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Abstract  This paper is concerned with the study of a class of closed linear operators densely defined
on a Hilbert space H and called B-Fredholm operators. We characterize a B-Fredholm operator as the
direct sum of a Fredholm closed operator and a bounded nilpotent operator. The notion of an index of a
B-Fredholm operator is introduced and a characterization of B-Fredholm operators with index 0 is given
in terms of the sum of a Drazin closed operator and a finite-rank operator. We analyse the properties of
the powers T™ of a closed B-Fredholm operator and we establish a spectral mapping theorem.
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1. Introduction

By C(H) we denote the set of all linear closed operators from H to H, where H is a
Hilbert space. We write D(T'), N(T) and R(T) for the domain, nullspace and range of
an operator T' € C(H). An operator T' € C(H) is called a Fredholm operator if both the
nullity of 7', n(T) = dim N (T'), and the defect of T, d(T') = codim R(T’), are finite. The
index k(T') of a Fredholm operator T is defined by «(T) = n(T) — d(T). It is well known
that if T is Fredholm, then R(T') is closed. The class of quasi-Fredholm operators on a
Hilbert space was first studied by Labrousse [8]. Most of the results given therein extend
easily to the Banach space case.

Definition 1.1. Let T € C(H) and let
A(T)={neN:YmeN m=n=R(T")NNT) CR(T™)NN(T)}.

Then the degree of stable iteration of T is defined as dis(T") = inf A(T') (with dis(T) = oo
if A(T) =0).
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Definition 1.2. Let T € C(H) and let d € N. Then T is quasi-Fredholm of degree d if
and only if the following three conditions hold:

(i) dis(T) = d;
(i) R(T?) NN(T) is closed in H;
(iii) R(T) + N(T?) is closed in H.

By q-®(d) we denote the set of all quasi-Fredholm operators of degree d. The class
of B-Fredholm bounded linear operators acting on a Banach space was studied first
by Berkani in [1] (and further in [2,3]). Given a bounded linear operator T', for each
integer n, define T, as the restriction of T' to R(T") viewed as a map from R(T™) into
R(T™). Then T is called a B-Fredholm operator if, for some integer n, the range space
R(T™) is closed and T, is a Fredholm operator. The index of a B-Fredholm operator
T is defined as the index of the Fredholm operator T,,. In [1], it was shown that a
bounded operator T is a B-Fredholm operator if and only if there exists an integer
d € N such that T € q-®(d) and such that N(T)NR(T?) is of finite dimension and
R(T) +N(T?) is of finite codimension. Moreover, if T' is B-Fredholm then ind(7T") =
dim N (T)NR(T?) — codim R(T) + N (T?). Based on this characterization of B-Fredholm
bounded operators, we introduce the class of B-Fredholm closed linear operators acting on
a Hilbert space H and study its properties. Mainly, we prove that an operator T € C(H)
densely defined on H is a B-Fredholm operator if and only if T' = Ty @& T3, where Tj is a
closed Fredholm operator and T} is a nilpotent operator. Associated with a B-Fredholm
operator we introduce the notion of index and we characterize B-Fredholm operators of
index 0 in terms of the sum of a Drazin closed operator and a finite-rank operator.

Finally, we prove that the powers T of a closed B-Fredholm operator are closed
B-Fredholm operators and their indices are related by ind(7T™) = m - ind(T") and we
establish a spectral mapping theorem. These results are an extension of similar results
obtained in [1,2] for the class of closed Fredholm operators acting on a Hilbert space.

2. Definition and characterizations of the B-Fredholm closed operators
In this section we define the set of B-Fredholm operators and we investigate its properties.

Definition 2.1. Let T € C(H) be densely defined on H. Then T is called a B-Fred-
holm operator if there exists an integer d € A(T) such that the following conditions are
satisfied:

(i) dimN(T) N R(T?) < oo;
(ii) codim R(T) + N (T?) < oc.
In this case, the indezx of T is defined as the number

ind(7T) = dim N'(T) N R(T?) — codim R(T) + N (T?).
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From [4, Lemma 2.3] it follows that each B-Fredholm operator is a quasi-Fredholm
operator of degree dy = dis(T). We also observe that the definition of the index of a B-
Fredholm operator is independent of the integer d € A(T') chosen. Indeed, if dy = dis(7T")
and we take any d € A(T), then N(T) N R(T%) = N(T) N R(T%). On the other hand,
we have that dy € A(T). Hence, by [8, Proposition 3.1.1] it follows that R(T) + N (T%) C
R(T) + N (T%) and, consequently, R(T) + N (T?) = R(T) + N (T%) because d > dy.

Let BF(H) be the class of all B-Fredholm closed operators densely defined on the
Hilbert space H.

Remark 2.2. Assume that T' € C(H) is a B-Fredholm operator densely defined on
H, and let d = dis(T). Then N(T) NR(T?) is of finite dimension and R(T) + N (T¢)
is of finite codimension. From [8, Corollary 3.3.1], we know that R(T™) is closed for
all n > d. Consider the restriction of T to R(T?), Ty : R(T?) — R(T%). We have that
D(Ty) = D(T) NR(T%) and

dim N (Ty) = dim N(T) N R(T?) < oo.

On the other hand, we have R(T,;) = R(T%*1) and, by [6, Lemma 3.2,

R(TY) D(T?) . DT +R(T) + N (T
R(THY) — (R(T) + N(T4))ND(T4) R(T) + N (T9)
Hence, we get
dim LTd) = dim D(Td) < dim # < 00
R(Td+1) N (R(T) + N(T4)) N D(T4) h R(T) + N(T9) '

Hence, we have proved that Ty is a Fredholm closed operator. However, the fact that,
for some integer n, the range space R(T™) is closed and the restriction operator T;, is a
Fredholm closed operator does not allow us to conclude that T is a B-Fredholm operator
in the sense of Definition 2.1, as in the case of bounded operators [4].

We observe that if T' is densely defined, then the adjoint operator T exists, belongs
to C(H*) and is densely defined.

Proposition 2.3. Let T € C(H) be densely defined. If T is a B-Fredholm, then T* is
B-Fredholm and ind(T*) = — ind(T).

Proof. Assume that T is B-Fredholm and let d = dis(T). Since T' € q-&(d), from [8,
Proposition 3.3.5] it follows that T* € q-®(d) and

R(T) + N(T?) = (N(T*) " R(T*)E,  R(T*) + N(T*%) = (N(T) N R(T4))*.
Hence, we get

ind(7T*) = dim R(T*) N N(T*) — codim R(T*) + N (T*%)
= codim R(T) + N(T%) — dim R(T?) N N(T) = — ind(T).
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Now we give a characterization of B-Fredholm closed operators based on the Kato
decomposition of quasi-Fredholm operators defined in [8].

Theorem 2.4. Let T € C(H) with D(T') dense in H. Then T is B-Fredholm with
d = dis(T) if and only if there exists two closed subspaces M and N of H such that

(a) H=M @ N, T(D(T) N M) C M, N C N(T%) and N ¢ N(T%1);
(b) if Ty = T'|p, then Ty is a closed Fredholm operator densely defined on M to M;
(¢) if Ty = T|n, then T is nilpotent of degree d.

In this case ind(T") = k(Tp).

Proof. Assume that T is B-Fredholm, that is, T € q-®(d), dim(N(T) N R(T?)) < oo
and codim(R(T) + N (T?)) < .

By [8, Theorem 3.2.1], there exist two closed subspaces M and N such that conditions
(a) and (c) given in Theorem 2.4 are fulfilled and also the following condition is satisfied:

(b) Tp is a closed operator on M to M, R(Tp) is closed in M and dis(Tp) = 0.

We observe that Tj is densely defined on M because T is densely defined on H. Let us
prove that Tp is Fredholm and ind(T") = ind(7p). From the proof of [8, Theorem 3.2.1,
Equations (3.2.22) and (3.2.23)] we get

R(Ty) ® N =R(T) + N(T?) and N(Tp) = N(T) N R(T?). (2.1)

Hence, we obtain dim N (Tp) = dim N'(T) N R(T) < oo.

On the other hand, since codim R(T")+ N (T?) < oo, we have H = L ® R(T) + N(T9),
where L is a finite-dimensional subspace. Now, let Py; : X — M be the linear projection
onto M along N. Then, using the first relation in (2.1), we find that M = Py (L) +R(Tp)
and, consequently, R(Tp) is of finite codimension in M. Thus, we have proved that Tp
is Fredholm. Finally, we can write M = K & R(Tj), where K is a finite-dimensional
subspace of M. Therefore, H = K @ (R(Tp) ®N) = K @ (R(T) + N (T?)) and, hence, we
conclude that the codimension of R(T) + N (T9) in H coincides with the codimension of
R(Tp) in M. Therefore, ind(T") = x(Tp).

Conversely, assume that there exist two closed subspaces M and N satisfying conditions
(a)—(c). By [8, Theorem 3.2.2], and the proof of this result, we find that T' € q-®(d) and
the relations (2.1) given in the present theorem are verified. Hence, we obtain

dim N (T) NR(T4) = dim N (Tp) < oo

and
di H di Mo®N di M -
im—————-— =dim ————— =dim 0.
R(T) +N(T?) R(To) & N R(To)
Consequently, T is B-Fredholm and ind(T) = x(Tp). O
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Next, we consider the perturbation of a closed B-Fredholm operator by a finite-rank
operator. Recall that a linear bounded operator F' is called a finite-rank operator if
dimR(F) < oo.

Proposition 2.5. Let T € C(H) be a B-Fredholm operator with D(T') dense in H
and let F' € B(H) be a finite-rank operator. Then T + F is a B-Fredholm operator and
ind(T 4+ F) = ind(T).

Proof. Let d = dis(T). We observe that, by [9, Theorem 15],
N(T+ F)NR(T + F)*) = N(T)nR(T%) + S
and
N(T* + FYNRUT 4+ F)*?) = N(T*) N R(T*Y) + G,

where S and G are finite-dimensional subspaces of H and H*, respectively. Hence, we
conclude that dim N'(T + F) N R((T + F)?) < dim N(T) N R(T?) + dim S < oo and

codim R(T) + N (T?) = dim N (T* + F*) N R((T + F)*%)
< dimN/(T*) NR(T*?) 4+ dim G < oc.

Therefore, T' + F' is B-Fredholm.

By Theorem 2.4, relative to the space decomposition H = M @& N we have T = Ty 711,
where Tj is a closed Fredholm operator on M and Tj is a nilpotent operator on IN.
Moreover, ind(7") = k(7). Then we can write

1 1 1
T+ -TI=Ty+—-Iy&T +—Iy.
n n n

From the stability result [7, Theorem 5.22], it follows that Ty + Ips/n is Fredholm and
k(To + Ing/n) = k(Tp) for all sufficiently large n. On the other hand, Ty + Iy /n is
invertible and, thus, k(77 + In/n) = 0. Hence, T + I /n is Fredholm with (T + I/n) =
k(Tp) = ind(T). Analogously, we can see that the operator T'+ F + I /n is Fredholm and
K(T+ F+1/n)=ind(T + F) for all sufficiently large n. Now, since T'+ I /n is Fredholm
and F is a finite-rank operator, it follows that k(T + (I/n)+ F) = k(T + I /n). Thus, we
have proved that ind(7 + F) = ind(T). O

Recall that the ascent of an operator A, denoted by a(A), is the smallest non-negative
integer n such that N'(A") = N (A"+1); the descent of A, denoted by §(A), is the smallest
non-negative integer n such that R(A") = R(A™*!). A closed operator A € C(H) is said
to be Drazin invertible if there exists a bounded operator X € B(H) with R(X) C D(A)
such that

XAX =X, AXu= XAu forallu € D(A)
and

AM(I — AX) =0 for some non-negative integer k.
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The smallest non-negative integer k that satisfies the preceding equation is called the
Drazin index of A and is denoted by i(A). From the theory of the Drazin inverse of
closed linear operators [10] we know that an operator A € C(H) has a Drazin inverse
with i(A) = k if and only if a(A) = §(A) = k and H = R(AF) @ N (A¥).

Next, using Theorem 2.4 and the characterization of unbounded Fredholm operators
given in [11, Theorem 1.1], we characterize unbounded B-Fredholm operators of index 0
as the direct sum of a Drazin invertible closed operator and a finite-rank operator.

Theorem 2.6. Let T € C(H) with D(T) dense in H. Then T is B-Fredholm with
d = dis(T") and such that ind(T) = 0 if and only if T = A+ F, where A is a Drazin
invertible closed linear operator with Drazin index i(A) = d, D(A) = D(T), and F is a
finite-rank operator.

Proof. Assume that T is B-Fredholm. From Theorem 2.4 we have H = M & N,
N CN(T%), N ¢ N(T? 1) and, relative to this direct sum, we have the decomposition
T =Ty & Ty, where T is a Fredholm closed operator densely defined on M to M such
that ind(7p) = 0 and T3 is a nilpotent operator. Now, from [11, Theorem 1.1} it follows
that To = B + G, where B is a linear closed operator, D(B) = D(T), R(B) = M,
N(B) ={0} and G : M — M is a finite-rank operator. Then T'= (B @ T31) + (G & 0).
Now define A= B ®T; and FF = G® 0. Clearly, F': H — H is a finite-rank operator.
We easily see that the operator A : H — H is closed with D(A) = D(T),

N(AY) = {0} o N(TY) = {0} & N = N (AT,
N (A1) #£ N (A?) because N € N(T91), and

R(AY = M @ R(T{) = M @ {0} = R(A™H).
Hence, a(A) = 6(A) = d and H = R(A%) @ N(A9). Thus, A is Drazin invertible with
i(A) =d.

Conversely, let us assume that T = A 4+ F, where A is a Drazin invertible closed
operator with D(A) = D(T) such that i(A) = d and F is a finite-rank operator. Then
A is a B-Fredholm operator and ind(A) = 0. Thus, by Proposition 2.5, it follows that
T = A+ F is a B-Fredholm operator and ind(7") = 0. O

3. Properties of B-Fredholm closed operators

Let T € BF(H) and let
per(T)={AeC:(T—\)eBF(H)}
be the B-Fredholm resolvent of T. We denote by p(T") the usual resolvent set of T'.

Theorem 3.1. Let T € C(H) be densely defined and such that p(T) # 0. The following
conditions are equivalent:

(a) T is B-Fredholm;
(b) T™ is B-Fredholm for each m > 1.

Moreover, ind(T™) = m - ind(T).
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Proof. We only need to prove that (a) = (b). Assume that T is B-Fredholm and
let d = dis(T). Since T € q-®(d) and p(T) # @, from [4, Proposition 2.4] it follows that,
for each m > 1, T™ is quasi-Fredholm of degree

1 if m

kwith (k—1)m <d<km ifm

)

. { >d
dp, = dis(T™) =
<d

Suppose that m < d. Let us prove that dim AN (T™)NR(T*™) < oo and codim R(T™)+
N(TF™) < o0.

By applying Theorem 2.4, we obtain T = Ty & 11, where T is a closed Fredholm
operator densely defined on M, T3 is a nilpotent operator on N of degree d and ind(7T") =
#(Tp). Since km > d we obtain T*+Dm — To(kﬂ)m ® 0. Now, from [5, Theorem IV.2.7]
it follows that To(k's_l)m is a Fredholm operator and, consequently, dimJ\/'(TO(kH)m) < o0
for each m > 1. Now, using [6, Lemma 3.1] we get

N(T(k+1)m,)
N(Tkm)
N(To(kr+1)m) —|—N
N(TFm™)+ N
N(To(kr+1)m)
N(T§™)
On the other hand, since T™* is also B-Fredholm and d = dis(7™), using an argument
similar to that above we can see that

dim N(T™) N R(T*™) = dim

= dim

= dim < 00.

dim N (T*™) N R(T**™) < oc.
It follows from [8, Proposition 3.3.5] that
codim R(T™) + N (T*™) = dim N (T*™) N R(T**™) < .

Finally, since T = Tg" ® 17" with Tj" a Fredholm operator densely defined on M and
T a nilpotent operator on N, and from the fact that x(Tj") = m - k(Tp), we conclude
that ind(T™) = &(T") = m - ind(T).

Now we consider the case when m > d. We know that dis(7™) =1 and T™ = T{" & 0.
Proceeding as in the above case we can prove that dim N (T™) N R(T™) < oo and
codimR(T™) + N(T™) < oo. O

Given a polynomial p(\) = [T, (A — A\, I)™i, define p(T') = [, (T — X\ I)™. It is well
known that D(p(T)) = D(T?), where s = my+- - -+m,, and that if T is closed and densely
defined with p(T) # 0, then the operator p(T') is closed and densely defined.

Lemma 3.2. Let {\; }1<i<n be a sequence of distinct complex numbers, let {m;}1<i<n
be a sequence of positive integers and let d be a positive integer. Then

/\/< ﬁ(T — M)”%) N R(ﬁ(T - )\iI)mid) = zn:N((T —MD)™)NRT — MNI)™).

i=1 i=1 =1
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Proof. We prove the inclusion ‘C’ by induction on n. The case when n = 1 is obvious.
Assume that the inclusion is true for k and let

u eN(lﬁ(T NI)™ ) mR(lﬁ(T—/\J)m’?d).

Then

k k
R Y 01 RS IS0 | CEpiE ]
i=1

i=1

By the induction assumption, (T' — A\g11 )™ +1u = Zle v; with v; € N((T — X\I)™) N
R((T — X\iI)™4). Now, for any i, 1 < i < k, since the polynomials (A — ;)™ and
(A — Ag41)™k+1 are relatively prime, there exist polynomials ¢q;(\), go2;(A) such that

q1i(A)(A = A)™ + @i (M) (A = Agyr) ™ = 1.
Hence, we deduce that if x € D(TP) for sufficiently large p, then
qh(T)(T — AZI)mlx + qm(T)(T — A]H_ll)karlJ? =1x.

Therefore, since v; € N((T AiD)™) we see that v; = qo;(T)(T — Agy1I)™ +1v;. Define
w; = qoi(Tv; for all i, 1 < i < k and wi41 = u — Zle w;. We observe that

w; € N(T = ND)™)NRUT — )™, 1<i<k.

Moreover,
k
(T — X1 D)™ 4 wp g = (T — Ay L) ™+ — Z(T = Nt L) qoi (T v;
i=1
Hence,
k
(T = XM D)™ wggy = (T = Apyr )™ u— Y 0; = 0.
i=1

Thus, w1 € N((T — Mgyp1I)™+1). Since, for all 7, 1 < 1 < k, N(T —  \I)™) C
R(T — A1 D)™ +19) we see that w; € R((T — A\pp11)™+19) and so we conclude that
W1 € R((T — )\k+11)mk+1d). Thus,

k+1 k+1
w=3"w; € SON(T ~ AD)™) NR(T = MI)™).
i=1 i=1

Now we prove the reverse inclusion by induction. The case n = 1 is obvious. Assume
that the inclusion is true for k& and let

k+1
we€ Y NUT = NI)™)NR((T — N\I)™).

i=1
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Then u = vgp11 +w with vy € N((T — Xgat )™ 1) N R(T — Apeyr )™ +19) and

k
we > N((T = XI)™) NR((T — \I)™).

=1

By the induction assumption, we have

w € N( f[(T - M)W) N R(ﬁ(T - )\iI)"“d).

i=1
Hence,
k+1 k+1 k+1
[T@=xinmu=][@ - xD™ vk + [[(T = ND)™w =0
i=1 i=1 i=1

On the other hand, we can deduce that there exist polynomials g; (A) and g2 () such that
if x € D(TP) for sufficiently large p, then

@ (T)(T — Ner )™+ %% + go(T) | (T — D)™ 2 = o,

=

Il
—

2

We observe that v € D(T?) for all p > 0 and then

U = qx (T) (T — )\k+1I)m’“+1dw + q2 (T) (T — AiI)mid(’Uk_A,_l + ’UJ)

=

s
Il
—

Hence,

= q(T)(T — Mg n. D)™+ % + o (T) | [(T = NiD)™ gy

=

Il
-

K2

From this, and the fact that vy 1 € R((T — Apy11)™+19), we see that
k+1
u € 72( [[- )\iI)mid)
i=1

Consequently,

u e N(lﬁ(T - )\iI)mf) N R(lﬁ(T - Aif)mfd)

i=1 i=1
|

Theorem 3.3. Let T € C(H) with dense domain and such that p(T) # (), and let
p(A) =[Ti—; (A= X;)™ be a polynomial of degree s with complex coefficients. Then

0€e ,DBF(p(T)) <~ Ala-"a)‘n S PBF(T)

Moreover, in this case ind(p(T)) = Y1, m; - ind(T — \;1).
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Proof. Suppose that p(T') is B-Fredholm. We shall prove that (T'— ;1) is B-Fredholm
for all 4, 1 < @ < n. Since p(T) is quasi-Fredholm, from [4, Theorem 3.1], it follows
that T — \;I is quasi-Fredholm for 1 < ¢ < n. Now, using [4, Proposition 2.4], we
find that (T'— A\ 1)™ is quasi-Fredholm for all i, 1 < ¢ < n. Let d = dis(p(T)) and
d; = dis((T — \;I)™) for all 4, 1 < ¢ < n. We have

dim N (p(T)) NR((p(T))?) < 0o and codimR(p(T)) + N ((p(T))?) < oo
because p(T) is B-Fredholm. By applying Lemma 3.2 we obtain
N(p(T) N R((p(T)?) =D N(UT = \D)™) NR((T = XI)™).
i=1

Hence, it follows that, for all ¢ with 1 < ¢ < n, we have

dim N (T — \I)™) N R((T — \I)™?) < .
By [4, Lemma 2.2] we have d; = dis((T' — \;1)™) < d for all ¢, 1 < i < n, and, thus,

dim N (T — \I)™) NR((T — N\I)™%) < 0.
On the other hand, applying [8, Proposition 3.3.5], we get

codim R(p(T)) + N((p(T))?) = dim(R(p(T)) + N ((p(T))"))*
= dim R((p(T))*") NN (p(T)") < <.

Now, using the symmetry between the conditions on p(7T') and on p(T)*, and arguing as
above, for 1 < i < n, we obtain

dim R((T — N\ I)*™4) AN (T — MI)™) < oo.
Hence, we conclude that, for all 1 <17 < n,
dim(R((T = NI)™) + N((T = NI)™ %))+ < oo

Thus, we have proved that (T'— \; )™ is B-Fredholm for 1 < ¢ < n. Using Theorem 3.1,
we conclude that (T" — A\;I) is B-Fredholm for 1 < 7 < n. Conversely, suppose that
(T — M) is B-Fredholm for all 4, 1 < ¢ < n. Since each (T' — \;I) is quasi-Fredholm,
using [4, Theorem 3.1], we conclude that P(T) is quasi-Fredholm. Moreover, if d; =
dis((T' — X\ I)™i) for 1 < ¢ < n then d = dis(p(T)) = max{d; : 1 < ¢ < n}. If it happens
that dim N (p(T)) NR(p(T)?) = oo, then from Lemma 3.2 it would follow that, for some
i, 1 < i < n, dimN(T — \1)™) N R(T — \I)™4) = oo and we should arrive at
a contradiction of the fact that dim N'((T — \I)™) N R((T — \I)™%) < oo for all
1 <1< n.

Analogously, if we suppose that codim R(p(T)) + N (p(T)?%) = oo, we arrive at a con-
tradiction.
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Now assume that p(7T') is B-Fredholm with d = dis(p(T')). Since

N@T) N R((P(T)Y) = D NUT = ND)™) NR(T = Xd)™),

i=1

and since the polynomials (A — AZ)nggn are relatively prime, we have

dim N (p(T)) NR((p(T))?) =Y dim N ((T — N I)™) NR((T — A\I)™ ).

i=1

Similarly, we have
codim R(p(T)) +N((p(T))") = dim N (p(T*)) N R((p(T™))")

= idimN (T = XD)™) NR((T* = \d)™)
i=1

= Zn: codim R((T = A\I)™) + N ((T = A\ D)™ ).

i=1
Therefore, observing that d; = dis((T" — A, 1)™¢) < d for all 1 < i < n, we get

n

ind(p(T)) = Y _ind((T = \I)™) = > m; - ind(T = \iI).

i=1 i=1

O
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