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A simple two-dimensional fluid–structure interaction problem, involving viscous
oscillatory flow in a channel separated by an elastic membrane from a fluid-filled slender
cavity, is analysed to shed light on the flow dynamics pertaining to syringomyelia, a
neurological disorder characterized by the appearance of a large tubular cavity (syrinx)
within the spinal cord. The focus is on configurations in which the velocity induced in the
cavity, representing the syrinx, is comparable to that found in the channel, representing
the subarachnoid space surrounding the spinal cord, both flows being coupled through
a linear elastic equation describing the membrane deformation. An asymptotic analysis
for small stroke lengths leads to closed-form expressions for the leading-order oscillatory
flow, and also for the stationary flow associated with the first-order corrections, the latter
involving a steady distribution of transmembrane pressure. The magnitude of the induced
flow is found to depend strongly on the frequency, with the result that for channel flow
rates of non-sinusoidal waveform, as those found in the spinal canal, higher harmonics
can dominate the sloshing motion in the cavity, in agreement with previous in vivo
observations. Under some conditions, the cycle-averaged transmembrane pressure, also
showing a marked dependence on the frequency, changes sign on increasing the cavity
transverse dimension (i.e. orthogonal to the cord axis), underscoring the importance
of cavity size in connection with the underlying hydrodynamics. The analytic results
presented here can be instrumental in guiding future numerical investigations, needed to
clarify the pathogenesis of syringomyelia cavities.
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Figure 1. Schematic representation of the problem, including (a) a general view of the central nervous system
for a subject having a syringomyelia syrinx at the cervical level, (b) view of the cross-section of the spinal
canal at a syrinx-free location, (c) a close view of the cavity with indication of the induced sloshing motion,
(d) illustration of the longitudinal flow along the spinal SAS and (e) close view of a spinal cord periarterial
space.

1. Introduction

Syringomyelia is a condition characterized by the appearance of slender fluid-filled
cavities, known as syrinxes, within the spinal cord (Rizk 2023). An illustration showing the
typical location of the syrinx is given in figure 1(a). The condition frequently appears in
patients with Chiari I malformation (Milhorat et al. 1999; George & Higginbotham 2011),
a structural abnormality in which the lower part of the cerebellum herniates into the spinal
canal, obstructing the normal flow of cerebrospinal fluid (CSF), the colourless Newtonian
fluid that bathes the central nervous system. Alternative factors, such as arachnoiditis,
spinal cord tumours or physical trauma, can also result in the formation of a syrinx
(Klekamp et al. 1997; Milhorat 2000).

The location of the syrinx within the spinal cord depends on the initiating cause. For
example, in syringomyelia linked to Chiari I malformation, syrinx cavities typically form
in the cervical region of the spine as an expansion of the central canal (canalicular
syringomyelia), a CSF-filled space that extends along the spinal cord (see figure 1b,d).
In contrast, for syringomyelia associated with spinal cord trauma (post-traumatic
syringomyelia), extracanalicular syrinxes generally develop adjacent to the site of the
injury (Bertram 2009). The two types of syrinxes are represented in figures 2(a)
(canalicular syringomyelia) and 2(b) (extracanalicular syringomyelia), with the former plot
depicting a Chiari I malformation (see e.g. Brodbelt & Stoodley (2003), Ahuja et al. (2017)
and Vaquero et al. (2017) for related clinical images).
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Figure 2. Schematic representations of canalicular (a) and extracanalicular (b) syringomyelia, and of the
canonical model investigated here (c). The schematic (a) of the canalicular syrinx depicts a Chiari I
malformation, while no specific cause is indicated for the extracanalicular case shown in (b).

Despite extensive research, the pathophysiology of the disease remains unclear
(Stoodley 2014). Numerous theories have been advanced over the years (Elliott et al.
2013). Since the conditions and injuries that precede syringomyelia involve abnormalities
in the motion of CSF, it is now generally agreed that CSF flow and its associated pressure
variations play an important role in the formation and enlargement of the cavity, as first
hypothesized by Gardner & Angel (1959).

Magnetic resonance imaging (MRI) techniques have been instrumental in gaining
understanding of the CSF flow dynamics. It is now well established that CSF displays
an oscillatory motion in the subarachnoid space (SAS) surrounding the spinal cord, as
indicated in figure 1(d). The oscillatory velocities, with peak values of the order of a
few centimetres per second, are driven by the respiratory and cardiac cycles (Linninger
et al. 2016; Kelley & Thomas 2023), with the former being dominant in the lumbar region
(Gutiérrez-Montes et al. 2022) and the latter being dominant in the cervical region (Yildiz
et al. 2017, 2022), where most syrinxes are formed.

Oscillatory motion synchronized with the cardiac cycle has also been observed inside
large syrinxes, with associated velocities comparable to those found in the SAS (Brugières
et al. 2000; Lichtor, Egofske & Alperin 2005). For instance, Vinje et al. (2018) measured
peak velocities of 3.6 and 2.0 cm s−1 in the SAS and syrinx of a patient with Chiari I
malformation, with the values decreasing to 2.7 and 1.5 cm s−1 after the cavity shrank
following surgery. As indicated in the schematic of figure 1(c), the motion in the syrinx
displays a sloshing character, with the internal fluid motion inducing cyclic variations
of the cavity shape that can be visualized using high-resolution dynamic MRI (Honey,
Martin & Heran 2017). This fluid slosh and its associated pressure fluctuations exert on
the surrounding spinal cord tissue a cyclic traction that may contribute to the enlargement
of the cavity (Honey et al. 2017). As revealed by phase-contrast (PC) MRI measurements
(Vinje et al. 2018), the motion in the syrinx displays multiple oscillations per cardiac cycle,
an intriguing feature of the flow resulting from the fluid–structure dynamical interactions
taking place.

Central to the pathophysiology of syringomyelia is the physical mechanism that
produces the accumulation of fluid within the syrinx (the so-called ‘filling mechanism’;
Stoodley 2014), a key aspect of the problem that remains unclear despite significant
research efforts (Williams 1980; Klekamp 2002; Heiss et al. 2019; Bhadelia et al. 2023).
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Early investigators (Gardner & Angel 1959; Williams 1969) postulated that CSF flows into
the syrinx from the fourth ventricle of the brain through the central canal as a result of a
dissociation in craniospinal pressure. These initial ideas could not explain, however, the
development of the syrinx in patients with an obstructed central canal, that being the case
in most adults (Ball & Dayan 1972; Williams 1990; Garcia-Ovejero et al. 2015).

Alternative theories on the onset of syringomyelia point at a deregulation of the
transmedullary flow established between the SAS and the central canal (Oldfield et al.
1994; Heiss et al. 1999, 2012; Lloyd et al. 2017; Heiss et al. 2019). In vivo experiments
using injection of fluorescent tracers in sheep, rats and mice have shown that radial
inflow and outflow occur predominantly along perivascular spaces surrounding blood
vessels (Stoodley, Jones & Brown 1996; Stoodley et al. 1997; Wei et al. 2017; Liu
et al. 2018, 2022). For instance, as shown by Wei et al. (2017), when the tracer is
released in the surrounding SAS, inflow occurs mainly along the perivascular space
surrounding penetrating arterioles (see figure 1e). This phenomenon has been addressed
by Bilston, Stoodley & Fletcher (2010), who investigated effects of changes in the timing
of SAS pressure on perivascular flow into the spinal cord, and by Elliott (2012), who
developed one-dimensional models of transmedullary flow accounting for the presence
of perivascular spaces. Transmedullary tracer dispersion is assisted by interstitial flow
through the parenchyma (Wei et al. 2017), at different rates in grey and white matter
(Liu et al. 2018). The role of the spinal-cord-tissue poroelasticity in the interstitial flow
across the spinal cord has been investigated both numerically (Støverud et al. 2016) and
analytically (Cardillo & Camporeale 2021). An imbalance between the inflow and outflow
of CSF, associated with alterations of the transmedullary pressure difference, may lead
to accumulation of fluid within the cavity. In this regard, Ball & Dayan (1972) suggest
that sudden increases in thoracoabdominal pressure could force CSF into the cord, while
Oldfield et al. (1994) argue that accentuated pressure waves transmitted by the downward
displacement of the cerebellar tonsils during systole play a main role in syrinx formation.
A key observation regarding syringomyelia is that the accumulation of fluid is very slow
relative to the hydrodynamic time scales (Elliott et al. 2013), with the consequence that
even quantitatively small changes of the existing pressure field, associated for instance
with alterations of the normal CSF flow, may have a significant effect when acting over
the long time scales characterizing cavity growth.

Numerical simulations and in vitro experiments have been extensively used to
investigate different aspects of syringomyelia hydrodynamics (Elliott et al. 2013).
One-dimensional inviscid propagation of large-amplitude pressure waves along elastic
channels was studied by Carpenter and co-workers (Berkouk, Carpenter & Lucey 2003;
Carpenter, Berkouk & Lucey 2003) to ascertain whether the interactions of a large pressure
impulse (e.g. generated by a cough or sneeze) with partial obstructions of the spinal
canal could lead to damage of the cord tissue, a hypothesis not supported by subsequent
studies (Bertram, Brodbelt & Stoodley 2005; Bertram 2009; Elliott, Lockerby & Brodbelt
2009). The sloshing motion induced in the syrinx by a periodic pressure gradient has
been investigated numerically (Bertram 2010; Drøsdal et al. 2013; Vinje et al. 2018) and
experimentally (Martin et al. 2010). The studies of Bertram (2010) and Martin et al. (2010)
considered a spinal cord with a large fluid-filled cavity adjacent to a SAS stenosis. As noted
by Bertram (2010), the cycle-averaged pressure distribution resulting from fluid–structure
interaction (FSI) involves a transmural pressure difference that could potentially drive
CSF across the spinal SAS into the syrinx, a finding further corroborated in subsequent
computations accounting for the permeability of the spinal cord (Heil & Bertram 2016;
Bertram & Heil 2017).
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The flow induced in syringomyelia cavities

Like the analyses mentioned in the preceding paragraph, the present paper addresses
syringomyelia hydrodynamics, including the sloshing motion induced in the cavity by
the oscillating SAS flow and the resulting transmural pressure. Unlike the previous
investigations, however, our study is fundamentally analytic in nature, the aim being to
clarify the essential FSI dynamics of syringomyelia cavities with use of a simple canonical
model problem that affords description of elastic interactions between a confined fluid
space and an open canal with oscillatory flow. In some sense, our approach is similar to
that followed in investigating oscillations in collapsible tubes (Grotberg & Jensen 2001;
Heil & Hazel 2011), for which the simple Starling resistor (Knowlton & Starling 1912) is
used as an idealized canonical representation of the flow. Both planar and axisymmetric
configurations have been employed (Heil & Hazel 2011). The former, often used in
Navier–Stokes simulations of the flow (Heil & Hazel 2011), consists of a two-dimensional
(2-D) channel in which a finite section of one of the rigid walls is replaced by a deformable
wall, represented by a prestressed elastic membrane that separates the channel fluid from
a pressure chamber. Wall deformations are induced by the viscous pressure variations in
the channel flow, with the wall stiffness dominated by the axial tension of the membrane,
leading to complicated FSI dynamical behaviours (Grotberg & Jensen 2001; Heil & Hazel
2011).

As shown in figure 2(c), the present analysis employs a variant of the 2-D Starling
resistor to investigate the two-way-coupled dynamics between the oscillatory flow in the
spinal SAS, represented by an infinite channel of constant thickness, and the oscillatory
flow in the syrinx, represented by a slender rectangular cavity, with an impermeable elastic
membrane subject to longitudinal tension used to model the thin layer of spinal cord tissue
separating both spaces. As indicated in figure 2, this 2-D configuration, chosen here to
maximize analytic simplification, can be envisioned as an approximate representation of
extracanalicular syrinxes, with the rigid wall opposing the membrane representing the
internal spinal cord tissue. It is worth mentioning that the use of the 2-D model neglects
the hoop stresses induced by the azimuthal stretching of the tube, which can be important,
especially for canalicular syrinxes, for which an axisymmetric configuration appears to
be a more appropriate model. Also note that, by using an impermeable membrane, our
analysis also neglects effects of transmedullary interstitial flow (Støverud et al. 2016;
Wei et al. 2017; Cardillo & Camporeale 2021), a reasonably valid approximation in
investigating the cavity sloshing flow, since its characteristic time is much smaller than
that associated with the slow interstitial velocities.

As shown below, simplifications afforded by the disparity of scales present in the
problem enable a rigorous asymptotic treatment of the canonical configuration represented
in figure 2(c), leading to closed-form expressions for all quantities of interest. Although
the predictive capability of the model is limited by the degree of simplification, the
analysis provides insights into the oscillatory cavity motion, yielding results in qualitative
agreement with previous in vivo observations pertaining to the prevailing cavity-flow
frequency (Vinje et al. 2018). Our analytic approach enables a complete parametric
description of the resulting transmural pressure to be made, including influences of
cavity size and SAS-flow frequency, which can be instrumental in guiding future FSI
investigations addressing anatomically correct systems.

The rest of the paper is organized as follows. The mathematical formulation of
the problem and associated dimensionless governing parameters are presented in § 2.
The oscillatory motion arising at leading order in the limit of small stroke lengths is
investigated in § 3. The closed-form expressions obtained are used to explore parametric
dependences of the sloshing motion. The analysis is extended to investigate non-sinusoidal

978 A22-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1018


G.L. Nozaleda, J. Alaminos-Quesada, W. Coenen, V. Haughton and A.L. Sánchez

flow rates, as those found in the spinal canal. The steady motion arising at the
following order in the asymptotic description is presented in § 4. Expressions are
obtained for the slow time-averaged Lagrangian motion of the fluid, involving the sum
of the cycle-averaged Eulerian velocity and the Stokes drift, and also for the stationary
transmembrane pressure, representative of the transmural pressure difference investigated
in previous numerical studies (Bertram 2010; Heil & Bertram 2016; Bertram & Heil 2017).
Finally, concluding remarks are provided in § 5.

2. Formulation of the problem

2.1. Preliminary considerations
As a simplified model of the SAS/cavity configuration, let us consider a 2-D channel
of width ho separated from a cavity of width hc and length L � ho ∼ hc by an elastic
membrane, as sketched in figure 1(e). Both regions are filled with the same incompressible
viscous fluid of density ρ and kinematic viscosity ν (for CSF, ρ � 103 kg m−3 and
ν � 0.7 × 10−6 m2 s−1). The fluid moves along the channel with a prescribed flow rate
that varies harmonically with time t′ according to Q′

o cos(ωt′), with the motion featuring
characteristic longitudinal velocities uc = Q′

o/ho and order-unity values of the associated
Womersley number

α =
(

h2
oω/ν

)1/2
, (2.1)

where ω denotes the angular frequency. The longitudinal pressure variations associated
with the flow in the channel, of order ρucωL as follows from a balance between
local acceleration and pressure gradient, induce membrane deformations that drive an
oscillatory motion in the cavity. The analysis below addresses the distinguished limit in
which there exists two-way coupling between the cavity motion and the departures from
Womersley flow emerging in the channel.

The deformation of the membrane is to be characterized in terms of the local distance
h to the rigid channel wall (see figure 1e). Its response to the transmembrane pressure
difference is described with the simple linear elastic equation T∂2h/∂x′2 = �p′, where
T is the constant longitudinal tension, x′ is the streamwise coordinate and �p′ is the
pressure difference across the membrane induced by the fluid motion, with �p′ = 0 for
Q′

o = 0, so that in the absence of motion the membrane remains flat (i.e. h = ho). Volume
conservation in the closed cavity implies that

∫ L

0
(ho − h) dx′ = 0, (2.2)

at any instant of time.
In the analysis, it is assumed that the characteristic stroke length of the oscillatory

motion in the canal uc/ω is much smaller than the cavity length L, so that their ratio

ε = uc/(Lω) � 1 (2.3)

defines a small asymptotic parameter measuring the effects of convective acceleration (i.e.
ε is the inverse of the relevant Strouhal number). The distinguished limit considered here
involves values of the membrane tension of order T ∼ ρω2L4/ho, for which the magnitude
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The flow induced in syringomyelia cavities

of the relative membrane deformation

ho − h
ho

∼ ρucωL3

Tho
, (2.4)

deduced from an order-of-magnitude analysis of the membrane elastic equation with
�p′ ∼ ρucωL, is of order (ho − h)/ho ∼ ε. The problem is described with use of Cartesian
coordinates with longitudinal and transverse components (x, y) scaled with L and ho,
respectively, and accompanying velocity components (u, v) scaled with uc and ucho/L, the
latter scaling following from continuity. The pressure variations are scaled with ρucωL to
give the variable p and the membrane displacement is written in the dimensionless form
ξ = (ho − h)/(εho) ∼ 1. The superscripts o and c are used to denote the values of u, v and
p in the channel and in the cavity, respectively.

2.2. Dimensionless equations
In the slender-flow approximation, which applies with small relative errors of order
(ho/L)2, viscous stresses associated with longitudinal velocity derivatives can be neglected
in the first approximation along with transverse pressure differences, so that p = p(x, t)
with t = ωt′. The problem reduces to the integration of

∂u
∂x

+ ∂v

∂y
= 0 and

∂u
∂t

+ ε

(
u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ 1
α2
∂2u
∂y2 , (2.5a,b)

for 0 ≤ x ≤ 1 with boundary conditions at the lateral boundaries

uo = vo = 0, at y = 1 and uo = vo − ∂ξ/∂t = 0, at y = εξ (2.6a,b)

for the channel flow and

uc = vc = 0, at y = −H and uc = vc − ∂ξ/∂t = 0, at y = εξ (2.7a,b)

for the cavity flow, where H = hc/ho denotes the dimensionless cavity width.
Since the flow rate takes the prescribed value

∫ 1
0 uo dy = cos t upstream and downstream

from the cavity, the velocity in the channel for x < 0 and x > 1 reduces to the familiar
Womersley solution

uo = Re

{
1 − cosh[α

√
i( y − 1/2)]/ cosh(α

√
i/2)

1 − tanh(α
√

i/2)/(α
√

i/2)
eit

}
with vo = 0. (2.8)

For 0 < x < 1, the local flow rate Qo(x, t) = ∫ 1
εξ

uo dy, different in general from the
prescribed boundary value Qo = cos t, is related to the flow rate in the cavity Qc =∫ εξ
−H uc dy by

∂

∂x

(∫ 1

εξ

uo dy

)
= − ∂

∂x

(∫ εξ

−H
uc dy

)
= ∂ξ

∂t
, (2.9)

obtained by integrating the first equation in (2.5a,b). Using the known boundary values

Qo =
∫ 1

εξ

uo dy = cos t and Qc =
∫ εξ

−H
uc dy = 0 at x = 0, 1 (2.10a,b)
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in integrating (2.9) yields∫ εξ

−H
uc dy = cos t −

∫ 1

εξ

uo dy = −
∫ x

0

∂ξ

∂t
dx̂, (2.11)

where x̂ represents a dummy integration variable. The above expression reveals that the
flow rate in the cavity is balanced by a reverse flow in the channel of the same magnitude,
so that the sum of both remains equal to the Womersley value cos t.

The cavity and channel motions are coupled through the elastic equation

T ∂
2ξ

∂x2 = po − pc, (2.12)

with the membrane deformation ξ satisfying the boundary conditions

ξ = 0, at x = 0, 1 (2.13)

along with the integral constraint ∫ 1

0
ξ dx = 0, (2.14)

consistent with (2.2). In the elastic equation, the factor

T = Tho

ρω2L4 (2.15)

is a dimensionless membrane tension.

2.3. Governing parameters and solution procedure
Besides the geometrical parameter H = hc/ho, the problem formulated above displays
three parameters, namely the Womersley number α defined in (2.1), the dimensionless
stroke length ε defined in (2.3) and the dimensionless membrane tension T defined in
(2.15). The canonical model is designed to represent the dynamical behaviour encountered
in syringomyelia syrinxes, with transverse sizes hc comparable to, or somewhat larger
than, the thickness of the surrounding SAS ho ∼ 1–4 mm, so that the focus below is
on order-unity values of H. For cardiac-driven flow, the angular frequency is of order
ω = 2π s−1 (i.e. assuming a cardiac rate of 60 beats per minute), so that the resulting
Womersley number typically lies in the range 3 � α � 12, as follows from (2.1) when the
value ν � 0.7 × 10−6 m2 s−1 of the CSF kinematic viscosity at normal body temperature
is used in the evaluation. With CSF peak velocities of the order of a few centimetres
per second in the cervical SAS and cavity lengths of the order of a few centimetres, the
resulting stroke length ε = uc/(ωL) is moderately small (i.e. ε � 0.1–0.2), motivating
an asymptotic description leveraging the limit ε � 1. The value of the dimensionless
membrane tension T must be selected to represent the dynamical deformation of the spinal
cord tissue. The previous in vivo measurements of Vinje et al. (2018) reveal velocities in
the syrinx that are comparable with those in the SAS, which in our model problem require
membrane displacements ξ of order unity (e.g. see (2.11)) and corresponding values of
T also of order unity, according to (2.12). It appears therefore reasonable to explore the
distinguished limit T ∼ 1 in which the channel and cavity flows display two-way coupling.
Note that this limit arises when the characteristic wavelength λe = [(Tho)/(ρω

2)]1/4 of the
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The flow induced in syringomyelia cavities

elastic membrane deformations associated with a forcing frequency ω is comparable with
the cavity length L.

In the following quantitative description, pertaining to general order-unity values of
H, α and T and asymptotically small values of ε, all dependent variables are expressed
as expansions in powers of ε � 1 (e.g. uo = uo

0 + εuo
1 + · · · ), leading to a hierarchy of

problems that can be solved sequentially. The leading-order terms in the expansions,
satisfying a linear problem, are purely harmonic, so that their cycle-averaged values
are identically zero. In contrast, the first-order velocity corrections contain a non-zero
steady-streaming component involving a non-zero transmembrane pressure difference, to
be determined below. To facilitate the development, it is convenient to replace y with a
normalized transverse coordinate η defined as

η = y − εξ

1 − εξ
(channel) and η = − y − εξ

H + εξ
(cavity), (2.16a,b)

such that η = 0 at the membrane and η = 1 at the opposite flat wall.

3. Leading-order oscillatory motion

3.1. Velocity field
The leading-order solution can be expressed in the form

(uo
0, v

o
0, po

0, uc
0, v

c
0, pc

0, ξ0) = Re[(U,V,P, Ũ, Ṽ, P̃, χ)eit] (3.1)

in terms of the complex functions U(x, η), V(x, η), P(x), Ũ(x, η), Ṽ(x, η), P̃(x) and χ(x).
In the channel, the solution reduces to the integration of

∂U
∂x

+ ∂V
∂η

= 0 and
1
α2
∂2U
∂η2 − iU = dP

dx
, (3.2a,b)

with boundary conditions U = V = 0 at η = 1, U = V − iχ = 0 at η = 0, as follows at
this order from (2.5a,b) and (2.6a,b), with the reduced velocity satisfying the additional
constraint

∫ 1
0 U dη = 1 at x = 0, 1, consistent with (2.10a,b). Integrating the second

equation in (3.2a,b) with U = 0 at η = (0, 1) yields

U = i
{

1 − cosh [Λ(2η − 1)]
coshΛ

}
dP
dx
, (3.3)

where Λ = α
√

i/2. The expression for U can be used in the first equation in (3.2a,b) to
provide

V = −i
{
η − 1 − sinh [Λ(2η − 1)] − sinhΛ

2Λ coshΛ

}
d2P
dx2 (3.4)

upon integration with use of V = 0 at η = 1.
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The same integration procedure can be applied to the cavity flow to give

Ũ = i
{

1 − cosh[HΛ(2η − 1)]
cosh (HΛ)

}
dP̃
dx
, (3.5)

Ṽ = iH
{
η − 1 − sinh[HΛ(2η − 1)] − sinh (HΛ)

2HΛ cosh (HΛ)

}
d2P̃
dx2 . (3.6)

The velocity profiles (3.3) and (3.5) can be used to evaluate the integrals∫ 1

0
U dη = 1

β

dP
dx

and H
∫ 1

0
Ũ dη = 1

β̃

dP̃
dx
, (3.7a,b)

which enter in the computation of the leading-order oscillatory flow rates

Qo
0 =

∫ 1

0
uo

0 dy = Re

(∫ 1

0
Udη eit

)
and Qc

0 =
∫ 0

−H
uc

0 dy = Re

(
H
∫ 1

0
Ũ dη eit

)
,

(3.8a,b)

with

β = −i
[
1 −Λ−1 tanhΛ

]−1
and β̃ = −i

[
H −Λ−1 tanh(HΛ)

]−1
. (3.9a,b)

As can be seen from (3.3) and (3.4), when the pressure gradient takes the uniform
unperturbed value dP/dx = β, the leading-order velocity in the channel (uo

0, v
o
0) =

Re[(U,V)eit] reduces to the familiar Womersley solution (2.8) existing for x < 0 and
x > 1.

3.2. Membrane deformation

The pressure distributions in the channel and in the cavity P(x) and P̃(x), which complete
the determination of the flow at this order, are related to the membrane deformation by

d2P
dx2 = iβχ and

d2P̃
dx2 = −iβ̃χ, (3.10a,b)

as follows from using the boundary conditions V = Ṽ = iχ at η = 0 in (3.4) and (3.6).
Their values are coupled through

T d2χ

dx2 = P − P̃, (3.11)

obtained at leading-order from (2.12). Differentiating twice the above equation followed
by substitution of (3.7a,b) provides the boundary-value problem

d4χ

dx4 − i(β + β̃)

T χ = 0 with
{

d3χ/dx3 = β/T
χ = 0 at x = (0, 1) (3.12)

for the membrane displacement χ . The boundary condition involving the third derivative
follows from imposing the conditions dP/dx − β = dP̃/dx = 0 at x = 0, 1, corresponding
to
∫ 1

0 U dη − 1 = ∫ 1
0 Ũ dη = 0. The deformation satisfies

∫ 1
0 χ dx = 0, as can be readily

verified by performing a first quadrature of (3.12).
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The solution to (3.12) can be written as

χ = β

T

⎧⎪⎪⎨
⎪⎪⎩

sin
( γ

2T 1/4

)
sinh

[
γ

T 1/4

(
x − 1

2

)]
− sinh

( γ

2T 1/4

)
sin
[
γ

T 1/4

(
x − 1

2

)]
( γ

T 1/4

)3 [
sinh

( γ

2T 1/4

)
cos
( γ

2T 1/4

)
+ cosh

( γ

2T 1/4

)
sin
( γ

2T 1/4

)]
⎫⎪⎪⎬
⎪⎪⎭ ,

(3.13)

where γ = [i(β + β̃)]1/4. The above expression can be used in (3.7a,b) to obtain d2P/dx2

and d2P̃/dx2, needed in (3.4) and (3.6). On the other hand, integration of (3.7a,b) subject
to dP/dx − β = dP̃/dx = 0 at x = 0 provides the pressure gradients required in (3.3) and
(3.5), resulting in

1
β

dP
dx

− 1 = − 1

β̃

dP̃
dx

= i
∫ x

0
χ dx̂ (3.14)

with

i
∫ x

0
χ dx̂ = β

β + β̃

{
coth[γ /(2T 1/4)] + cot[γ /(2T 1/4)]

}−1

×

⎛
⎜⎜⎝

cosh
[
γ

T 1/4

(
x − 1

2

)]
−cosh

( γ

2T 1/4

)
sinh[γ /(2T 1/4)]

+
cos
[
γ

T 1/4

(
x − 1

2

)]
−cos

( γ

2T 1/4

)
sin[γ /(2T 1/4)]

⎞
⎟⎟⎠ ,

(3.15)

the latter entering when using (3.7a,b) and (3.7a,b) for the determination of the flow rates∫ 0

−H
uc

0 dy = cos t −
∫ 1

0
uo

0 dy = −Re
(

i
∫ x

0
χ dx̂ eit

)
. (3.16)

Note that the last equation corresponds to the leading-order form of (2.11).

3.3. Oscillatory motion
The closed-form expressions derived above can be used to investigate the main features
of the FSI oscillatory dynamics and its parametric dependences. We begin by plotting
in figures 3(b,e,h) and 3(c, f,i) snapshots of streamlines and membrane displacement
at two different instants of time corresponding to a configuration with α = 5 and
H = 1. Colour contours are used to represent the associated vorticity, which in the
slender-flow approximation reduces to −∂u0/∂y. The accompanying temporal variations
of the leading-order flow rates Qc

0 = ∫ 0
−H uc

0 dy and Qo
0 = ∫ 1

0 uo
0 dy at the canal middle

section x = 0.5 are shown in figure 3(a,d,g). The computations reveal, in particular, that
the value of T needs to be much smaller than unity to induce significant membrane
displacements (and therefore significant motion in the cavity). For example, for T = 0.05,
the case shown in figure 3(g–i), the membrane displacement is limited to values ξ0 < 0.1
and the fluid remains nearly stagnant in the cavity, associated departures from Womersley
flow in the channel being correspondingly small.

The limited membrane displacement found for T ∼ 1 can be attributed to the smallness
of the term in curly brackets in the general expression (3.13). This can be seen more clearly
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Figure 3. Oscillatory flow for a configuration with α = 5, H = 1 and T = (a–c) 0.0001, (d–f ) 0.01 and (g–i)
0.05. (a,d,h) The variation with time of the channel (blue) and cavity (red) flow rates Qo

0 = ∫ 1
0 uo

0 dy and Qc
0 =∫ 0

−H uc
0 dy at x = 0.5 evaluated using (3.16). (b,e,h,c, f,i) Streamlines and colour contours of vorticity at t = π/4

and t = π along with the corresponding membrane displacement ξ0. To facilitate comparisons, a fixed constant
streamline spacing of δψ0 = 0.05 has been used in representing the streamlines, with the stream function ψ0
computed using ∂ψ0/∂y = u0 and ∂ψ0/∂x = −v0.

by considering the limit of very stiff membranes T � 1, in which one can readily integrate
(3.12) to give the approximate result

χ � β

T
x
6

(
x − 1

2

)
(x − 1) for T � 1. (3.17)

Straightforward evaluation reveals that the maximum displacement in this limit, reached
at x = 1/2 ± √

3/6, is χ � 8.02 × 10−3β/T , with the small numerical factor being
consistent with the results shown in the figure.

In contrast to the case T = 0.05, the configurations with T = 10−4 and T = 10−2,
shown in figures 3(a–c) and 3(d–f ), respectively, show velocities in the cavity that are
comparable with those in the channel. The streamlines in all plots have been represented
using the same values of the stream function, so that their inter-spacing characterizes
the local flow speed. The comparison of the streamlines in figures 3(a–c) and 3(d–f )
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Figure 4. The variation with time of (a) the membrane displacement ξ0, (b) cavity flow rate Qc
o = ∫ 0

−H uc
o dy

and (c) oscillatory transmembrane pressure difference pc
0 − po

0 for a cavity with α = 5, H = 1 and T = 0.01.

reveals that the flow patterns become more complicated as the membrane becomes more
flexible for decreasing values of T . In interpreting this result, it is worth recalling that
the dimensionless membrane tension can be expressed as T = (λe/L)4 in terms of the
characteristic elastic wavelength λe = [(Tho)/(ρω

2)]1/4, so that the number of membrane
undulations increases for decreasing values of T , driving separate regions of recirculating
flow.

The dynamics of the sloshing motion induced in the cavity is characterized in figure 4
by plotting the temporal variation over a cycle of the tightly coupled cavity deformation
ξ0, flow rate Qc

o = ∫ 0
−H uc

0 dy and oscillatory transmembrane pressure pc
0 − po

0 = Re[(P̃ −
P)eit], with P̃ − P evaluated from (3.11) by straightforward double differentiation of (3.13).
As can be expected from (3.11) and (3.16), the membrane displacement is in phase with
pc

0 − po
0, while the flow rate is in quadrature. At the initial time t = π/4 selected in the

figure, the membrane is practically flat and the transmembrane pressure difference is
very small. The fluid, with an initially negative flow rate, moves upstream, deforming
the membrane and inducing a negative pressure gradient that slows down the motion,
so that the velocity vanishes when the deformation reaches its maximum at t = 3π/4.
The flow reverses for t > 3π/4, with the negative pressure gradient driving the flow
downstream. A nearly flat membrane with negligible transmembrane pressure gradient is
found for t = 5π/4 as the flow rate reaches its peak positive value. The sloshing behaviour
is replicated over the second half of the cycle following the expected sinusoidal pattern. In
view of figure 3(a–c), it can be anticipated that the sloshing-flow structure becomes more
complicated as the elastic wavelength becomes much smaller than L for decreasing values
of T , that being the case investigated below.

3.4. Very flexible membranes
For values of T smaller than those considered in figure 3, the membrane undulations,
of larger amplitude for decreasing T , remain mostly confined to near-edge regions scaling
with the elastic-wave wavelength. Illustrative results pertaining to this limit of very flexible
membranes are shown in figure 5, including instantaneous membrane shapes at selected
times and associated cavity flow rates.

The structure that emerges can be investigated by exploring the asymptotic limit T � 1,
wherein (3.12) reduces to χ = 0 while (3.11) yields P = P̃, so that the fluid moves
in the channel and in the cavity under the action of the same pressure gradient. This
solution fails near the edges of the membrane, in two boundary regions x ∼ T 1/4 � 1 and
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Figure 5. The streamwise variation of (a–c) the membrane displacement ξ0 and (d–f ) cavity flow
rate Qc

0 = ∫ 0
−H uc

0 dy at (a,d) t = 0, (b,e) t = π/4 and (c, f ) t = π/2 for α = 3, H = 2 and T =
(10−3, 10−5, 10−8).

(1 − x) ∼ T 1/4 � 1, where χ ∼ T −1/4 � 1 and P ∼ P̃ ∼ T 1/4 � 1 whose solution
determines the pressure gradient driving the uniform flow rate in the central region.
Introducing the rescaled variables ζ = x/T 1/4 (replaced by ζ = (1 − x)/T 1/4 in the
description of the right-hand-side edge region), χe = T 1/4χ , Pe = P/χ1/4 and P̃e =
P̃/χ1/4 leads to the modified boundary-value problem

d4χe

dζ 4 − γ 4χe = 0

⎧⎨
⎩

d3χe

dζ 3 − β = χe = 0, at ζ = 0,

χe → 0, as ζ → ∞,

(3.18)

which can be integrated to give

χe = β

γ 3 (1 − i)

(
eiγ ζ − e−γ ζ

)
. (3.19)

Without loss of generality, in writing the above expression we have used the complex root
γ = [i(β + β̃)]1/4 lying in the first quadrant, so that eiγ ζ → 0 and e−γ ζ → 0 as ζ → ∞.
Substituting (3.19) into the rescaled form of (3.14) and (3.16) yields

1
β

dPe

dζ
− 1 = − 1

β̃

dP̃e

dζ
= β

β + β̃

(
e−γ ζ − ieiγ ζ

1 − i
− 1
)

(3.20)

and ∫ 0

−H
uc

0 dy = cos t −
∫ 1

0
uo

0 dy = −Re
[

β

β + β̃

(
e−γ ζ − ieiγ ζ

1 − i
− 1
)

eit
]

(3.21)
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Figure 6. The variation with T of the amplitude of the oscillating flow rate |∫ 1/2
0 χ dx| across the central

section x = 1/2 of the cavity for α = 3 (a) and α = 6 (b) and four different values of H = (0.5, 1, 2,∞). The
inset in (a) represents an expanded view of the curves as they merge for increasing T while that in (b) gives
the variation with α of the peak value of |∫ 1/2

0 χ dx| for three different values of H.

for the pressure gradients and flow rates in the near-edge regions. The result can be
evaluated as ζ → ∞ to obtain the uniform values

dP
dx

= dP̃
dx

= ββ̃

β + β̃
(3.22)

and ∫ 0

−H
uc

0 dy = cos t −
∫ 1

0
uo

0 dy = Re
(
βeit

β + β̃

)
(3.23)

that prevail away from the edge regions.

3.5. Parametric dependences of the flow rate
As can be inferred from (3.16), the parametric dependences of the oscillating flow rate in
the cavity (and, correspondingly, of the departures from Womersley flow in the channel)
are embodied in the function i

∫ x
0 χ dx̂ given in (3.15). A measure of the induced motion

is provided by the local amplitude of the oscillating flow rate across the central section
x = 1/2 of the cavity, given by the modulus |∫ 1/2

0 χ dx|, which is also proportional
to the corresponding stroke volume

∫ t+2π

t |Qc
0(1/2, t)| dt/(2π) = (2/π)|∫ 1/2

0 χ dx|. The
variation of |∫ 1/2

0 χ dx| with T is represented in figure 6 for different values of H and α.
The curves reproduce the trends previously identified. In particular, the motion is very

limited for values of T � 0.1, when the flow rate becomes independent of H, as seen
in the inset of figure 6(a), with a value that decays for T � 1 according to |∫ 1/2

0 χ dx| =
|β|/(384T ), a result derived with use of (3.17). In the opposite limit T � 1 of very flexible
membranes, the flow-rate amplitude approaches the constant value |∫ 1/2

0 χ dx| = |β/(β +
β̃)|, larger for larger H, with |∫ 1/2

0 χ dx| = 0.5 when β = β̃ for H = 1. The flow rate in
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the central part of the cavity becomes maximum for an intermediate value of T lying in
the range 10−3 < T < 10−2, with the peak becoming more pronounced with increasing α,
as shown in the inset of figure 6(b). Between their peak values and the asymptotic values
approached as T → 0, the curves in figure 6 display oscillations of decreasing amplitude,
which are related to the development of an increasing number of membrane undulations
as the cavity length L becomes larger than the elastic wavelength λe for decreasing values
of T = (λe/L)4.

3.6. Effects of complex waveform

The rapid decay from its peak value experienced by |∫ 1/2
0 χ dx| as T increases, more

prominent for larger α, is indicative of a strong frequency dependence of the flow rate
induced in the cavity. As indicated by the plots in figure 6, for intermediate values of T ∼
10−2, increasing the frequency (i.e. reducing the value of T ∝ ω−2 and increasing the
value of α ∝ ω1/2) may promote significantly the motion in the cavity, with implications
concerning the characteristics of the oscillatory flow in syringomyelia syrinxes, an aspect
of the flow investigated below.

The typical waveform of the cardiac-driven flow rate Q′ at the entrance of the spinal
canal has a non-sinusoidal waveform, so that the Fourier decomposition of the signal has
multiple harmonics of frequency nω. For instance, a Fourier analysis of the periodic flow
rate corresponding to a Chiari patient, shown in figure 7(a), obtained by rescaling PC MRI
velocity measurements reported by Vinje et al. (2018), yields

Q′/〈|Q′|〉 =
∞∑

n=1

Re
(

Aneint
)
, (3.24)

where An are complex constants of order unity, with A1 = 0.2765 − 1.4686i, A2 =
0.0206 − 0.6748i and A3 = −0.1203 − 0.2222i for the first three modes. Here, we
have normalized the flow rate with its average amplitude 〈|Q′|〉 = ∫ 2π

0 |Q′| dt/(2π). For
comparison, figure 7(a) includes the purely sinusoidal case Q′/〈|Q′|〉 = (π/2) sin(t) (i.e.
A1 = −(π/2)i with An = 0 for n > 1).

The analysis given above, pertaining to a simple sinusoidal flow rate, can be readily
extended to account for the presence of the different harmonics, leading to the flow-rate
expressions∫ 0

−H
uc

0 dy =
∞∑

n=1

Re
(

Aneint
)

−
∫ 1

0
uo

0 dy = −Re

( ∞∑
n=1

Ani
∫ x

0
χn dx̂ eint

)
, (3.25)

with uc = 〈|Q′|〉/ho used as characteristic velocity in scaling the problem. The value of
i
∫ x

0 χn dx̂, measuring the amplification of a specific mode n, can be determined from the
general expression (3.15) by simply replacing T with T /n2 and evaluating β, β̃ and γ =
[i(β + β̃)]1/4 with use of n1/2α in place of α.

Bearing in mind the frequency dependence discussed above in connection with
figure 6, one may anticipate that, for configurations with T sufficiently large, higher-order
harmonics n > 1 may have values of the amplification factor i

∫ x
0 χndx̂ that are larger

than those of the fundamental frequency, that being a result of the variation of
the frequency-weighted membrane tension T /n2 and Womersley number n1/2α. As a
consequence, although the fundamental mode with frequency ω is clearly dominant in the
flow rate at the entrance of the spinal canal Q′, so that the waveform is nearly sinusoidal, as
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Figure 7. (a) Comparison of the dimensionless flow rate at the entrance of the spinal canal measured by
cardiac-gated PC MRI (adapted from Vinje et al. 2018) (solid curve) with the sinusoidal signal Q′/〈|Q′|〉 =
(π/2) sin(t) (dashed curve). The two waveforms are used to determine the response of the cavity flow for
a configuration with α = 5, T = 0.02 and two different cavity widths H = 1 (red curves) and H = 4 (blue
curves), including (b) the variation with time of the cavity flow rate Qc

0 = ∫ 0
−H uc

0 dy at x = 1/2 determined
from (3.25) and (c) the streamwise variation of the transmural steady pressure difference 〈 pc

1〉 − 〈 po
1〉

computed from (4.28). For consistency with (a), the solid/dashed curves in (b,c) are computed with the
complex/sinusoidal channel-flow waveforms.

shown in figure 7(a), the motion induced in the syrinx may exhibit pronounced oscillations
at higher frequencies nω. As previously discussed in the introduction, such dynamics has
been observed in in vivo non-invasive measurements performed in syringomyelia patients
both before and after craniovertebral decompression (Vinje et al. 2018). In the preoperative
study, the flow in the syrinx was found to display three full oscillations per cardiac cycle
(i.e. Vinje et al. (2018) report 210 cycles per minute for a heart rate of 73 beats per minute),
indicating that the third harmonic n = 3 was dominant. In contrast, two months after
surgery, the flow in the syrinx, now reduced in size (i.e. corresponding to a smaller value of
H in our analysis), exhibited instead two full oscillations per cardiac cycle (i.e. 200 cycles
per minute for a heart rate of 97 beats per minute), consistent with the second harmonic
n = 2 being dominant instead in the postoperative state.

The results of the simple FSI model developed here can be used to investigate this
intriguing behaviour. Results of an illustrative computation are given in figure 7 for a
configuration with α = 5, T = 0.02 and two different values of H. Figure 7(b) shows
the waveform of the periodic flow rate Qc

0 = ∫ 1
0 uc

0 dy across the cavity middle section
x = 1/2 as determined from (3.25) using the sinusoidal flow rate Q′/〈|Q′|〉 = (π/2) sin(t)
(dashed curves) and using ten modes in the Fourier expansion (3.24) for the spinal canal
flow rate represented with the solid curve in figure 7(a) (solid curves). As can be seen,
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the flow rate induced in the cavity when the channel flow is purely sinusoidal follows the
fundamental frequency. In contrast, the cavity-flow response to the complex waveform,
of much larger amplitude, exhibits multiple cycles. In particular, it is seen that the curve
with H = 4, representative of the preoperative state, exhibits three cycles, in agreement
with the previous in vivo observations (Vinje et al. 2018). Interestingly, when the width
of the cavity is reduced to H = 1, mimicking the reduction in syrinx transverse size that
follows surgery, the second harmonic becomes dominant, so that the resulting waveform
of the cavity flow rate shows two cycles instead, again in agreement with the observations
(Vinje et al. 2018). It is remarkable that, while the configuration investigated here is much
too simple to enable quantitative predictions to be made, it is still able to reproduce some
aspects of the observed in vivo dynamics when the value of T is selected in the appropriate
range.

4. Secondary motion

4.1. Steady streaming
The leading-order solution investigated in the preceding section has a zero time average,
so that it does not result in a net transmembrane pressure difference. In contrast, the
first-order corrections include a steady component, which can be determined by taking
the time average of the corresponding governing equations, obtained by collecting terms
of order ε in (2.5a,b). In the channel, the problem reduces to the integration of

∂〈uo
1〉

∂x
+ ∂〈vo

1〉
∂η

+ G (x, η) = 0 and
1
α2

∂2〈uo
1〉

∂η2 = d
〈
po

1
〉

dx
+ F (x, η) (4.1a,b)

subject to 〈uo
1〉 = 〈vo

1〉 = 0 at η = 0, 1 and
∫ 1

0 〈uo
1〉 dη = 0 at x = 0, 1, with 〈. . .〉 =∫ t+2π

t dt/(2π) representing the time-averaging operator. The steady motion is driven by
the effect of convective acceleration and the nonlinear interactions stemming from the
deformation of the canal, which enter in the problem through the functions

G = (η − 1)
〈
∂ξ0

∂x
∂uo

0
∂η

〉
+
〈
ξ0
∂vo

0
∂η

〉
(4.2)

and

F = (η − 1)
〈
∂ξ0

∂t
∂uo

0
∂η

〉
+
〈
uo

0
∂uo

0
∂x

〉
+
〈
vo

0
∂uo

0
∂η

〉
− 2
α2

〈
ξ0
∂2uo

0
∂η2

〉
. (4.3)

The time averages of products of harmonic functions in the above expressions can be
written in terms of U, V and χ with use of the identity 〈Re(eitA)Re(eitB)〉 = Re(AB∗)/2,
which applies to any generic time-independent complex functions A and B, with the
asterisk denoting complex conjugates.

Because of the canal deformation, the cycle-averaged velocity is non-solenoidal, as seen
in the first equation of (4.1a,b), resulting in a non-zero flow rate 〈Qo

1〉 = ∫ 1
0 〈uo

1〉 dη. Its
value can be determined directly by integrating the continuity equation across the canal

978 A22-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1018


The flow induced in syringomyelia cavities

with 〈vo
1〉 = 0 at η = 0, 1 to give

d
dx

[∫ 1

0
〈uo

1〉 dη −
〈
ξ0

∫ 1

0
uo

0 dη

〉]
= 0 (4.4)

after use is made of integration by parts to reduce
∫ 1

0 G dη. Since
∫ 1

0 〈uo
1〉 dη = 0 at x =

0, 1, where ξ0 = 0, it follows that∫ 1

0
〈uo

1〉 dη =
〈
ξ0

∫ 1

0
uo

0 dη

〉
. (4.5)

As seen later in § 4.2, this non-zero flow rate is balanced exactly by that of the Stokes drift,
so that the mean Lagrangian motion has a zero flow rate, as it should.

The steady-streaming velocity in the channel is computed by integrating the second
equation in (4.1a,b) subject to 〈uo

1〉 = 0 at η = 0, 1 to give

〈uo
1〉 = −α2

[
η

2
(1 − η)

d
〈
po

1
〉

dx
+
∫ η

0
η̂F dη̂ + η

(∫ 1

η

F dη̂ −
∫ 1

0
ηF dη

)]
, (4.6)

which can be used in integrating the first equation in (4.1a,b) with the condition 〈vo
1〉 = 0

at η = 0 to obtain

〈vo
1〉 = α2 ∂

∂x

[
η2

2

(
1
2

− η

3

)
d
〈
po

1
〉

dx
− 1

2

∫ η

0
Fη̂2 dη̂

+ η

∫ η

0
Fη̂ dη̂ + η2

2

(∫ 1

η

F dη̂ −
∫ 1

0
Fη dη

)]
−
∫ η

0
G dη̂, (4.7)

where the pressure gradient is given by

d
〈
po

1
〉

dx
= − 12

α2

〈
ξ0

∫ 1

0
uo

0 dη

〉
− 6

∫ 1

0
Fη (1 − η) dη, (4.8)

as follows from substitution of (4.6) into (4.5). A similar analysis of the cavity flow
provides

〈uc
1〉 = − (αH)2

[
η

2
(1 − η)

d
〈
pc

1
〉

dx
+
∫ η

0
η̂F̃ dη̂ + η

(∫ 1

η

F̃ dη̂ −
∫ 1

0
ηF̃ dη

)]
, (4.9)

〈vc
1〉 = −α2H3 ∂

∂x

[
η2

2

(
1
2

− η

3

)
d
〈
pc

1
〉

dx
− 1

2

∫ η

0
F̃η̂2 dη̂

+ η

∫ η

0
F̃η̂ dη̂ + η2

2

(∫ 1

η

F̃ dη̂ −
∫ 1

0
F̃η dη

)]
+ H

∫ η

0
G̃ dη̂,

(4.10)

with
d〈 pc

1〉
dx

= 12
α2H3

〈
ξ0

∫ 1

0
uc

0 dη

〉
− 6

∫ 1

0
F̃η (1 − η) dη (4.11)
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and ∫ 1

0
〈uc

1〉 dη = − 1
H

〈
ξ0

∫ 1

0
uc

0 dη

〉
, (4.12)

where

G̃ =
(

1 − η

H

) 〈
∂ξ0

∂x
∂uc

0
∂η

〉
− 1

H2

〈
ξ0
∂vc

0
∂η

〉
, (4.13)

F̃ =
(

1 − η

H

) 〈
∂ξ0

∂t
∂uc

0
∂η

〉
+
〈
uc

0
∂uc

0
∂x

〉
− 1

H

〈
vc

0
∂uc

0
∂η

〉
− 2
α2H3

〈
ξ0
∂2uc

0
∂η2

〉
. (4.14)

Using (3.16) together with (4.5) and (4.12) finally gives

H
∫ 0

−H
〈uc

1〉 dy =
∫ 1

0
〈uo

1〉 dy − 1
2

Re(χ) = 1
2

Re
(

iχ
∫ x

0
χ∗ dx̂

)
, (4.15)

which can be used in conjunction with (3.13) and (3.15) to evaluate the flow rates across
the channel 〈Qo

1〉 = ∫ 1
0 〈uo

1〉 dy � ∫ 1
0 〈uo

1〉 dη and cavity 〈Qc
1〉 = ∫ 0

−H〈uc
1〉 dy � H

∫ 1
0 〈uc

1〉 dη.
To show the complicated structure of the resulting flow, selected results corresponding

to a configuration with α = 6 and H = 1.5 are shown in figures 8(a) (T = 0.01) and 8(b)
(T = 0.001). Since the continuity equation, given for the channel in (4.1a,b), contains a
source term arising from the membrane deformation, it is not possible to use the stream
function to define the streamlines. Instead, the streamlines shown in the upper panels were
obtained by direct integration of dx/〈u1〉 = dy/〈v1〉. As a consequence, unlike the plots in
figure 3, computed with the stream function corresponding to the leading-order harmonic
flow, the distance between streamlines in figure 8(a,b) does not represent the magnitude
of the local velocity. A measure of the flow magnitude is provided in this case by the
volumetric flow rates shown in the lower panels and also by the colour contours of vorticity
−∂〈u1〉/∂y � −∂〈u1〉/∂η, which are superposed to the streamlines in the upper panels. As
can be seen, for T = 0.01 the motion in the channel is nearly three orders of magnitude
stronger than that in the cavity, while for T = 0.001 their magnitudes are comparable.

The Eulerian flow structure depicted in figure 8(a,b), symmetric about the centreline
x = 1/2, exhibits a variety of singular points. Four centres separated by a saddle point
located along the symmetry plane characterize the flow in the channel for T = 0.01, with
the lower nodes involving streamlines originating at the membrane. As the membrane
tension is increased to T = 0.001, the four centres become spiral points and the structure
becomes more complicated upon the emergence of new saddle points as well as two new
centres. On the other hand, the motion in the cavity is characterized by the existence of
several nodes, giving a flow structure that is markedly different from that found in the
channel.

4.2. The mean Lagrangian velocity
The complicated streamline structure associated with the steady-streaming velocity
〈v1〉 = (〈u1〉, 〈v1〉) shown in figure 8(a,b) does not represent actual cycle-averaged
trajectories of fluid particles. In characterizing the secondary flow, it is important to
bear in mind that the mean Lagrangian velocity of the fluid particles, smaller than the
oscillatory velocity by a factor ε, has in general a contribution arising from the so-called
Stokes drift (Stokes 1847), additional to that associated with the time-averaged Eulerian
velocity 〈v〉 = ε〈v1〉 computed above (see e.g. Larrieu, Hinch & Charru (2009) and

978 A22-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1018


The flow induced in syringomyelia cavities

0

10

1.0

0.5

–0.5

–1.0

–1.5

0

1.0

0.5

–0.5

–1.0

–1.5

0

1.0

0.5

–0.5

–1.0

–1.5

0

1.0

0.5

–0.5

–1.0

–1.5

0

1.0

0.5

–0.5

–1.0

–1.5

0

1.0

0.5

–0.5

–1.0
–10

10

0

–10
–5

10

5

0

–1.5

0

–10

0

50

–50

0

10

–10

0

50

–50

0

0.25 0.50

x

y
y

y

0.75 1.00

0.2

–0.2
0

0.2

–0.2

0

3

–3
0

0.3

–0.3

0

0.3

–0.3
0

–10–3

10–3

0

0.1

–0.1
0

0.05

–0.05
0

0 0.25 0.50

x
0.75 1.00

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

〈p
1c 〉 

–
 〈p

1o 〉
〈ξ

1
〉

〈Q
1o 〉

〈Q
1c 〉

(e)

(h)

(b)(a)

(c) (d )

( f )

(g)

Figure 8. Secondary flow for H = 1.5 and α = 6 with T = 0.01 (a,c,e,g) and T = 0.001 (b,d, f ,h) including
(a,b) streamlines, colour contours of vorticity and channel and cavity flow rates corresponding to the
steady-streaming velocity 〈v1〉 = (〈u1〉, 〈v1〉), (c,d) streamlines and colour contours of vorticity corresponding
to the Stokes drift velocity vSD = (uSD, vSD), (e, f ) streamlines and colour contours of vorticity corresponding
to the mean Lagrangian velocity vL = 〈v1〉 + vSD and (g,h) membrane deformation 〈ξ1〉 and stationary
transmembrane pressure difference 〈 pc

1〉 − 〈 po
1〉.
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Alaminos-Quesada et al. (2022) for related channel-flow examples). If the factor ε is
incorporated in the scaling of the Lagrangian velocity vL = (uL, vL), then it follows that
vL = 〈v1〉 + vSD. The Stokes drift vSD = (uSD, vSD), resulting from small displacements
of the Lagrangian particle during its phase cycle, can be computed from (van den Bremer
& Breivik 2018)

vSD = 〈(δx, δη) · ∇v0
〉
, (4.16)

where v0 = (u0, v0) is the leading-order oscillatory velocity and (δx, δη) is the
corresponding linear displacement (scaled with ε), to be obtained by integration of
the trajectory equations, with account taken of the coordinate stretching (2.16a,b) in
the computation of the vertical displacement. For example, for the channel the trajectory
equations become

∂δx

∂t
= uo

0 and
∂δη

∂t
= vo

0 + (η − 1)
∂ξ0

∂t
, (4.17a,b)

yielding upon integration δx = ∫ uo
0 dt and δη = ∫ vo

0 dt + (η − 1)ξ0. Substitution into
(4.16) provides

uo
SD = ∂

∂η

〈
uo

0

∫
vo

0 dt
〉
+ (η − 1)

∂

∂η

〈
ξ0uo

0
〉
, (4.18)

vo
SD = ∂

∂x

〈
vo

0

∫
uo

0 dt
〉
+ (η − 1)

∂

∂η

〈
ξ0v

o
0
〉

(4.19)

in the channel, while a similar development leads to

uc
SD = ∂

∂η

〈
uc

0

∫
vc

0 dt
〉
−
(
η − 1

H

)
∂

∂η

〈
ξ0uc

0
〉
, (4.20)

vc
SD = ∂

∂x

〈
vc

0

∫
uc

0 dt
〉
−
(
η − 1

H

)
∂

∂η

〈
ξ0v

c
0
〉

(4.21)

in the cavity. It is interesting to note that, just like the steady-streaming velocity 〈v1〉, the
Stokes velocity is non-solenoidal, as can be seen by computing the divergence to give

∂uo
SD
∂x

+ ∂vo
SD
∂η

− G = 0 (4.22)

in the channel, where the function G is defined in (4.2). By way of contrast, the
Lagrangian velocity vL = 〈v1〉 + vSD is solenoidal, as can be verified by adding (4.22)
to the first equation in (4.1a,b). Correspondingly, the flow rate associated with the Stokes
drift, equal to

∫ 1
0 uo

SD dη = −〈ξ0
∫ 1

0 uo
0 dη〉 in the channel, balances out with that of the

steady-streaming motion, given for the channel in (4.5), so that the Lagrangian flow rate
satisfies

∫ 1
0 uL dη = 0, as it should.

Streamlines computed with use made of (4.18)–(4.21), showing the expected symmetry
about x = 1/2, are represented in figure 8(c,d). According to the above discussion,
corresponding flow rates

∫ 1
0 uo

SD dy and
∫ 0
−H uc

SD dy can be obtained by simply changing
the sign of those given for the steady-streaming motion in figure 8(a,b). Just as in the case
of steady streaming, the resulting flow structure shows multiple singular points, different
in the cavity and in the channel. In contrast, the structure of the mean Lagrangian flow,
depicted in figure 8(e, f ), is somewhat simpler, in that it comprises four counter-rotating
vortices in the channel and in the cavity, resulting in a zero volume flux, with the flow in
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the channel displaying symmetry about y = 1/2. As revealed by additional computations,
not shown here, the number of Lagrangian vortices depends on the values of α and
T . For instance, for α = 6 and T = 10−4, the four symmetrically arranged vortices
that characterize the channel flow in figure 8(e, f ) split to give four vortex pairs, each
occupying one quadrant of the channel, while the corresponding cavity flow features
in each half-space 0 < x < 1/2 and 1/2 < x < 1 three dissimilar vortices arranged in a
triangular fashion.

4.3. Stationary transmembrane pressure difference and membrane deformation
While the computation of the oscillatory flow at leading order requires simultaneous
consideration of the membrane deformation, as seen in § 3, the steady-streaming flow
described by (4.6)–(4.11) is independent of the mean membrane displacement 〈ξ1〉. The
computation of 〈ξ1〉 involves the elastic equation (2.12), which yields at this order the
boundary-value problem

T d2 〈ξ1〉
dx2 = 〈 po

1
〉− 〈 pc

1
〉 ; 〈ξ1〉 (0) = 〈ξ1〉 (1) = 0. (4.23)

Differentiating once the above equation and substituting (4.8) and (4.11) provides a
third-order equation, which can be integrated with the additional integral condition∫ 1

0 〈ξ1〉 dx = 0, stemming from (2.14), to give

〈ξ1〉 = 1
T

[
x
∫ 1

0
I (1 − x) dx − 3x (1 − x)

∫ 1

0
Ix (1 − x) dx +

∫ x

0
I x̃ dx̃ − x

∫ x

0
I dx̃

]

(4.24)

and 〈
pc

1
〉− 〈 po

1
〉 = I (x)− 6

∫ 1

0
Ix(1 − x) dx, (4.25)

where

I (x) =
∫ x

0

[
12
α2

〈
ξ0

∫ 1

0
(uo

0 + uc
0/H

3) dη

〉
+ 6

∫ 1

0
(F − F̃)η(1 − η) dη

]
dx. (4.26)

The cycle-averaged distributions of membrane displacement 〈ξ1〉 and transmembrane
pressure difference 〈 pc

1〉 − 〈 po
1〉 evaluated from (4.24) and (4.25) with use made of (4.26),

both symmetric about x = 1/2, are plotted in figure 8(g,h). As can be seen, for T = 0.01,
the membrane is convex towards the channel at its centre, where the cavity overpressure
reaches its maximum value, while for T = 0.001 the membrane at its centre is concave
and the local value of 〈 pc

1〉 − 〈 po
1〉 is negative.

A relevant magnitude of interest is the spatially averaged value of the transmembrane
pressure difference ∫ 1

0

(〈
pc

1
〉− 〈 po

1
〉)

dx =
∫ 1

0
I(1 − 6x + 6x2) dx, (4.27)

related to the end slope of the membrane d〈ξ1〉/dx(0) = −d〈ξ1〉/dx(1) according to∫ 1
0 (〈 pc

1〉 − 〈 po
1〉) dx = 2T d〈ξ1〉/dx(0), as follows from (4.23). This quantity can be

thought to be representative of the transmural pressure induced by the CSF motion
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Figure 9. The variation with T of the spatially averaged transmembrane pressure difference
∫ 1

0 (〈 pc
1〉 −

〈 po
1〉) dx for α = 3 (a) and α = 6 (b) with H = (0.5, 1, 2,∞). The inset on the right depicts the evolution

with α of the peak values of
∫ 1

0 (〈 pc
1〉 − 〈 po

1〉) dx for H = 2 (red) and H = ∞ (black).

in syringomyelia cavities, which has been reasoned to play an important role in the
development of the disease (Bertram 2010; Heil & Bertram 2016; Bertram & Heil 2017),
as SAS overpressures can drive CSF from the SAS through the spinal cord tissue to
fill the cavity. As can be inferred from the pressure distributions in figure 8(g,h), the
value of

∫ 1
0 (〈 pc

1〉 − 〈 po
1〉) dx is negative for T = 0.01 but positive for T = 0.001, so that

both cavity overpressures and SAS overpressures may arise, depending on the conditions.
Values computed over an extended range of T for different values of the cavity width and
two different values of α are shown in figure 9.

Since the stationary pressure differences originated by the fluid motion are due to
nonlinear interactions involving the leading-order oscillatory solution, the curves in
figure 9 are seen to correlate with those shown in figure 6 for the magnitude of the
oscillating flow rate. Thus, for rigid membranes, corresponding to values of T � 0.1,
the stationary pressure differences originated by the fluid motion are negligibly small. The
peak transmembrane pressure difference is attained in figure 9 at an intermediate value
of T , coincident with the maximum in oscillating flow rate shown in the corresponding
curves of figure 6. Both sets of curves also display oscillations as the membrane develops
a larger number of undulations for T = (λe/L)4 � 1.

As seen in figure 9(a), for α = 3 the cavity exhibits overpressures regardless of the
cavity size and membrane tension. However, a more complicated behaviour arises for
α = 6, a case shown in figure 9(b) for which the sign of

∫ 1
0 (〈 pc

1〉 − 〈 po
1〉) dx depends on the

value of H in the intermediate range of values of T where the motion is more vigorous.
As can be seen, large cavities tend to display negative pressures, more pronounced for
increasing values of H. This aspect of the solution is further investigated in an inset
showing the variation of the peak pressure up to values of α exceeding the largest value
α = 12 estimated to be relevant for cardiac-driven CSF flow in the cervical region.

The parametric dependences revealed by figure 9 may have implications regarding
the development of syringomyelia cavities. If one assumes that SAS overpressures are
needed to drive the transmedullary flow responsible for syrinx growth, then, according
to the results shown in figure 9(a), the syrinx would never develop if α = 3, since cavity
overpressures (i.e. positive values of

∫ 1
0 (〈 pc

1〉 − 〈 po
1〉) dx) prevail for all values of H and

T . The more complicated variation of
∫ 1

0 (〈 pc
1〉 − 〈 po

1〉) dx shown for α = 6 in figure 9(b)
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suggests that, in the intermediate range of values of T where the cavity flow is more
pronounced, changes in the syrinx transverse size might have an important effect, with
cavity overpressures turning to SAS overpressures as H increases. Further increase of H
may result in a self-accelerating process that possibly leads to runaway cavity growth.
The curves for α = 6 also indicate that, for a constant H, there can be situations where
the initial SAS overpressure eventually turns to cavity overpressure as the dimensionless
membrane tension T decreases with increasing syrinx lengths L, thereby leading to
stabilization of a finite-sized syrinx. Naturally, one must bear in mind that these identified
trends pertain to an SAS flow rate of sinusoidal form, thereby neglecting the influence of
higher harmonics, which may have an important effect on the transmembrane pressure, as
discussed below.

With the frequency entering in the scale ρucωL used to define the dimensionless
pressures po and pc, higher frequencies can be expected to lead to larger transmural
pressures, a trend that is further enhanced by the dependence on T ∝ ω−2 previously
discussed in connection with the curves in figure 6. This observation underscores once
more the potential importance of the higher harmonics arising in the presence of
non-sinusoidal flow rates, as those encountered in the spinal canal. Just as the first or
second harmonic can dominate the sloshing dynamics in the cavity, as revealed by in vivo
measurements (Vinje et al. 2018) and illustrated in the sample computations of figure 7(b),
the steady transmural pressure difference induced by the higher harmonics can be possibly
larger than that of the fundamental frequency. Because of this frequency-dependent flow
amplification, a result of the underlying FSI dynamics, numerical simulations and in vitro
experiments utilizing a SAS flow rate (or longitudinal pressure gradient) with presumed
sinusoidal waveform may significantly underpredict the associated transmural pressure.

To illustrate the previous point, one can use

〈
pc

1
〉− 〈 po

1
〉 = ∞∑

n=1

n|An|2
(〈

pc
1,n
〉− 〈 po

1,n
〉)

(4.28)

to evaluate the streamwise variation of the transmembrane pressure difference 〈 pc
1〉 −

〈 po
1〉 for a channel flow rate of general periodic form (3.24). In the above expression,

the contribution of each mode is weighted by n|An|2, where the factor n stems from
the proportionally �p′ ∝ ω present in the definition of the dimensionless pressure p.
Correspondingly, the dependences on the flow frequency present in the definitions of T
and α suggest that, in using (4.25) to compute the pressure difference 〈 pc

1,n〉 − 〈 po
1,n〉

associated with nth mode, one must replace T and α with T /n2 and n1/2α when evaluating
the integral function (4.26). The expression (4.28) was used to determine the longitudinal
distributions of 〈 pc

1〉 − 〈 po
1〉 shown in figure 7(c), corresponding to the sinusoidal and

complex-wave flow rates shown in figure 7(a). As anticipated in the previous paragraph,
the presence of higher harmonics in the channel-flow waveform has a dramatic effect on
the magnitude of 〈 pc

1〉 − 〈 po
1〉. Correspondingly, the spatially averaged transmembrane

pressure difference, which takes the values
∫ 1

0 (〈 pc
1〉 − 〈 po

1〉) dx = (−0.0117,−0.0151)
for H = (1, 4) when a sinusoidal SAS-flow rate is assumed, increases to

∫ 1
0 (〈 pc

1〉 −
〈 po

1〉) dx = (0.1404,−0.3059) for H = (1, 4) when the physiologically correct flow rate
is used in the computation. For the latter, the change in sign of the transmembrane
pressure with increasing H may have implications concerning transmedullary flow.
Clearly, additional work involving more accurate models is needed before these identified
trends can be used for predictive purposes.

978 A22-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1018


G.L. Nozaleda, J. Alaminos-Quesada, W. Coenen, V. Haughton and A.L. Sánchez

5. Conclusions

The time-periodic hydrodynamics of syringomyelia cavities, involving a FSI problem
in which the motion in the spinal cord cavity is coupled with that in the surrounding
SAS through the dynamic response of the separating tissue, has been analysed with use
of a canonical flow configuration, schematically represented in figure 2(c). In seeking
maximum simplification, the conservation equations are written in the slender-flow
approximation, appropriate for the description of long syrinxes, with the separating
tissue represented by a membrane satisfying a linearly elastic equation. An asymptotic
analysis for small stroke lengths leads to closed-form expressions for the velocity,
pressure and membrane displacement, involving integrals that can be easily evaluated to
investigate the characteristics of the solution for relevant values of the three controlling
parameters, namely the Womersley number α, the reduced membrane tension T and the
cavity-to-channel width ratio H.

The oscillatory flow that appears at leading order, with zero mean, characterizes
the sloshing motion in the cavity. An important finding of the analysis is that, as a
consequence of the underlying FSI dynamics, the magnitude of the cyclic motion induced
in the cavity by the external flow oscillations exhibits a strong dependence on the
driving frequency. Because of this frequency-dependent flow amplification, in systems
involving non-sinusoidal external flow, the intracavitary flow may be dominated by higher
harmonics. For example, for the flow-rate waveform encountered in the spinal canal, shown
in figure 7(a), it was found that the flow in the cavity may exhibit multiple pulsations
per cycle (see figure 7b), in agreement with previous in vivo observations pertaining to
flow in syringomyelia cavities (Vinje et al. 2018). Interestingly, also consistent with those
observations, the model predicts that the number of pulsations per cycle decreases as the
transverse dimension of the cavity shrinks. It is worth noting that the current prediction
is based on a linear elastic model, and therefore precludes effects of nonlinear cavity
resonance, which should be investigated in future work.

The first-order corrections are seen to include a steady component resulting from
the combined action of the convective acceleration and the nonlinear interactions of
the membrane deformation with transverse velocity gradients. The sum of the steady
streaming and the Stokes drift determines the recirculating mean Lagrangian motion, as
depicted in figure 8. The associated cycle-averaged transmembrane pressure difference
〈 pc

1〉 − 〈 po
1〉, which represents in the model the stationary transmural pressure driving

the CSF transmedullary flow in syringomyelia cavities, has been computed over extended
parametric ranges. The results reveal that, just like the leading-order oscillatory flow,
the transmembrane pressure difference shows a prominent dependence on the frequency,
once more underlying the potential relevance of higher harmonics. Depending on the
conditions, the cycle-averaged intracavitary pressure can be either higher or lower than the
SAS pressure. For the sinusoidally varying flow rate of figure 9, large SAS overpressures
(negative values of 〈 pc

1〉 − 〈 po
1〉) are predicted when α � 6 for large cavities in the

intermediate range of values of T for which the sloshing motion is more pronounced.
These large SAS overpressures and their potential contribution to the transmedullary flow
clearly warrant future investigation.

Future extensions of the analytical work presented here should consider an improved
model for the dynamics of the tissue separating the cavity from the SAS, possibly replacing
the elastic membrane with a compliant wall having inertia, damping and flexural rigidity
(Davies & Carpenter 1997). Axisymmetric configurations (i.e. a fluid-filled tubular cavity
separated from a coaxial channel by a flexible membrane) are attractive for investigations
of canalicular syringomyelia. In this axisymmetric geometry, the restoring force arises
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primarily from the hoop stresses induced by the azimuthal stretching, so that (2.12) would
be replaced with the condition that the membrane displacement be linearly proportional to
the transmembrane overpressure, with axial membrane tension becoming important only
inside boundary-layer regions located at the two ends of the cavity. While the quantitative
results of the axisymmetric model can be expected to depart from those of the 2-D cavity,
the solution would probably exhibit many of the features identified above, including the
strong dependence of the cavity flow on the frequency of the external oscillatory stream
and the existence of a steady transmural pressure.

More accurate models accounting for the finite thickness of the separating tissue and
its poroelastic properties (Venton et al. 2017; Cardillo & Camporeale 2021) would be
needed to enable accurate quantitative predictions. A thorough investigation of effects
of flow-rate waveform could help further assess effects of higher harmonics. Also, by
modifying the width distribution along the channel representing the SAS, the model could
be readily extended to address effects of SAS tapering and stenosis, which are known to
lead to important changes in the flow (Bertram 2010; Martin et al. 2010; Heil & Bertram
2016; Bertram & Heil 2017). The results of the theoretical analysis can help guide future
computational efforts aimed at providing accurate quantitative predictions of transmural
pressure differences, required to clarify outstanding questions pertaining to the ‘filling
mechanism’ (Stoodley 2014). In view of the present results, besides consideration of
anatomically correct models, these future computations should consider CSF flow-rate
waveforms and spinal cord elastic properties that are physiologically correct, as needed
for an accurate description of high-frequency transmural flow amplification.
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