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THE jlc-RULE IS NOT OPTIMAL IN THE SECOND NODE
OF mE TANDEM QUEUE: A COUNTEREXAMPLE
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Abstract

In this note we give a counterexample which shows that the Ilc-rule is not
optimal in the second node of the tandem queue. This counterexample
contradicts the interchange argument in Nain [1] and Nain et al. [2].
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1. Introduction

We consider two queueing centres in tandem. Both centres have one exponential server.
There are M customer classes with different exponential service times and holding cost rates.
Customers served at the first centre join the second centre and keep their class number.

It is well known that in case of one node the Jlc-rule minimizes the total discounted holding
cost. Clearly, this is not always the case in the first node of the tandem model if the decision
rule may also depend on the number of customers in the second centre. For example, suppose
that the holding cost rates in the second node are equal to those of the first node and suppose
there are many customers of any type in the first centre. If the second centre is empty then a
good decision rule in node 1 will serve customers with a large parameter of the exponential
distribution even if the Ilc-rule would assign the server to jobs with a small parameter.
Indeed, in this way the rate of the customer stream from node 1 to node 2 will be higher and
hence the server in node 2 will start serving earlier. Consequently, the departure process of
the network is faster and hence the reduction of the total holding cost rate of the network can
be larger.

The holding cost reduction in the second node is similar to that of an isolated centre. Hence
it seems plausible that the optimal decision rule in the second node is the Ilc-rule. This result
can be found in Section 4 of Nain [1] and in Section 2 of Nain et al. [2]. However, it is not
true. In this note we give a counterexample which contradicts it.

In order to keep our example simple we assume that there are no arrivals and there is no
discounting. However, similar examples can be constructed with arrivals and discounting. In
our example there are three customers present at time O. There are two customer classes, and
customers of type i will join queue i, i = 1, 2, in both nodes. The parameters Jlij, cij , i, j = 1,
2, are given in Figure 1 of Section 2. In order to keep the computation simple we take the Jl12

equal to zero. However, it is easy to construct counterexamples for which all Jl'S are positive
and such that the holding cost rates in node 2 are strictly smaller than in node 1.

Let us summarize here the conclusions which follow from the computations of Section 2.
The optimal decision rule in node 2 serves queue 2 first, whereas, the Jlc-rule gives priority to
the customer in queue 1. Note that the optimal decision rule in node 1 depends on the
numbers of customers in the queues of node 2. Indeed, the job in the first queue starts its
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service at the instant that the job in the second queue of the second node finishes its service.
Until that instant the server in node 1 serves queue 2, i.e. the server remains idle.

The proof in Section 2 of Nain et al. [2] and Section 4 of Nain [1] of the optimality of the
JlC-rule in the second node uses an interchange argument for the order of service in the
second node. They compare the optimal policy, say R*, with a policy, say Ro, which is
constructed such that the service process in the first node generates the same arrival process
for node 2 as policy R*. In the second node the Ro policy follows the Ilc-rule. This means in
our example that service in node 2 is started with the job in queue 1. In order to know when
the service to the job in queue 1 of node 1 has to be started, a random variable is generated at
time 0 with the same distribution as the service time of the job in queue 2 of node 2.

From the cited papers it is not clear whether the arrival process in node 2 is constructed to
be dependent or independent of the service process in this node. The relevant passages are
[1], p. 183, line 4 of the proof of Theorem 4.1: 'node 1 has the same behavior under both
policies', and [2], p. 818, line 4: 'in the above proof, policies 1'C and ft result in identical
arrivals for node 2'. Therefore we consider two cases. In case 1 the idle time of the server in
node 1 is equal to the service time of the job in queue 2 of node 2. In case 2 this idle time is
equal in distribution but independent of this service time. Before we proceed to this case, we
remark that the definition of ft on p. 817 of [2] generates in our example a definitely different
arrival process in node 2.

Case 1. Assume that the generated service time is equal to the required service time of the
job in queue 2 of node 2. In this case the decision rule of Ro in node 1 is anticipative, it uses
the information of the length of the service time of the job in queue 2 of node 2 before the
actual service of this job is finished. Using the interchange argument as in the cited literature
shows that Ro has a smaller total expected holding cost. However, Ro is not a feasible policy.

Case 2. Assume that the required service time is independent of the generated copy. In this
case the server of node 1 stays idle for an exponential period with parameter 1 and then starts
serving the job in queue 1. In node 2 the Ilc-rule is followed. Let us call this policy R 1 to
distinguish it from Ro. It is a policy which uses only the information of the service process in
the first node. Therefore it is likely less good than the optimal policy which uses the
information of service process in both nodes. In Section 2 we compute the total holding cost
for the R 1 policy, and we find that it is not optimal.

2. Counterexample

There are three customers present, one in the first queue of node 1 and one in each of the
queues of node 2. The parameters of the exponential distributions and the holding cost rates
are given in Figure 1.

The optimal policy. Denote by K jj k the total expected holding cost when at time 0 there are
i customers in the first queue of centre 1, j customers in the first queue of centre 2, and k
customers in the second queue of node 2. It follows from the optimality of the Ilc-rule in a
one-node network that the optimal policy in centre 2 is the Jlc-rule when centre 1 is empty.
Clearly, idleness in centre 2 is suboptimal. Hence the total expected holding cost for the

centre 1 j.j C

e 2 0.65

Figure 1

centre 2 j.j C

e 2 1.05

e 1 2
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optimal policy in starting states with empty first node are:

1·05
KOIO = 2 = 0·525;

3·05
KOll = 2 + Kool = 3·525;

2·1
K0 20 = T + KOIO = 1·575;

4·1
K02 I =T + K01 1 = 5·575;

0·65
Kloo = 2 + KOIO = 0·85.

Letters to the editor

In starting states with customers in both centres the total expected holding cost is the
minimum of terms corresponding to different actions. Denote by (i, j), i = 1, 2, j = 1, 2 the
actions to serve queue i in node 1 and queue j in node 2. The successive terms in the
computation below correspond to the action pairs (1, 1), (1,2), (2, 1), (2,2) respectively,
where terms belonging to actions corresponding to idleness in centre 2 are deleted. The
optimal action pair in starting state ijk is denoted by aijk.

{
2.65 1 2 2·65 }

KIOI = min -3- +3x.; + 3KoII; -1- + K IOO

= min {3·517; 3·5} = 3·5;

alO l =(2, 2);

{
1.7 1 1 1·7 }

KllO=min 4+2Ko2°+2Kloo;T+Kloo

= min {1·638; 1·7} = 1·638;

allO= (1, 1);

{
3.7 1 1 3·7 1 2 3·7 3·7 }

KIll = min 4 + 2K021+ 2K lOI;3 +3KIlO + 3K021; T + K lOI;1 + KIlo

= min {5·463; 5·496; 5·35; 5·338} = 5·338;

all I = (2, 2).

From aUO = (1, 1), alOI = (2, 2) and all l = (2, 2) we conclude that the server in node 1 will
start serving the job in queue 2 of node 2 has finished its service. Hence the optimal action in
node 1 depends on the state in node 2. Since alll = (2, 2), the server in node 2 will serve the
job in queue 2 before the job in queue 1. Note that the optimal action in node 2 depends on
the state in node 1.

The Ri-policy, The R I uses the ltc-rule in node 2. In node 1 the server will remain idle for
an exponential time with mean 1. Thereafter the job in queue 1 will be served. Let KllI
(Kill) denote the total expected holding cost when the server in node 1 is idle (serves queue
1). Since the policy R I is fixed there is no minimization in the computation. The total
expected holding cost for starting states 001, 010, 011, 020 and 021 are equal to those of the
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optimal policy. The computation of the other values is as follows:

* 0·65 *Kl(XJ = 2 + KOIO = 0·85;

0·65
K100 =-1- + Kioo = 1·5;

* 2·65.2 * 1 *
K lOl =-3- +3KOll +3K IOO = 3·517;

2·65 1 * 1
K 101 =2 + 2: K lOl + 2: K 100 = 3·834;

* 3·7 1 * 1 *K ll 1 =4+ 2: K02 1 + 2: K lOl = 5·471;

3·7 1 * 2x.; = 3 +3K ll 1 +3K 101 = 5·613.

We conclude that K ll l , i.e, the total expected holding cost in starting state 111 is smaller
for Ro than for R 1 • Hence R1 is not optimal.
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