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Classical electromagnetism

Maxwell’s theory of electromagnetism is, along with Einstein’s theory of grav-
itation, one of the most beautiful of classical field theories. In this chapter we
exhibit the Lorentz covariance of Maxwell’s equations and show how they may be
obtained from Hamilton’s principle. The important idea of a gauge transformation
is introduced, and related to the conservation of electric charge. We analyse some
properties of solutions of the field equations. Finally, we generalise the Lagrangian
to describe massive vector fields, which will figure in later chapters.

4.1 Maxwell’s equations

In common with much of the literature, we shall use units in which the force between
charges q1 and q2 is q1q2/4πr2, and the velocity of light c = 1. (Thus in these units
μ0 = 1, ε0 = 1.) Maxwell’s equations then take the form

∇ · E = ρ (a), ∇ × B − ∂E

∂t
= J (b),

∇ · B = 0 (c), ∇ × E + ∂B

∂t
= 0 (d).

(4.1)

E and B are the electric and magnetic fields, ρ and J are the electric charge and
current densities. In this chapter we do not consider the dynamics of ρ and J, but
take them to be ‘external’ fields that we are free to manipulate. The inhomogeneous
equations (a) and (b) are consistent with the observed fact of charge conservation,
which is expressed by the continuity equation:

∂ρ

∂t
+ ∇ · J = 0.

This equation takes the Lorentz invariant form

∂μ Jμ = 0 (4.2)
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4.2 A Lagrangian density for electromagnetism 39

if we postulate that the charge-current densities

Jμ = (ρ, J) (4.3)

make up a contravariant four-vector field.
Introducing a scalar potential φ and a vector potential A, the homogeneous

equations (c) and (d) of the set (4.1) are satisfied identically by

B = ∇ × A, E = −∇φ − ∂A
∂t

. (4.4)

We postulate that the potentials

Aμ = (φ, A) (4.5)

make up a contravariant four-vector field also.
Maxwell’s equations may be written in terms of the antisymmetric tensor Fμν ,

defined by

Fμν = ∂μ Aν − ∂ν Aμ =

⎛
⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎠ . (4.6)

It is apparent that the electromagnetic field is a tensor field. For example,

F01 = ∂ A1/∂x0 − ∂ A0/∂x1 = ∂ Ax/∂t + ∂φ/∂x = −Ex .

Thus the components of the electromagnetic field transform under a Lorentz trans-
formation like the elements of a tensor.

The homogeneous Maxwell equations correspond to the identitities

∂λFμν + ∂ν Fλμ + ∂μFνλ ≡ 0, (4.7)

where λ, μ, ν are any three of 0, 1, 2, 3, as the reader may easily verify. The
inhomogeneous equations take the manifestly covariant form

∂μFμν = J ν. (4.8)

For example, with ν = 0, looking at the first column of Fμν , and noting ∂μ =
(∂

/
∂t, ∇), gives

∇ · E = ρ.

4.2 A Lagrangian density for electromagnetism

We now seek a Lagrangian density L that will yield Maxwell’s equations from
Hamilton’s principle. If L is Lorentz invariant, the action

S =
∫

L d4x =
∫

L dx0dx1dx2dx3 (4.9)
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40 Classical electromagnetism

is also Lorentz invariant, since d4x is invariant (Section 2.4 and Section 3.4), and
the field equations which follow from the condition δS = 0 will take the same form
in every inertial frame of reference.

Although Maxwell’s equations do not refer explicitly to the potentials Aμ, to
derive the equations from Hamilton’s principle requires the potentials to be taken
as the basic fields which are to be varied. The ‘stretched string’ example of Section
3.4 suggests that L should be quadratic in the first derivatives of the field. A suitable
Lorentz invariant choice is found to be

L = −1

4
Fμν Fμν − Jμ Aμ. (4.10)

Varying the fields Aμ, while keeping the charge and current densities Jμ fixed, yields
Maxwell’s equations, as we shall show in some detail. (Subsequent arguments will
be more terse!)

We may write

S =
∫ [

−1

4
gμλgνρ Fλρ Fμν − Jμ Aμ

]
d4x . (4.11)

Then

δS =
∫ [

−1

2
gμλgνρ FλρδFμν − JμδAμ

]
d4x

=
∫ [

−1

2
Fλρ(∂λδAρ − ∂ρδAλ) − JμδAμ

]
d4x

=
∫

[−Fλρ∂λδAρ − JμδAμ]d4x, since Fλρ = −Fρλ.

The first term we integrate by parts. The boundary terms vanish for suitable condi-
tions on the fields, so that we are left with

δS =
∫

[∂λFλρ − J ρ]δAρ d4x .

Setting δS = 0 for arbitrary δAρ gives the inhomogeneous Maxwell equations (4.8).
(The homogeneous equations (4.7) are no more than identities.)

4.3 Gauge transformations

The four-potential Aμ = (φ, A) is not unique: the same electromagnetic field tensor
Fμν is obtained from the potential

Aμ + ∂μχ = (φ + ∂χ
/
∂t, A − ∇χ ), (4.12)
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4.4 Solutions of Maxwell’s equations 41

where χ (x) is an arbitrary scalar field, since the additional terms which appear in
Fμν are identically zero:

∂μ∂νχ − ∂ν∂μχ = 0.

The transformation Aμ → A′μ = Aμ + ∂μχ is called a gauge transformation.
Under a gauge transformation, the action (4.11) acquires an additional term �S,

where

�S = −
∫

Jμ∂μχ d4x

=
∫

(∂μ Jμ)χ d4x .

We have integrated by parts to obtain the second line and again assumed that the
boundary terms vanish. �S is zero for arbitrary χ if, and only if,

∂μ Jμ = ∂μ Jμ = 0,

which is just equation (4.2). Thus the gauge invariance of the action requires, and
follows from, the conservation of electric charge.

4.4 Solutions of Maxwell’s equations

In terms of the potentials, the field equations (4.8) are

(∂μ∂μ)Aν − ∂ν(∂μ Aμ) = J ν. (4.13)

We stress again that there is much arbitrariness in the solutions to these equations.
Equivalent solutions differ by gauge transformations. It is usual to impose a gauge-
fixing condition. For example in the ‘radiation gauge’ we set∇ · A = 0, everywhere
and at all times (Problem 4.2). This has the disadvantage of not being a Lorentz
invariant condition – it will not be true in another, moving, frame – but it does
display important features of the theory. In the radiation gauge the field equation
for A0 becomes

(∂i∂
i )A0 = −∇2 A0 = J 0

(setting ν = 0 in (4.13), and noting ∂μ Aμ = ∂0 A0 since in the radiation gauge
∂i Ai = 0). This equation has the solution

A0(r, t) = 1

4π

∫
ρ(r′, t)

|r − r′|d
3r′.
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42 Classical electromagnetism

Hence, in the radiation gauge, A0 is determined entirely by the charge density to
which it is rigidly attached! There are no wave-like solutions. The vector compo-
nents Ai (i = 1, 2, 3) satisfy the inhomogeneous wave equation

∂2A
∂t2

− ∇2A = J − ∂

∂t
∇ A0. (4.14)

Charges and currents act as a source (and sink) of the field A.
In free space J = 0, ρ = 0, A0 = 0, and there are plane wave solutions with

wave vector k, frequency ωk = |k|, of the form

A(r, t) = aεε cos(k · r − ωkt).

Here εε is a unit vector and a is the wave amplitude. The gauge condition requires
k·εε = 0. Thus for a given k there are only two independent states of polarisation,
εε1(k) and εε2(k) say, perpendicular to k. The general solution in free space is

A(r, t) = 1√
V

∑
k

∑
α=1,2

εεα(k)√
2ωk

[akαei(k · r−ωt) + a∗
kαe−i(k · r−ωt)]. (4.15)

The complex number akα represents an amplitude and a phase, and the plane waves
are normalised in a volume V, with periodic boundary conditions. The factor

√
2ωk

is put in for convenience later.
An important point apparent in the radiation gauge is that although the vector

potential has four components Aμ, one of these, A0, has no independent dynamics
and another is a gauge artifact, which is eliminated by fixing the gauge. There are
only two physically significant dynamical fields.

The fields in any other gauge are related to the fields in the radiation gauge by a
gauge transformation; the physics is the same but the mathematics is different. For
some purposes it is better to work in the relativistically invariant ‘Lorentz gauge’.
In the Lorentz gauge

∂μ Aμ = 0 (4.16)

and the field equations become(
∂2

∂t2
− ∇2

)
Aμ = Jμ. (4.17)

4.5 Space inversion

We now consider the operation of space inversion of the coordinate axes in the
origin: r → r′ = −r, ∇ → ∇′ = −∇ (Fig. 4.1), which was excluded from the
group of proper Lorentz transformations. We shall also refer to this as the parity
operation. The transformed coordinate axes are left-handed. By convention the
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4.5 Space inversion 43

Figure 4.1 A normal right-handed set of axes (solid lines) and a space-inverted set
(dashed lines). The space-inverted set is said to be left-handed. (Oz is out of the
plane of the page.)

charge density is taken to be invariant under this transformation: if at some instant
of time ρP (r′) is the charge density referred to the inverted coordinate axes, then
ρP (r′) = ρ(r) when r′ = −r. The current density J(r) = ρ(r) u(r), where u(r) is a
velocity, and therefore transforms like dr/dt , an ordinary vector: JP (r′) = −J(r).
Maxwell’s equations (4.1) retain the same form in the primed coordinate system
if E(r′) also transforms like a vector, EP (r′) = −E(r), and B(r) transforms like an
axial vector, BP (r′) = B(r).

In terms of the potentials, equation (4.4) shows that we must take

φP (r′) = φ(r), AP (r′) = −A(r). (4.18)

The field equations in a left-handed frame then have the same form as in a right-
handed frame. The Lagrangian density (4.10) is invariant under space inversion.
Electromagnetism is indifferent to handedness.
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44 Classical electromagnetism

4.6 Charge conjugation

It will also be of interest to note that Maxwell’s equations can be made to take the
same form if matter is replaced by antimatter. As a consequence of this replacement
both the charge and current densities change sign so that

ρ(r) → ρC (r) = −ρ(r) and J(r) → JC (r) = −J(r).

Maxwell’s equations take the same form if we define

φC (r) = −φ(r), AC (r) = −A(r). (4.19)

This operation is called charge conjugation. As with Lorentz transformations and
the parity transformation, the Lagrangian is invariant under the charge conjugation
transformation.

4.7 Intrinsic angular momentum of the photon

Without embarking here on the full quantisation of the electromagnetic field, we
can discuss the quantised intrinsic angular momentum, or spin, of the photons
associated with plane waves of the form (4.15).

The spin S of a particle with mass is defined as its angular momentum in a frame of
reference in which it is at rest. In such a frame its orbital angular momentum L = 0,
and its total angular momentum J = L + S = S. This definition is inapplicable to
a massless particle, which moves with the velocity of light in every frame of refer-
ence. However, for a massless particle moving in, say, the z-direction, it is possible
to define the z-component Sz of its spin, since the z-component of the orbital angu-
lar momentum is Lz = xpy − ypx , and px = py = 0 for a particle moving in the
z-direction, hence Lz = 0, and Jz = Sz .

In quantum mechanics, the component Jz of the total angular momentum operator
of a system is given by

Jz = ihrz = ih lim
φ→0

[Rz(φ) − 1] φ, (4.20)

where Rz(φ) is the operator that rotates the system through an angle φ about Oz in
a positive sense.

Consider a term from (4.15) with k = (0, 0, k) along Oz:

A(r, t) = 1√
2ωV

[(a1εεx + a2εεy)ei(kz−ωt) + complex conjugate]. (4.21)

The wave amplitudes a1 and a2 are complex numbers, and we have taken the
polarisation vectors εεx and εεy to be unit vectors aligned with the x- and y-axes. A
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4.8 The energy density of the electromagnetic field 45

rotation of A through an angle φ about Oz makes a change in the amplitudes that
can be expressed by the rotation matrix equation

Rz(φ)

(
a1

a2

)
=

(
a′

1

a′
2

)
=

(
cos φ − sin φ

sin φ cos φ

) (
a1

a2

)
.

In the limit φ → 0, we have

lim[Rz(φ) − 1]/φ =
(

0 −1
1 0

)

and

Jz = h

(
0 −i
i 0

)
.

The eigenvectors of Jz/h are (
a1

a2

)
=

(
1
i

)

with eigenvalue + 1, (
a1

a2

)
=

(
1

−i

)

with eigenvalue −1.
Thus we may say that a photon represented by the plane wave (4.21) has ‘spin

one’, with just two spin states aligned and anti-aligned with its direction of motion.
No meaning can be given to spin components perpendicular to the direction of
motion. Classically these waves are right circularly polarised and left circularly
polarised, respectively (Problem 4.4).

A plane wave of any polarisation can be constructed by a suitable superposition
of right-handed and left-handed circularly polarised waves.

4.8 The energy density of the electromagnetic field

The analysis of the energy density of the electromagnetic field in free space is a
generalisation of the analysis for a scalar field set out in Section 3.6. Equation (3.25)
becomes

T μ
ν = ∂L

∂(∂μ Aλ)
∂ν Aλ − δμ

ν L, (4.22)

and using this formula gives

T 0
0 = −F0μF0μ + 1

4
Fμν Fμν (4.23)
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46 Classical electromagnetism

(Problem 4.5). In terms of the physical fields E and B, (4.23) is the familiar expres-
sion

energy density = 1

2
(E2 + B2). (4.24)

We can also express the fields in terms of the field amplitudes akα introduced in
equation (4.15) and obtain for the total energy of the field

H =
∫

T 0
0d3x =

∑
k,α

a∗
kαakαωk. (4.25)

Similarly the total momentum of the field is

P =
∑
k,α

a∗
kαakαk. (4.26)

4.9 Massive vector fields

Let us modify the Lagrangian density (4.10) by adding an additional Lorentz invari-
ant term, and consider

L = −1

4
Fμν Fμν + 1

2
m2 AμAμ − JμAμ (4.27)

where Jμ is an external current. The additional term in the action is easily seen to
modify the field equations to

∂μFμν + m2 Aν = Jν . (4.28)

Since ∂ν∂μFμν ≡ 0, it follows from (4.28) that

m2∂ν Aν = ∂ν Jν . (4.29)

This equation is a necessary consequence of the field equations: it is not a Lorentz
gauge-fixing condition like equation (4.16), but it does imply that the Aν are not
independent. Using this equation, the field equations simplify to

∂μ∂μAν + m2 Aν = Jν + ∂ν(∂μ Jμ)/m2. (4.30)

Hence in free space each component of Aν of the field satisfies

∂2 Aν

∂t2
− ∇2 Aν + m2 Aν = 0. (4.31)

This wave equation is related by the quantisation rules E → i∂/∂t, p → −i∇, to
the Einstein equation for a free particle,

E2 = p2 + m2.
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We may conclude that our modified Lagrangian, when quantised, describes particles
of mass m associated with a four-component field, of which three components are
independent.

Plane wave solutions of (4.31) are of the form

Aν = aεν cos(k·r − ωkt) = aεν cos(kμxμ),

where ωk = k0 = √
m2 + k2. To satisfy the condition ∂ν Aν = 0 we need

kνε
ν = 0. (4.32)

For example, if we consider a plane wave in the z-direction with kν = (k0, 0, 0, k)
there are three independent polarisations, labelled 1, 2, 3, which we may take as
the contravariant four-vectors

εν
1 = (0, 1, 0, 0),

εν
2 = (0, 0, 1, 0),

εν
3 = (k, 0, 0, k0)/m.

The intrinsic spin of a particle is its angular momentum in a frame of reference
in which it is at rest (Section 4.7). In such a frame k = 0, and ε1 = (0, εx ), ε2 =
(0, εy), ε3 = (0, εz). As in Section 4.7, the states with polarisation εx ± iεy cor-
respond to Jz = ±1, but we now have also the state with polarisation εz , which
corresponds to Jz = 0, since the operator rz acting on εz gives rzεz = 0.

Thus our modified Lagrangian describes massive particles having intrinsic spin
S with S = 1 and Sz = 1, 0, −1. That such particles are important in the Standard
Model will become evident in later chapters.

Problems

4.1 Show that the Lagrangian density of equation (4.10) can also be written

L = 1

2
(E2 − B2) − JμAμ.

4.2 Suppose that in a certain gauge ∇ · A = f (r, t) �= 0. Find an expression for a gauge
transforming function χ (r, t) such that the new potentials given by equation (4.12)
satisfy the radiation gauge condition.

4.3 Show that the tensor field F̃μν = 1
2εμναβ Fαβ has the same form as Fμν but with the

electric and magnetic fields interchanged. Show that

1

4
F̃μν Fμν = E · B

and that it is a scalar field under Lorentz transformations but a pseudoscalar under the
parity operation.
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48 Classical electromagnetism

4.4 Show that the electric field of the wave of equation (4.21) with a1 = 1, a2 = i, is

(Ex , Ey, Ez) = −
√

2ω

V
[sin(kz − ωt), cos(kz − ωt), 0].

Show that as a function of time, at a fixed z, E rotates in a positive sense about the
z-axis. This is the definition of right circular polarisation.

4.5 Show that equation (4.22) gives immediately

T 0
0 = −F0μ∂0 Aμ + 1

4
Fμν Fμν.

Show that the term ∂μ(A0 F0μ) = ∂i (A0 F0i ) can be added to this without changing
the total energy. Hence arrive at the form for T 0

0 given in equation (4.23).

4.6 A particle of mass m, charge q, is moving in a fixed external electromagnetic field
described by the four-potential (φ, A). Show that the Lagrangian

L = 1

2
mẋ2 − qφ + qẋ · A

gives the non-relativistic equation of motion

mẍ = q(E + ẋ × B),

and the Hamiltonian is

H (p, x) = 1

2m
(p − qA)2 + qφ,

where p = mẋ + qA.

4.7 Show that for a particle the action S = ∫
L dt is Lorentz invariant if γ L is Lorentz

invariant. Verify that this condition is satisfied by the Lagrangian

L = −m/γ − q Aμ(dxμ/dt).

(This gives the relativistic version of Problem 4.6.)
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