )2 / [var(y) var(ŷ)]

= var(g)2 / [var(y) var(ŷ)] = h2 var(g)/var(ŷ)

This equation is only equal to h2 if the SNP effects are known without error because then var(ŷ) = var(g). Using
least squares estimates of b results in the variance of the predictor being much larger than it should be if the SNP
effects are estimated with error:

var(ŷ) ≈ Σ[2pi(1 – pi) b̂i
2 ]

The expected value of b̂2 is E (b̂) 2  + var (b̂)  = b2 + SE2 (b̂) , so
E[var(ŷ)] = Σ[2pi(1 – pi)bi

2] + Σ[2pi(1 – pi)SE2(b̂i)] ≈ var(g) + mvar(y) / N
and finally,

E[R2 (y, ŷ)] ≈ h2 var(g) / [var(g) + m var (y)/N] = h2 /[1+m / (h2N)]

This is a very long-winded way of saying that the accuracy of prediction from estimated SNP effects can be very
different from the proportion of variance explained in the population by those effects.

As an example, if we assume that for height m = 1000 and h2 = 0.5. Then even if we knew all causal variants
and had a sample size of 10,000 to estimate their effect sizes, the expected regression R2 in a different sample is
~0.42. In reality, we do not know the causal variants. The estimated effect sizes for associated loci for height are
about 1-4 mm and the SE from a sample size of 100,000 and MAF of 0.3 and a phenotypic SD of 70 mm is
~0.3mm. Hence there is considerable error in the estimation of the effects.
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