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Abstract This paper is concerned with the study of a class of closed linear operators densely defined
on a Hilbert space H and called B-Fredholm operators. We characterize a B-Fredholm operator as the
direct sum of a Fredholm closed operator and a bounded nilpotent operator. The notion of an index of a
B-Fredholm operator is introduced and a characterization of B-Fredholm operators with index 0 is given
in terms of the sum of a Drazin closed operator and a finite-rank operator. We analyse the properties of
the powers T m of a closed B-Fredholm operator and we establish a spectral mapping theorem.
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1. Introduction

By C(H) we denote the set of all linear closed operators from H to H, where H is a
Hilbert space. We write D(T ), N (T ) and R(T ) for the domain, nullspace and range of
an operator T ∈ C(H). An operator T ∈ C(H) is called a Fredholm operator if both the
nullity of T , n(T ) = dimN (T ), and the defect of T , d(T ) = codim R(T ), are finite. The
index κ(T ) of a Fredholm operator T is defined by κ(T ) = n(T ) − d(T ). It is well known
that if T is Fredholm, then R(T ) is closed. The class of quasi-Fredholm operators on a
Hilbert space was first studied by Labrousse [8]. Most of the results given therein extend
easily to the Banach space case.

Definition 1.1. Let T ∈ C(H) and let

∆(T ) = {n ∈ N : ∀m ∈ N, m � n ⇒ R(Tn) ∩ N (T ) ⊆ R(Tm) ∩ N (T )}.

Then the degree of stable iteration of T is defined as dis(T ) = inf ∆(T ) (with dis(T ) = ∞
if ∆(T ) = ∅).
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Definition 1.2. Let T ∈ C(H) and let d ∈ N. Then T is quasi-Fredholm of degree d if
and only if the following three conditions hold:

(i) dis(T ) = d;

(ii) R(T d) ∩ N (T ) is closed in H;

(iii) R(T ) + N (T d) is closed in H.

By q-Φ(d) we denote the set of all quasi-Fredholm operators of degree d. The class
of B-Fredholm bounded linear operators acting on a Banach space was studied first
by Berkani in [1] (and further in [2, 3]). Given a bounded linear operator T , for each
integer n, define Tn as the restriction of T to R(Tn) viewed as a map from R(Tn) into
R(Tn). Then T is called a B-Fredholm operator if, for some integer n, the range space
R(Tn) is closed and Tn is a Fredholm operator. The index of a B-Fredholm operator
T is defined as the index of the Fredholm operator Tn. In [1], it was shown that a
bounded operator T is a B-Fredholm operator if and only if there exists an integer
d ∈ N such that T ∈ q-Φ(d) and such that N (T ) ∩ R(T d) is of finite dimension and
R(T ) + N (T d) is of finite codimension. Moreover, if T is B-Fredholm then ind(T ) =
dim N (T )∩R(T d)−codim R(T )+N (T d). Based on this characterization of B-Fredholm
bounded operators, we introduce the class of B-Fredholm closed linear operators acting on
a Hilbert space H and study its properties. Mainly, we prove that an operator T ∈ C(H)
densely defined on H is a B-Fredholm operator if and only if T = T0 ⊕ T1, where T0 is a
closed Fredholm operator and T1 is a nilpotent operator. Associated with a B-Fredholm
operator we introduce the notion of index and we characterize B-Fredholm operators of
index 0 in terms of the sum of a Drazin closed operator and a finite-rank operator.

Finally, we prove that the powers Tm of a closed B-Fredholm operator are closed
B-Fredholm operators and their indices are related by ind(Tm) = m · ind(T ) and we
establish a spectral mapping theorem. These results are an extension of similar results
obtained in [1,2] for the class of closed Fredholm operators acting on a Hilbert space.

2. Definition and characterizations of the B-Fredholm closed operators

In this section we define the set of B-Fredholm operators and we investigate its properties.

Definition 2.1. Let T ∈ C(H) be densely defined on H. Then T is called a B-Fred-
holm operator if there exists an integer d ∈ ∆(T ) such that the following conditions are
satisfied:

(i) dimN (T ) ∩ R(T d) < ∞;

(ii) codimR(T ) + N (T d) < ∞.

In this case, the index of T is defined as the number

ind(T ) = dimN (T ) ∩ R(T d) − codim R(T ) + N (T d).
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From [4, Lemma 2.3] it follows that each B-Fredholm operator is a quasi-Fredholm
operator of degree d0 = dis(T ). We also observe that the definition of the index of a B-
Fredholm operator is independent of the integer d ∈ ∆(T ) chosen. Indeed, if d0 = dis(T )
and we take any d ∈ ∆(T ), then N (T ) ∩ R(T d0) = N (T ) ∩ R(T d). On the other hand,
we have that d0 ∈ ∆(T ). Hence, by [8, Proposition 3.1.1] it follows that R(T ) + N (T d) ⊆
R(T ) + N (T d0) and, consequently, R(T ) + N (T d) = R(T ) + N (T d0) because d � d0.

Let BF(H) be the class of all B-Fredholm closed operators densely defined on the
Hilbert space H.

Remark 2.2. Assume that T ∈ C(H) is a B-Fredholm operator densely defined on
H, and let d = dis(T ). Then N (T ) ∩ R(T d) is of finite dimension and R(T ) + N (T d)
is of finite codimension. From [8, Corollary 3.3.1], we know that R(Tn) is closed for
all n � d. Consider the restriction of T to R(T d), Td : R(T d) → R(T d). We have that
D(Td) = D(T ) ∩ R(T d) and

dim N (Td) = dimN (T ) ∩ R(T d) < ∞.

On the other hand, we have R(Td) = R(T d+1) and, by [6, Lemma 3.2],

R(T d)
R(T d+1)

∼=
D(T d)

(R(T ) + N (T d)) ∩ D(T d)
∼=

D(T d) + R(T ) + N (T d)
R(T ) + N (T d)

.

Hence, we get

dim
R(T d)

R(T d+1)
= dim

D(T d)
(R(T ) + N (T d)) ∩ D(T d)

� dim
H

R(T ) + N (T d)
< ∞.

Hence, we have proved that Td is a Fredholm closed operator. However, the fact that,
for some integer n, the range space R(Tn) is closed and the restriction operator Tn is a
Fredholm closed operator does not allow us to conclude that T is a B-Fredholm operator
in the sense of Definition 2.1, as in the case of bounded operators [4].

We observe that if T is densely defined, then the adjoint operator T ∗ exists, belongs
to C(H∗) and is densely defined.

Proposition 2.3. Let T ∈ C(H) be densely defined. If T is a B-Fredholm, then T ∗ is
B-Fredholm and ind(T ∗) = − ind(T ).

Proof. Assume that T is B-Fredholm and let d = dis(T ). Since T ∈ q-Φ(d), from [8,
Proposition 3.3.5] it follows that T ∗ ∈ q-Φ(d) and

R(T ) + N (T d) = (N (T ∗) ∩ R(T ∗d))⊥, R(T ∗) + N (T ∗d) = (N (T ) ∩ R(T d))⊥.

Hence, we get

ind(T ∗) = dimR(T ∗d) ∩ N (T ∗) − codim R(T ∗) + N (T ∗d)

= codim R(T ) + N (T d) − dim R(T d) ∩ N (T ) = − ind(T ).

�
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Now we give a characterization of B-Fredholm closed operators based on the Kato
decomposition of quasi-Fredholm operators defined in [8].

Theorem 2.4. Let T ∈ C(H) with D(T ) dense in H. Then T is B-Fredholm with
d = dis(T ) if and only if there exists two closed subspaces M and N of H such that

(a) H = M ⊕ N , T (D(T ) ∩ M) ⊆ M , N ⊆ N (T d) and N �⊆ N (T d−1);

(b) if T0 = T |M , then T0 is a closed Fredholm operator densely defined on M to M ;

(c) if T1 = T |N , then T1 is nilpotent of degree d.

In this case ind(T ) = κ(T0).

Proof. Assume that T is B-Fredholm, that is, T ∈ q-Φ(d), dim(N (T ) ∩ R(T d)) < ∞
and codim(R(T ) + N (T d)) < ∞.

By [8, Theorem 3.2.1], there exist two closed subspaces M and N such that conditions
(a) and (c) given in Theorem 2.4 are fulfilled and also the following condition is satisfied:

(b̃) T0 is a closed operator on M to M , R(T0) is closed in M and dis(T0) = 0.

We observe that T0 is densely defined on M because T is densely defined on H. Let us
prove that T0 is Fredholm and ind(T ) = ind(T0). From the proof of [8, Theorem 3.2.1,
Equations (3.2.22) and (3.2.23)] we get

R(T0) ⊕ N = R(T ) + N (T d) and N (T0) = N (T ) ∩ R(T d). (2.1)

Hence, we obtain dim N (T0) = dimN (T ) ∩ R(T d) < ∞.
On the other hand, since codimR(T )+N (T d) < ∞, we have H = L ⊕ R(T ) + N (T d),

where L is a finite-dimensional subspace. Now, let PM : X → M be the linear projection
onto M along N . Then, using the first relation in (2.1), we find that M = PM (L)+R(T0)
and, consequently, R(T0) is of finite codimension in M . Thus, we have proved that T0

is Fredholm. Finally, we can write M = K ⊕ R(T0), where K is a finite-dimensional
subspace of M . Therefore, H = K ⊕ (R(T0)⊕N) = K ⊕ (R(T ) + N (T d)) and, hence, we
conclude that the codimension of R(T ) + N (T d) in H coincides with the codimension of
R(T0) in M . Therefore, ind(T ) = κ(T0).

Conversely, assume that there exist two closed subspaces M and N satisfying conditions
(a)–(c). By [8, Theorem 3.2.2], and the proof of this result, we find that T ∈ q-Φ(d) and
the relations (2.1) given in the present theorem are verified. Hence, we obtain

dim N (T ) ∩ R(T d) = dimN (T0) < ∞

and

dim
H

R(T ) + N (T d)
= dim

M ⊕ N

R(T0) ⊕ N
= dim

M

R(T0)
< ∞.

Consequently, T is B-Fredholm and ind(T ) = κ(T0). �
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Next, we consider the perturbation of a closed B-Fredholm operator by a finite-rank
operator. Recall that a linear bounded operator F is called a finite-rank operator if
dim R(F ) < ∞.

Proposition 2.5. Let T ∈ C(H) be a B-Fredholm operator with D(T ) dense in H

and let F ∈ B(H) be a finite-rank operator. Then T + F is a B-Fredholm operator and
ind(T + F ) = ind(T ).

Proof. Let d = dis(T ). We observe that, by [9, Theorem 15],

N (T + F ) ∩ R((T + F )d) = N (T ) ∩ R(T d) + S

and

N (T ∗ + F ∗) ∩ R((T + F )∗d) = N (T ∗) ∩ R(T ∗d) + G,

where S and G are finite-dimensional subspaces of H and H∗, respectively. Hence, we
conclude that dimN (T + F ) ∩ R((T + F )d) � dim N (T ) ∩ R(T d) + dimS < ∞ and

codim R(T ) + N (T d) = dimN (T ∗ + F ∗) ∩ R((T + F )∗d)

� dim N (T ∗) ∩ R(T ∗d) + dimG < ∞.

Therefore, T + F is B-Fredholm.
By Theorem 2.4, relative to the space decomposition H = M ⊕N we have T = T0⊕T1,

where T0 is a closed Fredholm operator on M and T1 is a nilpotent operator on N .
Moreover, ind(T ) = κ(T0). Then we can write

T +
1
n

I = T0 +
1
n

IM ⊕ T1 +
1
n

IN .

From the stability result [7, Theorem 5.22], it follows that T0 + IM/n is Fredholm and
κ(T0 + IM/n) = κ(T0) for all sufficiently large n. On the other hand, T1 + IN/n is
invertible and, thus, κ(T1 + IN/n) = 0. Hence, T + I/n is Fredholm with κ(T + I/n) =
κ(T0) = ind(T ). Analogously, we can see that the operator T + F + I/n is Fredholm and
κ(T + F + I/n) = ind(T + F ) for all sufficiently large n. Now, since T + I/n is Fredholm
and F is a finite-rank operator, it follows that κ(T + (I/n) + F ) = κ(T + I/n). Thus, we
have proved that ind(T + F ) = ind(T ). �

Recall that the ascent of an operator A, denoted by α(A), is the smallest non-negative
integer n such that N (An) = N (An+1); the descent of A, denoted by δ(A), is the smallest
non-negative integer n such that R(An) = R(An+1). A closed operator A ∈ C(H) is said
to be Drazin invertible if there exists a bounded operator X ∈ B(H) with R(X) ⊆ D(A)
such that

XAX = X, AXu = XAu for all u ∈ D(A)

and

Ak(I − AX) = 0 for some non-negative integer k.
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The smallest non-negative integer k that satisfies the preceding equation is called the
Drazin index of A and is denoted by i(A). From the theory of the Drazin inverse of
closed linear operators [10] we know that an operator A ∈ C(H) has a Drazin inverse
with i(A) = k if and only if α(A) = δ(A) = k and H = R(Ak) ⊕ N (Ak).

Next, using Theorem 2.4 and the characterization of unbounded Fredholm operators
given in [11, Theorem 1.1], we characterize unbounded B-Fredholm operators of index 0
as the direct sum of a Drazin invertible closed operator and a finite-rank operator.

Theorem 2.6. Let T ∈ C(H) with D(T ) dense in H. Then T is B-Fredholm with
d = dis(T ) and such that ind(T ) = 0 if and only if T = A + F , where A is a Drazin
invertible closed linear operator with Drazin index i(A) = d, D(A) = D(T ), and F is a
finite-rank operator.

Proof. Assume that T is B-Fredholm. From Theorem 2.4 we have H = M ⊕ N ,
N ⊆ N (T d), N �⊆ N (T d−1) and, relative to this direct sum, we have the decomposition
T = T0 ⊕ T1, where T0 is a Fredholm closed operator densely defined on M to M such
that ind(T0) = 0 and T1 is a nilpotent operator. Now, from [11, Theorem 1.1] it follows
that T0 = B + G, where B is a linear closed operator, D(B) = D(T0), R(B) = M ,
N (B) = {0} and G : M → M is a finite-rank operator. Then T = (B ⊕ T1) + (G ⊕ 0).
Now define A = B ⊕ T1 and F = G ⊕ 0. Clearly, F : H → H is a finite-rank operator.
We easily see that the operator A : H → H is closed with D(A) = D(T ),

N (Ad) = {0} ⊕ N (T d
1 ) = {0} ⊕ N = N (Ad+1),

N (Ad−1) �= N (Ad) because N �⊆ N (T d−1), and

R(Ad) = M ⊕ R(T d
1 ) = M ⊕ {0} = R(Ad+1).

Hence, α(A) = δ(A) = d and H = R(Ad) ⊕ N (Ad). Thus, A is Drazin invertible with
i(A) = d.

Conversely, let us assume that T = A + F , where A is a Drazin invertible closed
operator with D(A) = D(T ) such that i(A) = d and F is a finite-rank operator. Then
A is a B-Fredholm operator and ind(A) = 0. Thus, by Proposition 2.5, it follows that
T = A + F is a B-Fredholm operator and ind(T ) = 0. �

3. Properties of B-Fredholm closed operators

Let T ∈ BF(H) and let

ρBF(T ) = {λ ∈ C : (T − λI) ∈ BF(H)}

be the B-Fredholm resolvent of T . We denote by ρ(T ) the usual resolvent set of T .

Theorem 3.1. Let T ∈ C(H) be densely defined and such that ρ(T ) �= ∅. The following
conditions are equivalent:

(a) T is B-Fredholm;

(b) Tm is B-Fredholm for each m � 1.

Moreover, ind(Tm) = m · ind(T ).
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Proof. We only need to prove that (a) =⇒ (b). Assume that T is B-Fredholm and
let d = dis(T ). Since T ∈ q-Φ(d) and ρ(T ) �= ∅, from [4, Proposition 2.4] it follows that,
for each m � 1, Tm is quasi-Fredholm of degree

dm = dis(Tm) =

{
1 if m � d,

k with (k − 1)m � d � km if m � d.

Suppose that m � d. Let us prove that dimN (Tm)∩R(T km) < ∞ and codimR(Tm)+
N (T km) < ∞.

By applying Theorem 2.4, we obtain T = T0 ⊕ T1, where T0 is a closed Fredholm
operator densely defined on M , T1 is a nilpotent operator on N of degree d and ind(T ) =
κ(T0). Since km � d we obtain T (k+1)m = T

(k+1)m
0 ⊕ 0. Now, from [5, Theorem IV.2.7]

it follows that T
(k+1)m
0 is a Fredholm operator and, consequently, dimN (T (k+1)m

0 ) < ∞
for each m � 1. Now, using [6, Lemma 3.1] we get

dim N (Tm) ∩ R(T km) = dim
N (T (k+1)m)

N (T km)

= dim
N (T (k+1)m

0 ) + N

N (T km
0 ) + N

= dim
N (T (k+1)m

0 )
N (T km

0 )
< ∞.

On the other hand, since T ∗ is also B-Fredholm and d = dis(T ∗), using an argument
similar to that above we can see that

dim N (T ∗m) ∩ R(T ∗km) < ∞.

It follows from [8, Proposition 3.3.5] that

codim R(Tm) + N (T km) = dimN (T ∗m) ∩ R(T ∗km) < ∞.

Finally, since Tm = Tm
0 ⊕Tm

1 with Tm
0 a Fredholm operator densely defined on M and

Tm
1 a nilpotent operator on N , and from the fact that κ(Tm

0 ) = m · κ(T0), we conclude
that ind(Tm) = κ(Tm

0 ) = m · ind(T ).
Now we consider the case when m � d. We know that dis(Tm) = 1 and Tm = Tm

0 ⊕ 0.
Proceeding as in the above case we can prove that dimN (Tm) ∩ R(Tm) < ∞ and
codim R(Tm) + N (Tm) < ∞. �

Given a polynomial p(λ) =
∏n

i=1(λ − λiI)mi , define p(T ) =
∏n

i=1(T − λiI)mi . It is well
known that D(p(T )) = D(T s), where s = m1+· · ·+mn and that if T is closed and densely
defined with ρ(T ) �= ∅, then the operator p(T ) is closed and densely defined.

Lemma 3.2. Let {λi}1�i�n be a sequence of distinct complex numbers, let {mi}1�i�n

be a sequence of positive integers and let d be a positive integer. Then

N
( n∏

i=1

(T − λiI)mi

)
∩ R

( n∏
i=1

(T − λiI)mid

)
=

n∑
i=1

N ((T − λiI)mi) ∩ R((T − λiI)mid).
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Proof. We prove the inclusion ‘⊆’ by induction on n. The case when n = 1 is obvious.
Assume that the inclusion is true for k and let

u ∈ N
( k+1∏

i=1

(T − λiI)mi

)
∩ R

( k+1∏
i=1

(T − λiI)mid

)
.

Then

(T − λk+1I)mk+1u ∈ N
( k∏

i=1

(T − λiI)mi

)
∩ R

( k∏
i=1

(T − λiI)mid

)
.

By the induction assumption, (T − λk+1I)mk+1u =
∑k

i=1 vi with vi ∈ N ((T − λiI)mi) ∩
R((T − λiI)mid). Now, for any i, 1 � i � k, since the polynomials (λ − λi)mi and
(λ − λk+1)mk+1 are relatively prime, there exist polynomials q1i(λ), q2i(λ) such that

q1i(λ)(λ − λi)mi + q2i(λ)(λ − λk+1)mk+1 = 1.

Hence, we deduce that if x ∈ D(T p) for sufficiently large p, then

q1i(T )(T − λiI)mix + q2i(T )(T − λk+1I)mk+1x = x.

Therefore, since vi ∈ N ((T − λiI)mi) we see that vi = q2i(T )(T − λk+1I)mk+1vi. Define
wi = q2i(T )vi for all i, 1 � i � k and wk+1 = u −

∑k
i=1 wi. We observe that

wi ∈ N ((T − λiI)mi) ∩ R((T − λiI)mid), 1 � i � k.

Moreover,

(T − λk+1I)mk+1wk+1 = (T − λk+1I)mk+1u −
k∑

i=1

(T − λk+1I)mk+1q2i(T )vi.

Hence,

(T − λk+1I)mk+1wk+1 = (T − λk+1I)mk+1u −
k∑

i=1

vi = 0.

Thus, wk+1 ∈ N ((T − λk+1I)mk+1). Since, for all i, 1 � i � k, N ((T − λiI)mi) ⊆
R((T − λk+1I)mk+1d), we see that wi ∈ R((T − λk+1I)mk+1d) and so we conclude that
wk+1 ∈ R((T − λk+1I)mk+1d). Thus,

u =
k+1∑
i=1

wi ∈
k+1∑
i=1

N ((T − λiI)mi) ∩ R((T − λiI)mid).

Now we prove the reverse inclusion by induction. The case n = 1 is obvious. Assume
that the inclusion is true for k and let

u ∈
k+1∑
i=1

N ((T − λiI)mi) ∩ R((T − λiI)mid).
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Then u = vk+1 + w with vk+1 ∈ N ((T − λk+1I)mk+1) ∩ R((T − λk+1I)mk+1d) and

w ∈
k∑

i=1

N ((T − λiI)mi) ∩ R((T − λiI)mid).

By the induction assumption, we have

w ∈ N
( k∏

i=1

(T − λiI)mi

)
∩ R

( k∏
i=1

(T − λiI)mid

)
.

Hence,
k+1∏
i=1

(T − λiI)miu =
k+1∏
i=1

(T − λiI)mivk+1 +
k+1∏
i=1

(T − λiI)miw = 0.

On the other hand, we can deduce that there exist polynomials q1(λ) and q2(λ) such that
if x ∈ D(T p) for sufficiently large p, then

q1(T )(T − λk+1I)mk+1dx + q2(T )
k∏

i=1

(T − λiI)midx = x.

We observe that u ∈ D(T p) for all p � 0 and then

u = q1(T )(T − λk+1I)mk+1dw + q2(T )
k∏

i=1

(T − λiI)mid(vk+1 + w).

Hence,

u = q1(T )(T − λk+1I)mk+1dw + q2(T )
k∏

i=1

(T − λiI)midvk+1.

From this, and the fact that vk+1 ∈ R((T − λk+1I)mk+1d), we see that

u ∈ R
( k+1∏

i=1

(T − λiI)mid

)
.

Consequently,

u ∈ N
( k+1∏

i=1

(T − λiI)mi

)
∩ R

( k+1∏
i=1

(T − λiI)mid

)
.

�

Theorem 3.3. Let T ∈ C(H) with dense domain and such that ρ(T ) �= ∅, and let
p(λ) =

∏n
i=1(λ − λi)mi be a polynomial of degree s with complex coefficients. Then

0 ∈ ρBF(p(T )) ⇐⇒ λ1, . . . , λn ∈ ρBF(T ).

Moreover, in this case ind(p(T )) =
∑n

i=1 mi · ind(T − λiI).
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Proof. Suppose that p(T ) is B-Fredholm. We shall prove that (T −λiI) is B-Fredholm
for all i, 1 � i � n. Since p(T ) is quasi-Fredholm, from [4, Theorem 3.1], it follows
that T − λiI is quasi-Fredholm for 1 � i � n. Now, using [4, Proposition 2.4], we
find that (T − λiI)mi is quasi-Fredholm for all i, 1 � i � n. Let d = dis(p(T )) and
di = dis((T − λiI)mi) for all i, 1 � i � n. We have

dim N (p(T )) ∩ R((p(T ))d) < ∞ and codimR(p(T )) + N ((p(T ))d) < ∞

because p(T ) is B-Fredholm. By applying Lemma 3.2 we obtain

N (p(T )) ∩ R((p(T ))d) =
n∑

i=1

N ((T − λiI)mi) ∩ R((T − λiI)mid).

Hence, it follows that, for all i with 1 � i � n, we have

dim N ((T − λiI)mi) ∩ R((T − λiI)mid) < ∞.

By [4, Lemma 2.2] we have di = dis((T − λiI)mi) � d for all i, 1 � i � n, and, thus,

dim N ((T − λiI)mi) ∩ R((T − λiI)midi) < ∞.

On the other hand, applying [8, Proposition 3.3.5], we get

codim R(p(T )) + N ((p(T ))d) = dim(R(p(T )) + N ((p(T ))d))⊥

= dimR((p(T ))∗d) ∩ N (p(T )∗) < ∞.

Now, using the symmetry between the conditions on p(T ) and on p(T )∗, and arguing as
above, for 1 � i � n, we obtain

dim R((T − λiI)∗midi) ∩ N ((T − λiI)∗mi) < ∞.

Hence, we conclude that, for all 1 � i � n,

dim(R((T − λiI)mi) + N ((T − λiI)midi))⊥ < ∞.

Thus, we have proved that (T −λiI)mi is B-Fredholm for 1 � i � n. Using Theorem 3.1,
we conclude that (T − λiI) is B-Fredholm for 1 � i � n. Conversely, suppose that
(T − λiI) is B-Fredholm for all i, 1 � i � n. Since each (T − λiI) is quasi-Fredholm,
using [4, Theorem 3.1], we conclude that P (T ) is quasi-Fredholm. Moreover, if di =
dis((T − λiI)mi) for 1 � i � n then d = dis(p(T )) = max{di : 1 � i � n}. If it happens
that dimN (p(T )) ∩ R(p(T )d) = ∞, then from Lemma 3.2 it would follow that, for some
i, 1 � i � n, dimN ((T − λiI)mi) ∩ R((T − λiI)mid) = ∞ and we should arrive at
a contradiction of the fact that dimN ((T − λiI)mi) ∩ R((T − λiI)midi) < ∞ for all
1 � i � n.

Analogously, if we suppose that codimR(p(T )) + N (p(T )d) = ∞, we arrive at a con-
tradiction.
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Now assume that p(T ) is B-Fredholm with d = dis(p(T )). Since

N (p(T )) ∩ R((p(T ))d) =
n∑

i=1

N ((T − λiI)mi) ∩ R((T − λiI)mid),

and since the polynomials (λ − λi)mi

1�i�n are relatively prime, we have

dim N (p(T )) ∩ R((p(T ))d) =
n∑

i=1

dim N ((T − λiI)mi) ∩ R((T − λiI)mid).

Similarly, we have

codim R(p(T )) + N ((p(T ))d) = dimN (p(T ∗)) ∩ R((p(T ∗))d)

=
n∑

i=1

dim N ((T ∗ − λ̄iI)mi) ∩ R((T ∗ − λ̄iI)mid)

=
n∑

i=1

codim R((T − λiI)mi) + N ((T − λiI)mid).

Therefore, observing that di = dis((T − λiI)mi) � d for all 1 � i � n, we get

ind(p(T )) =
n∑

i=1

ind((T − λiI)mi) =
n∑

i=1

mi · ind(T − λiI).

�
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Fredholm, Rend. Circ. Mat. Palermo 29 (1980), 161–258.

9. M. Mbekhta and V. Müller, On the axiomatic theory of spectrum, II, Studia Math.
119 (1996), 129–147.

10. M. Z. Nashed and Y. Zhao, The Drazin inverse for singular evolution equations and
partial differential operators, World Scientific Series on Applicable Analysis, Volume 1,
pp. 441–456 (World Scientific, Singapore, 1992).

11. A. G. Ramm, A characterization of unbounded Fredholm operators, Cubo 5 (2003), 91–95.

https://doi.org/10.1017/S0013091505001574 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001574

