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RELATIONS BETWEEN NON-COMPACT
TRANSFORMATION GROUPS AND
COMPACT TRANSFORMATION
GROUPS

HSIN CHU»

§1. Introduction.

In this paper certain relations between non-compact transformation
groups and compact transformation groups are studied. The notion of re-
ducibility and separability of transformation groups is introduced, several
necessary and sufficient conditions are established: (1) A separable trans-
formation group to be locally weakly almost periodic, (2) A reducible and
separable transformation group to be a minimal set and (3) A reducible
and separable transformation group to be a fibre bundle. As applications
we show, among other things, that (1) for certain reducible transformation
groups its fundamental group is not trivial which is a generalization of a result
in [4]. (2) Given a transformation group (¥,N, II), where Y is compact
Hausdorfl and N is discrete and a group covering 3 : T-> H, where H is a
compact group, 7 is a connected group, and the kernel of § is N, then
there is a transformation group (X, 7,s), where X is again compact Haus-
dorff, which is an extension of (Y, N, II). Furthermore, if (T, N, II) is mini-
mal, so is (X, N,s), if (Y,N,II) is universal minimal so is (X, N,s). Con-
versely if (X, T,0) is a universal minimal set, where X is compact Hausdorff
and if f: T—H is a group covering where H is a compact group, then for
every x=X cl(o(x, N)) must be a universal minimal under N, and (3) by
using the conception of Whitney sum of two minimal sets, we find that the
Cartesian product of two minimal, but not totally minimal, continuous flows,
will never be minimal, if they have a same integer subgroup satisfying the
property (A4). '
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§2. Some lemmas on locally weakly almost periodic transfor-
mation groups.

We may find the following definitions and lemmas in [2] and [8].

DeriniTION 1.- Let (X, 7,II) be a transformation group. Let zeX.
We say that T is locally weakly almost periodic at x if U is a neighborhood of
x, then there exist a neighborhood V of x and a compact subset K of T
such that y€V and teT imply ytKNU #¢. We say the group T is locally
weakly almost periodic on X if T is locally weakly almost periodic at every
zeX. Let (X, T,II) be a transformation group where X is a uniform space.
We say that T is weakly almost periodic at X if « is an uniform index of
X, then there exists a compact subset K of T such that for each 2€X and
teT we have ztKnNza + (.

The following lemma is a consequence of these definitions:

Lemma 1. If T s locally weakly almost periodic on X and X is compact then
T is weakly almost periodic.

DerFmniTioN 2. Let X be a topological space. Let &7 be a pértition
of X. Let EcX. We say E& is a star of E in X if E 7 = U{A|Ae 7,
ANE # ¢}. We say the partition &7 is star-open (star-closed) if the star of
open (closed) subset of X is open (closed) in X. A partition of X is called
decomposition if every member of this partition is compact.

LemmA 2 Let (X, T,11) be a locally weakly almost periodic transformation
group, where X is a locally compact Hausdorff space. Then the class of all orbit-
closures under T is a star-open and star-closed decomposition of X.

We may find the proof of this lemma in [8].

Let (X, T,1I) be a transformation group where X is a locally compact
Hausdorff space. Let S be a closed, normal, syndetic subgroup of 7. Let
(X, S, II) be the induced transformation group of (X, 7,II). Assume that
(X, S, 1) is locally weakly almost periodic. Let R be the relation on X
defined by the orbit-closures of S, namely 2Ry if and only if zecl(yS). It
is clear that zeci(yS) if and only if yecl(zS) and R is an equivalence
relation.

We may find the proof of the following lemma in [2].
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Lemma 3.  The relation R defined as an open and closed relation and the
quotient space X* = X|R, induced by the relation R, is Hausdorff and locally compact.
If X is normal so is X*.

Let T* = T/S be the quotient group of 7. Then T* is a compact
group. Denote g : T— T* to be the natural projection. Define II*x T*—X*
by II*@a*, t*)=(Il(x, ¢))*, where z€X, teT, z*€X* t*eX* plx)=a2% q(¢t)=t*
and p is the natural map of X onto X*. It is well-defined and we have
the following lemma.

Lemma 4. The following diagram:

I
X X T —X

p| a| e |p

X*x THF— X*

is commutative and the triple (X*, T* 11*) is a transformation group induced by
(X, 7, II).

We may find the proof of this lemma in [2].

LemMa 5. Let (X, T, 1) be a transformation group, where X is a compact,
Hausdorff, minimal set under T. Let S be a closed, syndetic, normal subgroup of T.
Then X is locally weakly almost periodic undar S.

LemMA 6. Let X be a locally compact Ty-space. Then X is locally weakly
almost periodic under T if and only if the class of all orbit-closures under T is a
star-closed decomposition of X.

The above two lemmas are known (e.g., sec. [8]).

§3. Semi-reducible, reducible and separable transformation
groups.

DerintTioN 3. Let (X, 7,1I) be a transformation group. We say that
(X, T, I1) is semi-reducible if there is a transformation group (X* H, II*), where
X* is a non-trivial compact Hausdorff space and H is a non-trivial compact
group such that there is a continuous homomorphism f: T'— H from T onto
H and a continuous map p : X - X* from X into X* and for each {7 and
each z€X, we have pIl(x, t) = I*(p(x), f(¢)). We say that (X, T, II) is reductble
if it is semi-reducible such that X* = H and II* is the multiplication in H.
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Sometime we denote a semi-reducible transformation group by (X, 7, II;
X* H,11*, p, ) and a reducible transformation group by (X, 7, 1 ; H, », f).

Lemma 7. Let (X, T,101; H,II* p, f) be a semi-reducible transformation group.
Let Kev(f)=N. Then N is a closed, normal, syndetic subgroup of T and for each
zeX, p(cl(Il(z, N)) = p(x).

Proof. Let teN. Then f(t)=e,p(ll(x,t)=M¥px), f(1)=p). Since
p is continuous and X* is Hausdorff, we have p(cl(Il(z, N))) = p(x).

DeriniTION 4. A semi-reducible transformation group (X, 7, II; X* H,
1%, p, f) is called separable if for any pair #,y in X such that xecl(Il(y, N))
then p(x) # p(y).

Lemma 8. Let (X, T,11; X* H,II* p, f) be a separable transformation group.
Then for each x=X, cl(Il(x, N)) ts a minimal set under N in X.

Proof. Let zeX. Suppose that c/(II(x, N)) is not a minimal set. There
exists yecl(Il(z, N)) such that ¢I(II(y, N))Ccl(II(x, N)) but they are not co-
incided. There is an element zc!(II(2, N)) but not in ¢/(Il(y,N)). By the
definition of separability, we have p(z)+ p(y). By lemma 7, we have
»(y) = p(x) and p(z) = p(x). A contradiction!

Tueorem 1. Let (X, T,11) be a transformation group where X is a locally
compact Hausdorff space. Let N be a closed normal syndetic subgroup of T. If
the induced transformation group (X, N, IL) is locally weakly almost periodic, then
(X, T, 1) is a separable transformation group and the map p : X — X* s closed and
P (a*) for every x* in X* is compact. Comversely, if (X, T,1; X* H, 1I*, p, f) s
a separable transformation group and the map P is closed, and P~(x*) for every x*
in X* is compact, then the induced transformation group (X, N, 1) is locally weakly
almost periodic, where N = f~(e).

Proof. The first part of this theorem is a direct consequence of Lemma
2, Lemma 3, and Lemma 4. The second part is a direct consequence of
the definition of separability, Lemma 6 and Lemma 8.

Remark. Notice that the map p in Theorem 1 is proper.

§4. Minimal Sets.

DermviTioN 5. Let (X, T,II) be a‘transformation group. Let N be a
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closed, normal syndetic subgroup of 7. We say N has a property (A) if every
zeX, the group {teT|Il(cl/(xN),t) = cl(xN)} is equal to N.

LemMma 9. Let (X, T,H;H,p, f) be a reducible and separable transformation
group. Then X is minimal, but not totally minimal, under T, and N = f~'(e) has
the property (A).

Proof. Let x€X. We shall show that ¢/(Il(x, 7)) = X. For each y € X,
we have p(y)eH, which is a group. Since the homomorphism f is onto,
there exists t T such that p(z)f(¢) = p(y). By the reducibility of this trans-
formation group we have p(x)f(¢)=p(Il(z, t)). Consequently, p(y)=p(Il(x, t))=
p(I(xt,e)). By the separability and Lemma 8, we have c¢/(Il(y, N)) =
cl(I(x, tN))ccl(l(x, T)). Hence y=cl(Il(x, T)). This shows that X is a minimal
set under 7. Since H is not trivial, there are at least two distinct points, »
and y, in X such that p(x)s=p(y). It follows that cl (M(x, N))Ncl(I(y, N))=¢
and X is not minimal under N. From Lemma 7, we know that N is a
closed, normal, syndetic subgroup of 7. Hence X is not totally minimal.
For zeX let S={teT|(cl(xN)),t)=clxN)}, for teS, we have p®) =
p(cl(xN)) = p(I(cl(xN), t)) = p(cl(@N))- f(¢) = p(x)f(¢) in H. Hence f(t) = e,
teN and S=N. This shows that N has the property (A).

Lemma 10.  Let (X, T,1I) be a transformation group. Let X be a locally
compact, Hausdorff, minimal set under T. Let N be a closed syndetic, proper normal
subgroup of T with the property (A) such that for each x< X, aN is compact. If
X is not minimal under N, then (X, T,11) is reducible and separable.

Proof. By Lemma 5, we know that X is locally weakly almost periodic
under N. Let R be the relation on X defined by the orbit-closures of N.
Let X* = X/R be the quotient space of X, T* = T/N be the quotient group
of T and II*: X*xX T*— X* be defined by II*a* ¢*) = (Il(x,£))*. Let p be
the quotient map of X onto X* and f the quotient homomorphism from T
onto T*. By Theorem 1, we know that (X, 7,1L; X* T* p, f) is separable
transformation group.

Let p(xo) = «} for x,X. We shall show that the isotopy subgroup G.;
of z%-is the identity in T*. Suppose I*(¥,t*) =af for t*T*. Choose
teT, so that f(¢)=t*. We have p(Il(cl(xN), Nt)) = p(cl(z,N)) and by the
separability and Lemma 8 II(cl(x,N), Nt) = II(cl(x,N), ) = cl(x,N). Since N

https://doi.org/10.1017/50027763000014586 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014586

102 HSIN CHU

has the property (A), we have t€N or t* = identity in T* and G is trivial
for all 2¥ in X*,

Let z,€X and p(x) = afX*. Consider the map II% : T*— X% by
I1% (¢%) = O*(a%, t*), which is continuous, one-to-one, and onto. Since both
T* and X* are compact and Hausdorff the map II% is a homeomorphism.
Identify the topological group 7* with X* by II%. Then X* is a topologi-
cal group, «f is its identity and II* is the multiplication of the group.
Consider the following diagram:

I
X x T—X
oIy |
T x T*—> T*

(12,

where k= (II%)™'p : X i) X*————— T* and m is the multiplication in T*.
Let X, teT. Let h(x) = s* and f(t) = ¢t*. Then I3 (s*)=p(x). We show
that #(I(x, ¢)) = h(x): (). We know that from the preceding commutative
diagram, we have II*(p(x), f(¢)) = p(Il(x,¢)) and hkIl(z,t) = (11%)'pIl(z, t) =
(I1%;) M I (p(z), f(2)) =

= (IZ) " I*(T ey (s%), £%) = (ILZ;) 7 IIX(IT*(™, %), %) =
= (IIZ; )7 IT*(a5, s*t%) = s*t* = h(x) f().

This shows that the transformation group (X, T, II) is reducible. The lemma
is proved.

Lemma 11, Let (X, T, 1) be a transformation group where T is an abelian
topological group. Let X be a compact, Hausdorff, minimal, but not totally minimal
set, under T. Then T has a proper, closed, syndetic subgroup with the property (A).

Proof. Since X is not totally minimal set, there is a proper, closed,
syndetic subgroup N of T such that ¢/(II(x, N)) + X for every zeX. If N
does not have the property (A) for some x€X, let N'={teT|H(cl(xN), t)=
cl(xoN)}. It is clear that N’ is a proper, closed, syndetic subgroup of 7,
N'DN and cl(xN) = cl(z,N’). Let R be the relation on X defined by the
orbit-closures of N’. Let X* = X/R be the quotient space of X, T* = TN’
be the quotient group of 7 and II* : X*X T* — X* be defined by II*a* t*)
= (II(x, t)*. Let p be the quotient map from X onto X* and ¢ the quotient
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homomorphism from T onto 7*. By Lemma 5 and Theorem 1, we have
(X, T,II; X* T* 1I*; p, f) is a separable transformation group. It is clear
that {teT|I(cl(xoN'), ¢) = cl(xN’')} = N’ and p(N’) is the identity in T*. For
each yeX, we have p(y) = y*€X*. Since X is minimal under T, we have
the map II% : 7% — X* by %, (t*) = II*(x, t*) is onto, there is #§e T such
that II*(xf, 15)=vy*. Suppose I (cl/(yN’),s)=cl(yN’) for s€ T, then II*(y* s*)=y*,
where s*=f(s) and IT*(xy, £o(s*)(¢0)!) = . It follows that II(cl(x.N’), test3!)=
cl(xN’), where t,=f7Y(¢%). Hence tyst3' =e in T or s =e. The lemma is
proved.

THeEOREM 2. Let (X, T,II) be a transformation group where X is compact
Hausdorff. Then X ts minimal under T but not minimal under a proper, closed,
normal subgroup having the property (A) if and only if (X, T,11) is reducible and
separable.

Proof. 1t is a direct consequence of Lemma 9 and Lemma 10.

CoroLLARY. Let (X, T,II) be a transformation group where X is compact
Hausdorff and T s abelian. Then X ts minimal but not totally minimal if and
only if (X, T, M) is reducible and separable.

Proof. By Lemma 11 and Theorem 2.

§5. Fundamental Groups.

The following lemma is well-known in Homotopy Theory (e.g. see p.
86, Lemma 15.1, [9]).

Lemma 12. Let f: T—H be a fiber space with discrete fiber. For each path
o : I—H joining b, to b, and for each e,=f~'(by) there exisis one and only one
covering path o* 1 I— T such that ¢%(0) = e, and fo* =o.

TureorREM 3. Let (X, T,11) be a reducible transformation group, where T 1is
a locally compact, but not compact, connected, locally pathwise connected, X is a locally
compact, Hausdorff, connected, locally pathwise connected space and f is a group
covering. If every orbit-closure under T in X is compact, then for each x,€ X, the
Sundamental group =.(X,x,) 0.

Proof. Since (X, T,II) is reducible, there exists a compact group H and
a group covering f: T— H and a continuous map p : X— H such that the
following diagram is commutative:

https://doi.org/10.1017/5S0027763000014586 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014586

104 HSIN CHU

X X TLX
pl L om lp
H x H— H

where m is the multiplication in H. Let y,€X, such that p(y,) = e, where
e is the identity of H. Define [[o: T— X by IIo(t) = II(y, ¢) for t€7. Then
I, is continuous and the following diagram is commutative:

I,
T —H

f\H/ p

Suppose that z,(X,y,) = 0. We have p.(x,(X,y,)) =0 which is obviously
contained in fu(z.(7,e)), where e is the identity of 7. By the lifting theorem
of Homotopy Theory (e.g. see p. 89, [9]), there exists a unique continuous
map ¢:X— T such that g(y,) =e and fg=p. We shall show that it is
impossible.

Since T is a locally compact, connected, but not compact, topological
group, by a result of Iwasawa, there is a closed one-parameter subgroup R
of T such that it is topologically isomorphic onto the usual additive group
of real line (see [10]). Restrict II, to R. For the matter of convenience we
denote the multiplication in R by the usual addition. Let I=[0,1] be the

[0, n], if n is positive

unit interval. Define %, :[0,1]—> by h.(t) = nt,

[n,0], if n is'negative
where [0, #] are subsets in R. It is clear that %, is a homeomorphic onto
map. The path &, = 0io0h,:I—X has the property that &,(f) = II,(nt)
where ¢ =[0,7n]— T is the inclusion map (or i :[n,0]— T if » is negative).
In particular, £,(0) =y, and é&,(1) = H4n) =y, for some y, in X. The
composed map ¢, = p&, : [+ H is a path. Then ¢,(0) = ¢ in H, where e is
the identity in H. By the Lemma 12, there is a unique path &, :[0,1]1= T
such that £.(0) =e, where e is the identity in 7 and f¢, =0, Consider
10 hn, where the map i is defined as above. We have (i #2)(0)=i(0) =e,
and o, = p&, = pollgoioh,= foioh,= fo(ioh,). Hence fo(ioh,)=a,.

By the uniqueness of {,, (see Lemma 12), we have §, =ioh,.
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ha
[0, 1] —— [07 72]

Slio,m

On
H

By the usual construction of ¢ : X— T (e.g., see p. 90, [9]) we have g(y.)=
L) =(ioh,)1)=neRc T, for all integers n and #&(y,) =0, we have
glly(n) =gly,) =n for all » in R. Let Z=1{0, +1, +2,:---}cRcT. Then
Z is a discrete subgroup of 7. By assumption, we have ¢/(IL(7T))=cl(IL(yo, T))
is compact, so is its closed subset c/(11(Z)). Consequently g(cl(II,(Z)) is
compact in 7. However, we know g(Il|(Z)) =Z and Z is closed in 7, it
follows that Z = cl(Z) = cl(g(ll,(Z))) is compact, a contradiction! Thus,
II,(X, yo) 0. Since a connected, locally arcwise connected space is arcwise
connected, we have =,(X,x)==(X,y,) for every xeX. The theorem is proved.

CororLLARY 1. Let (X, T,1I) be a reducible transformation group, where T
ts a locally compact, but not compact, connected, locally pathwise connected, X is a
compact, Hausdorff, connected, locally pathwise connected space and f is a group
covering.  Then for each 2 X, the fundamental group TI,(X,,) 5 0.

THEOREM 4. Let (X, T,11) be a transformation group where T is a locally
compact, but not compact, connected, locally pathwise connected group and X is a
compact Hausdorff minimal set under T. Let N be a proper, discrete, normal syndetic
subgroup of T having the property (A). Then II(X,x0) # 0, where x,=X.

Proof. Notice that for each x€ X, aT +# zN, otherwise the subgroup N
can not have the property (4). Hence X is not minimal under N.

From Theorem 2 we know that the transformation group (X, 7,1II) is
separable and reducible. Since N is discrete and normal, the quotient
homomorphism, f: T— T* = T|N, is a group covering. By Theorem 3, we
know that II,(X,x,) % 0 for each z,eX.
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CororrAry 1. Let (X,R,II) be a transformation group where X is a
compact. Hausdorff locally arcwise connected, minimal, but not totally mini-
mal set, under the real group R. Then II,(X,x,) 0, for each z,eX.

Progf. Since X is not totally minimal under R, by Lemma 11 there is
a proper closed syndetic subgroup Z having the property (4). As we know
that every proper closed subgroup of R is discrete and isomorphic to an
integer group. Now the corollary is a consequence of Theorem 4.

§6. Fibre Bundles

By a fibre bundle we mean an equivalence class of coordinate bundles
(see [14]).

LemmMa 13, Let (X, T,11; H,p, f) be reducible and separable transformation
group where X is compact. Hausdorff and f: T—H is a group covering. Then
(X, H,p) ts a fibre bundle.

Progf. Since f:T—H is a group covering, fe)=N is a discrete,
normal syndetic, proper subgroup of 7. By Lemma 9, we know that X is
minimal under 7 but not minimal under N. From the reducibility we have
the following commutative diagram:

where m denotes the multiplication of H. Let x€X such p(x)=e¢ in H.
Let Y = cl(xN), we have p(Y)=e. For each heH, there exists a compact
neighborhood V of & and a compact neighborhood V of r in 7, where
f(r) = h such that the restriction of f to V, fv: V>V is a topological
isomorphism onto. The set V is so chosen that any pair of elements in
{nV|neN} are disjoint. Define

Sy 1Y XV > p7Y(V) by ¢y(y,2) = (y, f7(2) = l(y, t),

where teV with fy(t) =2. We shall show ¢, is a homeomorphism from
YxV onto p~(V). It is obvious that ¢, is continuous. We first show that
¢y is one-to-one. Let 2y, 2, in V and y,, ¥, iIn Y. If ¢,(yy,21) = dv(¥s 22),
then II(yy, f7'(21)) = I(ys f71(22)). Since p(y,) = p(y:) = ¢, by the commuta-
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tive diagram above we have ez, =ez, or 2, =2, It follows easily that
Y1 =¥, We shall show that ¢, is onto. Let 2,€p™ (V). Then p(x))=h,sV.
Since this transformation group is separable we have p~'(k,) = cl(x,N) and
Y (ho)Cp™(ho) = cl(xN). Let [f7'(ho)I™" =g, we have f(g) = h;'. By the
above commutative diagram we have p(cl(%N)g) = p(cl(2,N)) f(g) = hoh3! = e.
It follows that ci(x,N)g<p~'(e) =Y or cl(x,N)CY(f7' (k). Hence Y(f7'(he)=
cl(xN) and there exist y,€Y such that é,(ye ko) = I(ye, f7'(he) = 2. This
shows that ¢, is onto. Hence ¢, is a homeomorphism from Y'xV onto p~(V).
Let V, be the interior of B. By the preceding argument we have ¢,y ,=¢y,
maps Y xV, onto p~%(V,), where p7(V,) is open in X as well as in p~}(V)
and Y xV, is open inYxV. Hence ¢y, : Y xV,—p~(V,)is a homeomorphism
from Y xV, onto p~(V,). Let S be a family of those open sets, Vo, which
covers H. Let the elements in S be indexed by a set /, ie., S={V;|lie]}
and denote the corresponding neighborhoods in 7 by V, and the corres-
ponding homeomorphisms by f; and ¢; respectively. It is obvious that
{V:} are coordinate neighborhoods in H and {¢,} are their corresponding
coordinate functions.

For heV; and y€Y, we have
1) 29 ;(y, k) = p(I(y, f7'(h) = p(y)- f(f7'(h) =e-h = h.

By the separability, we have p~i(h)=TII(Y,t)=Y-t, where tf(h).
Define the map ¢;,, : Y > p7(h), by ¢;.(y)=¢,(y,h) for ye¥. It is easy
to see that ¢,,, is continuous, one-to-one, onto and because that both Y
and p~'(k) are compact, it is a homeomorphism. For each pair i,j in J
and each heV,NV,, we have ¢;.(y)=1I(y, f7'(h) =yf7'(h), ¢;aly)=
(y, f7'(k) = yf7'(h) where f3;'(h)eV, and f7'(h)eV;. If V.nV,;+¢ It
is easy to see that there exists an neN such that V,nnV;#¢. We shall
show that there is only one such » & N that has this property. Suppose
there is an m&N wish the same property: VinmV; #¢. Choose heV;nV;,
then there is ¢ = nt, € V,nuV, and #' = mt, € V,nmV,; such that f(t)=nh
and f(¢#') = h, where ¢, ' in V, and ¢, ¢, in V,. Since f3,=f; is a
homeomorphism from V, onto V,, we have t = t!. From f(m,t,)=f(t)=h
and f(nt,) = f(¢) = h, we have f(t,) = f(t,). Since fig,=f; is also a
homeomorphism, we have ¢, =¢,. It follows that nt, = mt; and we have
n =m. Hence for each pair i and j if V;NV; # ¢ there is a unique neN
such that V,nuV;#¢. Let heV,nV,, choose ¢;,€V; and t,&V; so that
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t=t,=unt, and f(f)=h, where neN. It follows that f;'(k)=1¢, and
f34(h)=t;. Consider ¢;Lo0¢,,:Y—>Y, we have

350:.1(y) = ¢35y, f7H(Rh) = ¢35(11(y, t,)) = ¢55H(I(y, nt ;)
=70y - m, t;) = ¢5%(M(y + m, f7' (W) =y - n = U(y,n)
or ¢34¢; »=n&eN, on Y. Thus we have

(2) For each pair i and j in J and k€V,NV,, we have that ¢7L,¢;, is a
homeomorphism from Y onto Y and ¢;4¢;,€N and

(3) Define g;i(k) = ¢7546:.5, the map g;, :V,NV ;> N is trivial, i.e. g;;(h)=n
for every heV, NV ;. Consequently g,; is continuous. Hence it is a coordi-
nate bundle with X as the bundle space, H as the base space, P as the
projection from X onto H, Y as the fibre, N as the group of bundle, the
open covering on X X, {V,}, as coordinate neighborhoods and {¢;} as co-
ordinate functions.

Lemma 14. Let (X, T,11; H, p, ) be a reductble and separable transformation
group as we stated in Lemma 13. Then {T, f,H, N, N} is the associated principal
bundle of the fibre bundle {X,p,H,Y,N} as we constructed in Lemma 13.

Progf. 1t is a direct consequence of the definition (see [14]) of associated
principal bundle and the way we constructed the coordinate neighborhoods
{V:lieJ} and coordinated functions {¢;|i=J} and coordinate transformation
{g9;:lj,i=J} in the proof of Lemma 13.

Lemma 15, Let {X,p,H,Y,N, {V.}, {8:}} be a fibre bundle, where X is a
compact Hausdorff space, H is a compact group and N is a discrete group. Let
YXN— N be a transformation group. Let p: T—H be a group covering from T
onto H such that {T,%,H,N,N} is the principal associated bundle of the given fibre
bundle. Then there exists an action o of the group T on X so that (X, T,e; H,p, P)
is a reducible transformation group. There is a closed subset Y', invariant under
N, in X, such that (Y, N), in (X, T,0), is equivalent fo the transformation group
(Y,N). If furtkermore, N is a minimal set under 'Y, then (X, T,o; H,p,D) is
separable.

Proof. Let: &= {X,p,H,Y,N}. Let &= {T,5,HN,N}. Let Yx &=
{YxT,q T,Y,N}, q(y,b) =b where b T and y <Y, be the product bundle
with group N. Define the principal map:
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P:YX P> F

by P(y,b) = ¢(y - Di(b),z), where 2= 5p0d)eV, in H and 5,: p*(V;)=>N by
Pi(t) = $7h(t)eN with tepY(V,) and P(t) = heH (see p. 8[14]). Then P is
well defined and continuous and the following diagram:

VY
Y X T—oX
a l B J,?’
T — H
is commutative. In fact P is a bundle mapping (see p. 38 [14]). From the

facts that 7 is open and ¢, is a homeomorphism, it follows that P is open.
We shall show that P is onto.

For each xz=X, there exist i€/ such that z € p7%(V;) and ¢, : V,; XY —
p™(V;) is a homeomorphism and onto. Consequently there exist #,€V; and
yeY so that ¢,(y, h;)=x. Let t,& T, with p(¢;,)=h,. We have P(y - (D,(8))™ t;,)=
Gy Dy(t:)(Bi(t:)Y, B(Ly)) = ¢4(y, k) = . Hence P is an onto mapping~

Let P(y,,5,) = P(ysb,), for b, and b, in T and y, and %, in Y. We
shall show that b, = #b, for some n€N and y,=y,n"!. From P(y,b)=
P(ys b,), we have ¢,(y,-B;(b),x,) = 6 (Yo - B;(by), ) where 2, = p(b)eV, and
%, = B(b)eV ;. Since ¢,(y,- Bu(b),x)Ep &) and ¢ ;(ya- D;(ba), k) E P! (wa), We
have p7'(z,) = p7'(x,) in X. It follows that they are the same fibre in X
and we have 2, =2,. From 7(b,) = 9(5,). We conclude that 5, and &, are
in the same coset in 7. Consequently, we have b, = nb, for some neN.
Now, we may choose i =j. @y, B;(b), %) = ¢;(yo- B;(nby), 2,), we have
Y1+ Pu(by) =y, By(nb,) or y,+ ¢;.lzl(51) = Yo 5;,111(”51)- The mapping Gt N>
P~!(x) in the covering group T is corresponding to the multiplication of N
by an element in T such that §; .,(m)=mt for every m in N. y,-$7%,(b)=
Y- (B)t™ and y.- $Th(nb) = ya- (nb)t71.  From g« (nb)t™ =y, (B)17Y, we
have y, = y,n7. Consequently, we also have P(y, mb) = P(ym,b) for b= T,
meN and y&Y.

For every g7, we define that g acts on X by (P(y,b))g = P(y, bg) for
every P(y,b)eX. Notice that P(YxT) = X. We shall show that it is well
defined. Let P(y,,5,) = P(y¥30,). Then b, =#nb, and y,=y,n! for some
neEN. (P(ys b))g = (P(yn™, nb))g = P(y,n™!, nb,g)= ¢;(y,n~*+ B, (nbig), B(nbyg)),
where P(unbyg) = B(b,g)V;, for some i. In the covering group 7, there exist

https://doi.org/10.1017/50027763000014586 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014586

110 HSIN CHU

some ¢t€7T such that 7,(z) = §7L(z) = (2)ieN for every 25 '(x), we have
y 1B, (nbyg) = y,mnb,gt = y,b,gt where nbgteN or bgteN and (P(ys, b,))g
= ¢i(yl(519)t, 5(519)) =¢;(y:- Bi(b.9), ﬁ(glg)) = P(y;, 519) = (P(yy 51))9- Since
P is open and continuous, the action of g on X is continuous. For g;, g.
in 7, it is easy to see that ((P(y,d))g)g. = P(y,b)g:¢.. Consequently, for
each g7, ¢ is a homeomorphism.

Define ¢ : XxT— X by o(P(y,b),9) = (P(y, b))g for g T and P(y, b)eX.
We shall show that ¢ is continuous. Let V' be an open neighborhood of
(P(y,b))g in X. Let (b)) =2z in H with z€V,; for some i. Then P(y, b)=
.y - p7(b), x)=p~(V,) and P(y, b)gsV (p~(V,))g which is open in X. Since
p is continuous from Y x T onto X and P(y,b)g = P(y, bg), there exist an
open neighborhood W of 4g in T and an open neighborhood U of y in Y
such that P(U,W)cVn(p~'(V;))g. In the group 7, there exist an open
neighborhood W, of g and an open neighborhood W, of 4 in T such that
WV, and W,W,cW, we have P(U W)W, =PUW,-W,)CcP(U,W)C
Vn(p~(Vi))g. Since P(U,W,) = ¢,(U-D(W.), B(W,)), B(W.), B(W,) is open
in H, U-p,(W,) is open in Y and ¢; is a homeomorphism from Y XV; onto
p7Y(V;), we have that ¢,(U- 5,(W,), B(W,))is open in p~ V), therefore P(U,W,)
is open in X. It follows that P(U,W,)W,cV, where P(U,W,) is a neigh-
borhood of P(y,5) and W, is a neighborhood of g. This shows that ¢ is
continuous. It is easy to see that o(a(x, t,), ¢2) = a(w, £,¢;) and o(x, e) = # where
xeX, t;, t,&T and e is the identity of T. Hence (X, T,0) is a transforma-
tion group.

We shall show that (X, T,s; H, p, P) is a reducible transformation group.
It is sufficient to show that the following diagram is commutative:

We know that P:YxT— X is onto. Let tT and P(y, b)eX for y€Y and
beT. We show that po(P(y,b), t)=p(P(y, b)) 8(t). o(P(y,b),t)= Py, bt)=
$:(y-D,(bt), D(bt)), where B(bt)eV,; in H for some i. p((P(y,d),t)) = b(bt)
and p(P(y, b)) B(t)=p($;(y - B;(6), B(b))-B(¢t)=D(b)-B(t)=5(bt), where B(b)eV,
for some j. Hence it is reducible.

Let P(Y,e) =Y! where e is the identity in 7. It is not hard to see that
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Y! is invariant under N. For neN, yeY, we have P(y-n,e) Ply,n-e) =
P(y,n) = (P(y, e))n. Hence (Y, N), as in (X, T,¢), is equivalent to the
transformation group (Y, N).

Furthermore, if ¥ is minimal under N, we shall show it is reducible.
It is enough to show that for P(y,,b,) & cl(P{y, b), N)), p(P(y, b))+
p(cl(a(P(y, b),N)). D(P(y;, b)) = p($(y, Bi(b,), B(by) = B(b,) where B(b,)eV;
in H for some i. o(P(y,b),N)= P(y,bN)= P(y, Nb) = P(y-N, b) = d(y-N-
p,;(b), B(b)) = ¢,(y-N,7D(b)), where B(b)eV,; in H for some j and 7;(b)< N.
cl($;(y N, B(B) = cl($; 50 -N)), ¢;50(cl(y-N)) = ¢,;55Y) = ¢,Y, (b)) =
P(Y,b). Thus cl(a(P(y,5),N)) = ¢,(Y,5(b)) = P(Y,b) and p(cl(a(P(y,b),N))=
p(¢,;(Y,B(8) = B(b). From P(y, b,) & P(Y,b), we have ¢,(y,p.(b), (b)) &
¢;(Y, (b)), it follows that p(b,) + p(b). By Lemma 9, we know X is minimal
under 7. By Lemmas 14 and 15, we have

Tueorem 5. Let (X, T,11; H,p, f) be reducible and separable iransformation
group where X is a compact Hausdorff space, and f: T—H is a group covering
then {X,p,H,Y,N} is a fibre bundle and {T, f,H, N, N} is its principal associated
bundle. Conversely, if {X,p,H,Y,N} is a fibre bundle, where X is a compact Haus-
dorff space, H is a compact group, Y is a minimal set under N, and N 1is discrete
group, let f: T—H be a group covering from T onto H such that f~'(e) =N and
{T, f,H,N,N} s the principal associated bundle of the given fibre bundle, then there
exists an action o of the group T, on X so that (X, T,11; H,p, f) is a reducible
and separable transformation group and X is minimal under T.

§7. Extension of transformation groups and universal minimal
sets.

THEOREM 6. Let B : T—H be a group covering, where H is a compact group
and T is connected. Let p~'(e) = N. Let Y be a compact Hausdorff space such that
(Y,N,Il) is a transformation group. Then there is a compact Hausdorff space X
such that (X, T,o) is a trnasformation group and there is a proper closed subset Y*
in X, which is invariant under N, so that (Y',N,s) is equivalent to (Y, N,]II).
Furthermore iof Y is minimal under N, then X is minimal under T. If Y is universal
minimal under N, then X is universal minimal under N. Conversely, if (X, T,0) is
a umwversal minimal set under T, where T is a connected group, X 1is a compact
Hausdorff space and there is a group covering f from T onto a compact group H,
then for each z€ X (Y., N,a0) must be a universal minimal set under N, where
N =Xker(f) and Y, = cl(o(x, N)).
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Progf. It is easy to see that {7, p,H,N,N} is a principal bundle. Let,
in this principal bundle, {V;|iJ} be a set coordinate neighborhoods in
H. Since H is compact the index set / must be finite. Let {g;,]7,7&]} be
the set of coordinate transformations in this principal bundle. Then there
exists a unique fibre bundle, (see p. 14 [14]), %= {X,p,HY,N} with pro-
jection p, base space H, fibre Y, group N, coordinate neighborhoods
{V.lieJ} and coordinate transformations {g;;|i,j€J}. Since H and Y are
compact Hausdorfl spaces and J is a finite set, X must be compact Haus-
dorfl. It is easy to see that {7, f, H,N, N} is the principal associated bundle
of #={X,p,HY,N}. By Lemma 15, there exists an action ¢ of the group
T on X such that (X, T,s) is a transformation group and a closed subset
Y'in X such that (Y', N,0) is equivalent to the transformation group (Y, N, IT).

Again by Lemma 15, if ¥ is minimal under N, then X is minimal under
T.

Let now Y be universal minimal under N. Since (X, T,os) is minimal,
there exists a compact Hausdorff, universal minimal set (X!, 7, II!) (see [3])
and a continuous map f from X! onto X such that the following diagram:

II

Xt x T — X!

rlil s

X x T —X
is commutative. We know that from the proof of Lemma 15, P(Y,T) = X,
we shall show that for each t€T Y, = P(Y,t)= pYh), where h = p(t), is
invariant under N and (Y, N,0) is equivalent to (Y, N,II). For z=P(y,t)eY,
and neN where y€Y and t€7T, we have z-n = P(y,t)n = P(y, tn). Since
T is connected and N is a discrete normal subgroup of 7, N must be in
the center of T. Hence, we have tn = nt for t€T and neN. It follows
that z.n = P(y,tn) = P(y,nt) = P(y-n,t)€Y,, this show that Y, is invariant
under N. TFor a fixed t€7, define f,:Y =Y, by f.(y) = P(y,¢t). Itis easy
to see that f, is a homeomorphism from Y onto Y,. In fact, f.(y)=P(y,t)=
by - Bi(?), B(t)) = $s,a(y-Pi(¢)) where h = p(t)€V,; for some i€] and F,(f) =

k(t)eN. Consider the following diagram
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For yeY and neN, we have f.I(y,n) = P(y-n,t) = (P(y,t))n = o(f(y), n).
Thus the diagram is commutative, (Y, N,II) and (Y, N,s) are equivalent,
and (Y, N,o) is universal minimal set under N for each t=T.

Since X’ is minimal under 7, we have, for each #’€X’, 2’ is almost
periodic under 7. Since N is discrete and H is compact, 7 must be locally
compact. From the fact that N is a syndetic closed subgroup of 7, this
implies that for each #’€X’, &’ is almost periodic under N (see [8]). Thus
cl(Il'(x',N)) = cl(x’ - N) is minimal under N. For each z'€X, there exist
yeY and {7 such that f(x') = P(y,t). We know that f(c{(Il’(x’,N)) D
cl(f(’(x', N)). However, cl(f(Il"(x',N)) = cl(c(P(y,t), N)) = cl(P(y, tN)) =
cl(P(y, Nt))=cl(P(yN, t)=cl(¢;n(y + N+ Ds(t)))=cl($:»(y - N)), where h=5(t)eV,,
for some i€/, in H, and p,({)eN. Because ¢;, is a homeomorphism from
Y onto p7(h), we have cl(¢;n(y-N))= ¢inlcl(y-N)) =¢;sY)=¢,Y,h)=
PY,t)=Y,. Hence f(cl(Il’(x',N))DY,. Since both f(c/(Il’(x’,N)) and Y,
are minimal under N in (X, 7T,¢), we have f(cl(Il’(z', N))=Y, and f(c{(II'(z, N)),
for each #’=X’, is a universal minimal set under N. It follows that, on
cl(Il'(z’,N)), f is an one-to-one map for all 2’=X’. We shall show that f
is an one-to-one map on X’.

Let #, and «; in X’ with the property that f(x,) = f(x,). We shall show
that x,=cl(lI’(x;, N)). Notice that c/(II’(x,, N)) is a universal minimal set
under N. Since N is syndetic in 7, there exists a compact subset K in T
such that T=N-K and X' = c{(Il'(%;, T)) =cl(w;* T) = cl(x,- N)- K. It follows
that there is k€K and 2'ecl(z;-N) such that x, =o' -k = II'(2’, k). There
exist ¥, and ¥’ in Y and ¢ and ¢ in T such that f(z,) = P(y,¢;) and
f&')=P(y’,t). From the fact that f(c/(Il'(x;, N)) = P(Y,¢,) =Y, and f(x,)=
FI (@, k) = o(f@) k) = o(P(y, '), k) = P(y’, t'k), we have P(y’,t’k)eP(Y,t)
and t’k€Nt,. Since z’'ecl(Il’(x;, N)) we have f(x')=P(y’,t')e f(cl(Il'(x;, N))=
P(Y,t,) and t'=Nt;. Consequently (#')7'Nt, = ¢7'Nt; =N and keN. Let
k = n for some neN, we have 2, = 0'(2/, n)scl(Il(x;, N)). It follows that f
is an one-to-one map from X’ onto X. Since X’ is compact Hausdorff, f
is a homeomorphism and (X, 7,s) must be a universal minimal set under 7,

Conversely, assume that (X, T,s) is a universal minimal set under T.
Let #,€X and Y, = cl(s(z;, N)). We know that (Y, N,s) is a minimal set.
There exists a universal minimal set (Y, N, II) and a continuous map ¢ from
Y onto Y, such that the following diagram is commutative:
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I

Y x N—Y

e il .

Y, X N—DY,;
By the first part proof of this theorem there exists a transformation group
(X', T,11’) such that % ={X,p,HY,N} is a fibre bundle, (X', 7,1I) is a
universal minimal set under 7, and for each #’eX’ cI(Il’(x’, N)) is a universal
minimal set under N and equivalent to (Y, N, II). Since universal minimal
set is unique up to equivalence class, there is a homeomorphism ¢ from X’
onto X such that the following diagram

’

X x T —>X

o i el

x T —X

is commutative. Let ¢7'(x;) = o’ then ¢ (cl(Il'(2’,N)) = cl(¢(Il’"(x', N))) =
cl{o(x, N)) =Y, and (Y, N,s) must be also universal minimal under N. The
theorem is proved.

Remark. In the classical topological dynamics, it is known (e.g. see [8])
that for any discrete flow (Y, Z, II) where Y is a compact Hausdorff' space
and Z is the integer group with the discrete topology, there is an extension
to a continuous flow. Let I=1[0,1], the closed unit interval. Consider
YxI. For y,y’" in Y, t,¢' in I, we say (y,t) and (y,%’) are equivalent if
t=0 and ¢’ =1. Let L be the closed equivalence relation induced by this
equivalence relation in Y'xI. Let X=('xI)/L. Let (y,t)L<X, rR and
neZ. Define I’ : XxR—X by II'((y,¢)L,7) = (yn,7,)L where t +7=7r,+n
with »,€[0,1]. It is known that (X, R, II’) is a transformation group. We
call (X, R,1I’) the P-extension of (Y,Z,1II). It is clear that this extension is a
special case of the extension in Theorem 6, with N=2 and T = R. Hence
we have the following corollary:

Cororrary: If (X, R, 1) is a compact Hausdorff universal minimal set under
R, then there exists an integer subgroup X of R, Y = cl(xZ) ts a universal minimal
set under Z. Conversely, if (Y,Z,11) is a compact Hausdorff universal minimal set
and (X, R, 11') is the P-extension of (Y,Z, I1), then (X, R, I1’) is the universal minimal
set under R.
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§8. The Whitney Sum

Let (X, T, ; X* H,11* p, f) and (X', T, I'; X* H, I1* p/, f) be two semi-
reducible transformation group. Let X" be the subset of XxX’ cons'sting
of all pairs (x,2’) such that p(x) = p’(x’). It is obvious that X is closed in
XxX'. Define p: X"—=X by px,a)=2 p,:X">X by pa2)=21,
p’ i X" > X* by /(@) = ppi(x,¥) = p'p(, ), I : X'"XT—=X" by
o ((x,2'), t) = (M(x, ¢), '@, 1)) = (xt,2’t). We shall show that p(xt) = p’(x'¢).

By the semi-reducibility, we have

P(xt) = p(Il(x, t)) = O*(p(x), f(2)) = O*p'('), f(¢)=p (II'(z',2)) = p'(x'?).
It is easy to verify that (X", 7,11””) is a transformation group. We shall
show that the following diagram is commutative,

I
X' x T — X"
p"’ fl T lp”
X* x H— X*
Let (x,2")eX’, teT. We have

m((x, 27), 2)) = («t,2’t), """ ((2,a'), 1) = p”(wt,x't) = p(xt)
*(p"" (2, @"), f(8)) = I*(p(x), f(2) = p(Il(x, 2)) = p(at).

Hence it is semi-reducible.

DerintTioN 6. We call this transformation group (X', 7, II’’) is the
Whitney sum of (X, T,1I) and (X', T,1II’). This definition is same as the
Whitney sum of two fibre bundles (e.g. see [11]).

Lemma 16,  Let (X, T, ) and (X', T, 11"") be two transformation group. Then
if both are semi-reducible, so is its Whitney sum.

Tueorem 7. Let (X,T,11; H,p,f) and (X, T,11"; H,2’, f) be two reducible.
and separable transformation groups where f: T — H is a group covering and X and
X' are compact Hausdorff spaces. Then its Whitney sum is separable if and only if
the cartesian product Y'' of fibres Y and Y’ is minimal under N, where N = f(e).

Proof. From Theorem 5 (X,p,H) and (X’,p’,H) are fibre bundle, it
follows that their Whitney sum (X", H,p’) is also a fibre bundle with H as
its base space, Y/ =Y xY’ as its fibre, N as its group and N acts on Y”
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induced from actions of N on Y and Y’. The theorem is now a consequence
of Lemma 15 and Lemma 9. However, we give a direct proof here. Let
Y"” be minimal under N. Then for each heH, ((p”/)"*(h), N, II’’) is minimal
under N. We know that both Y and Y’ are minimal sets under N, for
(y,y)eY”, where y€Y and y’'€Y’, we have c/(II"((y,¥’), N)) = ¢l (II(y,N)X
cl(II(y’, N)). Consequently, if (z,2')& cl/(Il'”(y, ¥’)N) in X", then both
ze&cl((y,N)) and 2’ & cl(Il'(y’,N)). Say z & cl(Il(y,N)) then n(2)+ p(y).
From p(z)=p'(2") and »(y)=2'(y"), we have p'(y')#=p'(2’) and 2’'&cl(Il'(y, N)).
It follows that p’’(z,2') = p(z) #= p(y) = »”(y,y’). This show that (X", T, II")
is separable. Conversely, let (X', T, ') be separable, then if (z, 2’) &
cl(T1""((y,y"), N)) we have p’'(z,2') # " (y,y’) or p(z) # p(y) and p'(z') # p'(y’).
It follows that z&cl(Il(y,N)) and 2’ &cl(Il’(y’,N). We have (z,2')&
cl(I(y, N))xcl(Il’'(y’,N)) and cl(II""((y,y’), N)) D cl(Il(y,N)) x cl(Il"(y’, N)). It
is obvious that ¢/ (II" ((y, ¥’), N)) < ¢l (Il (y, N)) X ¢l (Il (y’, N)). Hence
(I (y,y"),N)) = cl(Il{y,N)) X cl(II’(y’, N)). Since both c¢I!(II(y,N)) and
¢l(Il'(y’, N)) are minimal, this implies that ¢/(II(y, N))=Y and c/(Il'(y’, N))=Y"
for all ye€Y and y’'€Y’, we have cl/(II"((y,¥'),N)) =Y xY’' =Y" for all
(y,y')€Y” and it must be minimal. The theorem is proved.

Remark. This theorem shows that the cartesian product of two minimal,
but not totally minimal, real flows is not minimal, if they have a same
integer subgroup satisfying the property (A), because, by Theorem 7, at
most its Whitney sum is minimal.
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