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Abstract

Crossed products of C* -algebras by *-endomorphisms are defined in terms of a universal prop-
erty for covariant representations implemented by families of isometries and some elementary
properties of covariant representations and crossed products are obtained.

1991 Mathematics subject classification (Amer. Math. Soc.): 46 L 40, 46 L 05.

1. Introduction

In the fundamental paper [3] on the algebras On generated by families of
isometries, Cuntz showed how On could be regarded as a crossed product
U H F ( O xa N of the UHF algebra UHF(n°°) by the (non-unital) shift
endomorphism a: JC i-> en ® x. As he remarked in the subsequent paper
[4] this procedure can be extended to a *-endomorphism a of an arbitrary
C* -algebra A by firstly considering the inductive limit A^ of the system
A —> A —» A -* • • • . (The notation used in this paper for the associated maps

a a a

from A to A^ will be a 0 , a{, a 2 , . . . . )
The system

Q l ai
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gives rise to an automorphism a ^ of A^ : let A^ xa Z be the associated
crossed product, with canonical unitary u^ e ^{A^ xa Z), and canoni-
cal injection i^: Ax —> Ax xa Z , and, when p e M{AOO xa Z), define
the crossed product A x a N to be PiA^ x aooZ)p, where p = (i^ o a o ) ( l ) .
(Throughout this paper M(B) denotes the multiplier algebra of a C* -algebra
B and the same symbol is used for a *-homomorphism from B onto C
and its natural extension from M(B) into M(C).) It is easy to see that
v = puxp is an isometry in A XQ N implementing a and that A xa N has a
universal property for non-degenerate representations in which a is imple-
mented by a single isometry; for completeness this is included as Proposition
3.3 of the present paper.

Another approach to crossed products of certain C*-algebras by *-endo-
morphisms occurs in work by Doplicher and Roberts. In [6] they focus at-
tention on endomorphisms of unital C* -algebra which are covariantly im-
plemented not by a single isometry but by a family vx, ... ,vn of isometries
with v*Vj = «5- - 1 ; this situation is also described by them in terms of an ap-
propriate Hilbert space of isometries. The purpose of the present note is to
indicate a common framework for looking at both types of crossed products:
given a *-endomorphism a of a C* -algebra A an infinite family of crossed
products will be defined. For each cardinal n the crossed product ,4x"N will
be the appropriate universal object for covariant representations of (A, a)
implemented by a family of n isometries; in the case n — 1 the crossed
product is that defined by Cuntz and for other finite n it is an extension of
that defined by Doplicher and Roberts.

I am grateful to Iain Raeburn for pointing out an error in an earlier version
of this paper.

2. Covariant representations

Let n be a non-degenerate representation of a C*-algebra A on a Hilbert
space H (that is, a representation with n(l) = 1^, where 1 e M{A))
and let a be a *-endomorphism of A. There may (but need not) be a *-
endomorphism 0 of B(H) with P{n{a)) = n(a(a)) for all a e A: if there is
then, by [1, Proposition 2.3] (or, more precisely, the minor generalisation in
[12, Proposition 2.3], which also extends to non-separable spaces), there ex-
ists a family {Tt}ie] of isometries on H such that n(a(a)) = ^2iTin(a)T*
for each a e A (where weak convergence is used for infinite / ) . We will
describe this situation by saying that the pair (n, {^,},e/) is a covariant

https://doi.org/10.1017/S1446788700037113 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037113


206 P. J. Stacey [3]

representation of (A, a) of multiplicity | / | . The following examples illus-
trate some of the range of possibilities.

EXAMPLES 2.1. (a) Let a be the unilateral shift, defined by a((x{, x2,...))
= (x2, x3, •••) on c0. Then, for each x e c ^ , the dense subalgebra of
sequences of finite support, an(x) = 0 for some n. Hence, if (n, {7̂ .})
is a covariant representation of (c0, a) on H and /? is the corresponding
•-endomorphism of B(H), then f}"(n(x)) — 0 and hence n(x) — 0 . It
follows that n is zero on cm and therefore, by continuity, n = 0 so that
(c0, a) possesses no (non-degenerate) covariant representations.

(b) Let a be a *-automorphism of a C*-algebra A, let (y/, U) be a
covariant representation (in the usual sense) of {A, a) on H and let {S,}/e /

be a family of isometries on some Hilbert space K with S*Sj = 5tj 1 and
J^jSjS* = 1. Then (y/ ® 1, {U ® <S,-}l-e/) is a covariant representation with
multiplicity | / | of (A, a) on H <S> K: hence (^, a) possesses covariant
representations of all multiplicities.

(c) Let a be the canonical shift endomorphism of On, where n < oo,
defined by a(x) = Yl"=\ StxS*. Then, for every non-degenerate representa-
tion n of On, (n, {niSj)}) is a covariant representation of multiplicity n .
Some of these representations also have other multiplicities: for example let
n be a type III representation on a separable Hilbert space and note that, as
described in [11, 2.9.26], the endomorphism X H J ] nfJS^xniS*) of n{On)"
also extends to an automorphism Ad(U) of B{H).

Example 2.1(b) indicates how covariant representations of arbitrary multi-
plicity can be constructed from representations of multiplicity one; combin-
ing this method with Cuntz's approach to multiplicity one crossed products
gives the following result. In the proof and throughout this paper T^T*
will be used to denote 7^ • • • 7^ T* ••• T^ , where fi = ( / / , , . . . , fir) and
v = [yx, . . . , vs) have lengths r = \fi\ and s = \u\.

PROPOSITION 2.2. Let a be a ^-endomorphism of a C*-algebra A and
let n be a cardinal number. (A, a) possesses (non-degenerate) covariant
representations (n, {Tt}) of multiplicity n ifand only if Ax j= {0}.

PROOF. If A^ — {0} and a € A then, by the definition of A^ as de-
scribed, for example, in [8, Chapter 2], there exists k € N with a (a) = 0.
If (n, {Tt}) is a covariant representation of multiplicity n of (A, a) on

H then 0 = n{ak{a)) = £w = i f c 7^7r(a)7^ and hence n{a) = 0, giving a con-
tradiction. Conversely, let A^ / {0} , let y/ be a faithful representation of
A x Z on some Hilbert space H and let {St} be a family of n isome-

oo

tries on some Hilbert space K with X) StS* = \K . Then ((y/ o i^ o Q0) ® 1,
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<S>St}) is a covariant representation of multiplicity n of (A, a) on
y/(p)H ® K (which is non-zero since ao(l) / 0).

The connection between A^ and covariant representations of (A, a) is
further elaborated in the next result.

PROPOSITION 2.3. Let a be a *-endomorphism of a C*-algebra A, let
(n, {Tj}) be a covariant representation of (A, a) on H and let H be the

Hilbert space inductive limit of the sequence H —U H —'-+ H —U • • • (with

corresponding embeddings Wo: H —• H, Wx: H —> H, •••). Then there ex-
ists a unitary U on H and a covariant representation (ft, U) of(Aoo, a^)
on H such that ftoa0 restricts to Ad(W0)on on WQ(H) and UWQ = WQTX.

PROOF. Define U to be the unitary on H arising from the sequence

H

H • H • H • • • •

r, T, r,

and observe that, for each h € H, UWm(h) = Wm_l(h) for each m > 1
and UW0(h) = WQ{Txh). Let nQ be the representation of A on H de-
fined by nQ{a)Wm{h) = Wm{n{am{a))h) for each a e A and each h € H
(which is well-defined because n{am(a))Txh = Y.iTin{am~\a))T*Txh =
r,7r(am~1 (a))h) and let nn = (Ad(U*)n)nQ. A routine calculation shows
that nn+l(a(a))Wm(h) = nn(a)Wm(h) for each m > n + 1, each h € H and
each a e A, from which it follows that the following diagram commutes.

B(H)

Hence there exists a representation ft of Ax on H with noan = nn for each
n > 0, from which it follows that n°a0 restricts to Ad(W0) ° n on WQ(H).
If a e A then, for each « > 1, (xcoaoooa;I)(a) = (itoanoa)(a) - nn(a(a)) =
^n-M) = Ad(U)7Cn(a) = Ad(U)(ftoan)(a) and hence noa^ = (Ad(U))oft ,
as required.
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3. Crossed products

As in [10], crossed products of C*-algebras by *-endomorphisms can be
defined by their universal property.

DEFINITION 3.1. A crossed product of multiplicity n for a *-endo-
morphism a of a C*-algebra A with Ax ^ {0} is a C*-algebra B to-
gether with a *-homomorphism iA: A —> B with iA(iM^) = ^M(B) > an<* a

family { f j of n isometries in M(B) with t'tj = Stj\ for each i,j such
that

(a) iA(a{a)) = J \ W ) ' J for each a e A >
(b) for every covariant representation (n, {T(}) of (A, a) with multi-

plicity n there exists a non-degenerate representation n x r of B
with (7r x T) o ̂  = re and (n x r)(f.) = T( for each i,

(c) B is generated by elements of the form iA{a)t Jl.

When n is infinite the expression £ . tjiA(a)t* is to be interpreted using
weak convergence in 5**: condition (a) requires that the limit exists and
belongs to B.

If A^ = {0} then, by Proposition 2.2, the pair {A, a) possesses no covari-
ant representations so that condition (b) in Definition 3.1 becomes vacuous:
we therefore choose not to define a crossed product when A^ = {0} .

PROPOSITION 3.2. Let a be a *-endomorphism of a C*-algebra A for
which A^ / {0}. Then, for any cardinal n, there exists a unique crossed
product ^ x " N of multiplicity n.

PROOF. Following the proof of [ 10, Proposition 3] let S be a set of covari-
ant representations of multiplicity n of {A, a) such that every cyclic covari-
ant representation of multiplicity n is equivalent to a member (n, {T*})
of S, let H = © { / ^ : (w, {7f}) e S}, let iA = ©re: A -» B{H), let
Ti = 0 n T* and let A x" N be the C*-algebra generated by elements of
the form iA(a)T' T*. Since S is non-empty, A x" N is the required unique
crossed product (as in [10, Proposition 3]).

To complete the paper, the description of the crossed product in Proposi-
tion 3.2 will be supplemented by others, starting with special cases in which
the crossed product takes a simple form.

PROPOSITION 3.3. Let a be a *-endomorphism of a C*-algebra A with
Ax ^ {0} and with p = ^ (anO)) e ^{A^ xa Z). Then the multiplicity

oo

one crossed product A x^ N is isomorphic to piA^ xa Z)p.
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PROOF. Let t = puxp. Then ft = pu^pu^p = pi^ia^a

iA: A-> PiA^ xa Z)p be denned by iA(a) = (/oooa0)(a): it then follows that

tiA{a)t* = pujj^ o ao)(a)t4/> = p ^ o ax o ao(fl))p = / K ^ ° a0 ° a)(fl)p -
iA(a(a)) for each a e ^ .

To see that elements of the form iA(a)t fv generate piA^ xa "L)p note
firstly that p{A x Z)p is the closed linear span of the elements

oo
u"ooP w n e r e a & A, n e Z and m e N with m> -n. However

= "oo( *"oo O C _

and so
m+n

I p

Using an approximate identity it is easily checked that each of these elements
is in the C*-algebra generated by elements of the form iA(a)t t*v .

Finally let (n, T) be a multiplicity one covariant representation of {A, a)
on H and let (ft, U) be the associated representation of Ax on H given by
Proposition 2.3. If ftxU is the corresponding non-degenerate representation
of A^ xa Z, note that PQ = (fix U)(p) = ft(ao( 1)) is the projection from H
onto WQ(H), so that (rex C/)(py4ooxQ Z/?) leaves f^,(/f) invariant: hence a

oo

representation n x T of p ^ ^ xQ Z/> on / / is defined by Ad(W0 )o(ftxU).

By Proposition 2.3, (* x D(f) =°^rf( Wo*) ° (ft x U^u^p) = £
^ o ^ ^ o = ^o^o^o^ = < ^ o r = r a n d (" x ^
^o*(* x f/)(('oo ° «o)(fl))^o = W'*(ao(a))Wo = n(a), as required.

The next special case describes the multiplicity n crossed product of a
•-automorphism a of A as the twisted tensor product A x v On defined by
Cuntz in [5]. He remarks that the methods of [3] show that if A c B(H)
and U is a unitary in B(H) implementing the *-automorphism a of A,
then the C*-subalgebra Axv On of B(H) <s> On generated by elements of
the form aU ® S{ is (up to isomorphism) independent of the unitary U
implementing a : hence we have chosen to use the notation A xa On for
this twisted tensor product. Notice that when On is Z-graded (as described
following [7, Theorem 3.1]), with 0™ the closed subspace of On spanned
by elements of the form 5 5* with |/z| - \v\ = m, then the twisted tensor
product A xa On is the closure of the linear span L of elements of the form
aUm ®b where a e A and b e CT . As in [3, 1.9] we can assume that the
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norm on A xa On is given on the *-subalgebra L by ||JC|| = sup{||7r(x)||: n
is a representation of I on a separable Hilbert Space}.

PROPOSITION 3.4. Let a be a ^-automorphism of a C*-algebra A. Then,
for each n e N, A x" N = A xa On .

PROOF. Define iA: A -> A xa On by iA(a) = a ® 1 and /,. e M{A xa0n)
by tt = U ® S,. (It is easy to see, using an approximate identity, that iA(a)
does indeed belong to A xa On .) By construction, A xaOn is generated by
e l e m e n t s o f t h e f o r m iA(a)tt*v a n d iA(a(a)) = ^2jtjiA(a)t* f o r e a c h a e A .
So let (n, {Tt}) be a multiplicity n covariant representation of {A, a) on
H, let 6 be the *-isomorphism from On into B(H) taking St to T( for
each i and let y/ be the linear map on the linear span of elements of the form
aUm ® b, where a e A and b e C% , defined by y/{aUm ®b) = x(a)6{b).
A simple calculation shows that ^ is a *-homomorphism and hence, by the
choice of the norm on A xaOn, y/ extends to a *-homomorphism from
A xa On into B(H), taking iA(a) to n{a) and tt to Tt.

COROLLARY 3.5. Let a be an inner ^-automorphism of a C*'-algebra A.
Then, for each neN, Ax"aN = A®On.

The next special case extends that described in Corollary 3.5. It concerns
inner *-endomorphisms, that is, those of the form a *-* X), S(aS* for some
family {St} of isometries in M(A). If A and B are C*-algebras, then
A * B will be used to denote the maximal free product of A and B (defined,
for example, in [2, Section 0]; Tn will be used to denote the C*-subalgebra
°f On+1 generated by S{,..., Sn , which is discussed in [3, Proposition 3.1].

PROPOSITION 3.6. Let A be a C*-algebra, let S, , . . . , Sm e M{A) satisfy
S*Sj = djjl and let a be the *-endomorphism of A defined by a(a) =
£™, SVaS* for all aeA. Let E be the C*-subalgebra of Om*On or Tm*Tn

(depending on whether or not a is unital) generated by the elements r*Rj for
1 < i < m and 1 < j < n, where {/v}, {/?.} are appropriate generating
sets of isometries, and let I be the *-ideal of E generated by the elements
£ > n R j R / k ~ * * 1 «rf £ , R > j r J R k ~ 8 i k l . T h e n A x " a N = A®mJE/I).

PROOF. Let iA(a) = a ® (1 + /) and let t( = Y,jSj ® (r*jRi + 7) e
M{A)®m^{EII). Then t*tk = Zj,mS*Sm®(R;r/mRk+I) = 8ik\ and, for
each aeA, ZjtjiA(a)t* - Eij^SjaS^^R^^+I) = ^
/) = iA(a(a)). The elements of the form /^ (a )^^ generate
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because a ® (r*Rj +1) = iA{aS*)tj for each a e A. So let (n, {Tt}) be a
covariant representation of multiplicity n on H. It is easily checked that
n(S*)Tj e n(A)' for each j , j and hence there exists a *-homomorphism
0 from A^aaxE into B{H) mapping a®r*Ri to n{a)n{S*)Ti. The
generators for 4̂ l&max / belong to the kernel of 6 which therefore gives a
•-homomorphism from A^nax(E/I) into £( / / ) mapping /^(a) to n(a)
and r, to 7^.

COROLLARY 3.7. //" a(a) = Y%Li StaS* is an inner *-endomorphism of A
then Axl

aN = A®Om.

PROOF. Let {rt} be a set of generators for Tm and let R be an isometry
generating the Toeplitz algebra T{. Then, using the notation of Proposition
3.6, {r*R} generate E and {r*RR*rk-Sik\}, {T,iR*rir*R ~ l) generate
I, so that R'rj + / are isometries of sum one generating E/I. (In the case
m — 1 the universal property of the crossed product ensures that E/I is
isomorphic to COS1).)

The general crossed product A x" N can also be described in terms of
free products. For convenience the following proposition is stated for unital
a although, as in Proposition 3.6, there is an analogous version for a non-
unital, with Tn replacing On .

PROPOSITION 3.8. Let a be a *-endomorphism of a C*-algebra A with a
unital extension to M(A), let n e N, let B be the C*-subalgebra of (A^ xa

"L)*On generated by elements of the form ^("oCa))^/* where aeA and
tt = uooSi and let I be the ideal of B generated by elements of the form
{ix oa0oa)(a) - £ , t ^ oaQ)(a))t* . Then Ax"aZ = B/I.

PROOF. It is routine to check each of the required properties.

Finally it is appropriate to point out that, although the work by Doplicher
and Roberts provided motivation for this investigation, their crossed prod-
ucts do not, in general, agree with those defined here. If A is a C*-algebra
with centre Cl and a is an endomorphism with permutation symmetry of
dimension d > 1 satisfying the special conjugate property (using terminol-
ogy defined in [6, Section 4]) then the Doplicher and Roberts crossed product
of A by a provides a covariant implementation of a and hence is a quo-
tient of A xd

a N as defined here. However their crossed product does not
necessarily possess the universal property for covariant representations. On
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the other hand the crossed product defined by Paschke in [9] does coincide
with that given here (by the remarks after the proof of his Theorem 1.).

Note added in proof

Another use of a universal property to specify a crossed product extending
the usual one occurs in the paper 'Ordered groups and crossed products of
C*-algebras' Pacific J. Math. 148 (1991), 319-343 by G. J. Murphy. However
Murphy considers semigroups of *-automorphisms and a different version of
covariance, so there is only a slight relation to the crossed products studied
here.
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