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RELATIONS BETWEEN NON-COMPACT

TRANSFORMATION GROUPS AND

COMPACT TRANSFORMATION

GROUPS

HSIN CHU1)

§ 1. Introduction.

In this paper certain relations between non-compact transformation

groups and compact transformation groups are studied. The notion of re-

ducibility and separability of transformation groups is introduced, several

necessary and sufficient conditions are established: (1) A separable trans-

formation group to be locally weakly almost periodic, (2) A reducible and

separable transformation group to be a minimal set and (3) A reducible

and separable transformation group to be a fibre bundle. As applications

we show, among other things, that (1) for certain reducible transformation

groups its fundamental group is not trivial which is a generalization of a result

in [4]. (2) Given a transformation group (Y,N, Π), where Y is compact

Hausdorff and N is discrete and a group covering p : T->H, where H is a

compact group, T is a connected group, and the kernel of p is N, then

there is a transformation group (X, T,σ), where X is again compact Haus-

dorff, which is an extension of (Y,N,Π). Furthermore, if (T,N,Tl) is mini-

mal, so is (X,N,σ), if (Y,N,ϊί) is universal minimal so is (X,N,σ). Con-

versely if (X, T,σ) is a universal minimal set, where X is compact Hausdorff

and if / : T ^H is a group covering where H is a compact group, then for

every, x^X cl{σ(x,N)) must be a universal minimal under N, and (3) by

using the conception of Whitney sum of two minimal sets, we find that the

Cartesian product of two minimal, but not totally minimal, continuous flows,

will never be minimal, if they have a same integer subgroup satisfying the

property (A).
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§2. Some lemmas on locally weakly almost periodic transfor-

mation groups.

We may find the following definitions and lemmas in [2] and [8].

DEFINITION 1. Let (X, T, Π) be a transformation group. Let

We say that T is locally weakly almost periodic at x if U is a neighborhood of

x, then there exist a neighborhood V of x and a compact subset K of T

such that y^V and ί G T imply ytKnUΦQ. We say the group T is locally

weakly almost periodic on X if T is locally weakly almost periodic at every

a ? ε l Let (X, T, Π) be a transformation group where X is a uniform space.

We say that T is weakly almost periodic at X if a is an uniform index of

X, then there exists a compact subset K of T such that for each α e X and

ί ε Γ we have xtKΠxa ψ 0.

The following lemma is a consequence of these definitions:

LEMMA 1. If T is locally weakly almost periodic on X and X is compact then

T is weakly almost periodic.

DEFINITION 2. Let X be a topological space. Let sf be a partition

of X Let EaX. We say Ej$T is a star of E in X if £ j ^ = U {A\A<Ej*f,

AnE^Q}. We say the partition j y is star-open (star-closed) if the star of

open (closed) subset of -AT is open (closed) in X. A partition of X is called

decomposition if every member of this partition is compact.

LEMMA 2 Let (X,T,.U) be a locally weakly almost periodic transformation

group, where X is a locally compact Hausdorff space. Then the class of all orbit-

closures under T is a star-open and star-closed decomposition of X.

We may find the proof of this lemma in [8].

Let (X, T, Π) be a transformation group where X is a locally compact

Hausdorff space. Let S be a closed, normal, syndetic subgroup of T. Let

(X, S, Π) be the induced transformation group of (X, T, Π). Assume that

(X, S, Π) is locally weakly almost periodic. Let R be the relation on X

defined by the orbit-closures of S, namely xRy if and only if x^cl{yS). It

is clear that x<Bcl{yS) if and only if y^cl(xS) and R is an equivalence

relation.

We may find the proof of the following lemma in [2].
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LEMMA 3. The relation R defined as an open and closed relation and the

quotient space X* = XIR, induced by the relation R, is Hausdorff and locally compact.

If X is normal so is X*.

Let T* = T/S be the quotient group of T. Then T* is a compact

group. Denote q : T-+ T* to be the natural projection. Define Π*xT*->>X*

by n*(x*,t*)=(U{x,t))*, where XCΞX, feΓ, a;*el*, f ε l * , p{x) = x*, q(t)=t*

and p is the natural map of X onto X*. It is well-defined and we have

the following lemma.

LEMMA 4. The following diagram:

Π
X x T —>X

4 π
X* x T* — > X*

is commutative and the triple (X*, T*, Π*) is a transformation group induced by

(X,T9U).

We may find the proof of this lemma in [2],

LEMMA 5. Let (X, T, Π) be a transformation group, where X is a compacty

Hausdorff) minimal set under T. Let S be a closed, syndetic, normal subgroup of T.

Then X is locally weakly almost periodic undar S.

LEMMA 6. Let X be a locally compact T2-space. Then X is locally weakly

almost periodic under T if and only if the class of all orbit-closures under T is a

star-closed decomposition of X.

The above two lemmas are known (e.g., sec. [8]).

§3. Semi-reducible, reducible and separable transformation

groups.

DEFINITION 3. Let (X, T9U) be a transformation group. We say that

{X, T, Π) is semi-reducible if there is a transformation group (X*,H, Π*), where

X* is a non-trivial compact Hausdorff space and H is a non-trivial compact

group such that there is a continuous homomorphism f : T-+H from T onto

H and a continuous map φ : X-ϊX* from X into X* and for each ί ε T and

each XEΞX, we have φU{x, t) = TL*(ρ{x), f(t)). We say that {X, T, Π) is reducible

if it is semi-reducible such that X* = H and Π* is the multiplication in H.
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Sometime we denote a semi-reducible transformation group by (X, T, Π

X*,H, Π*, p9 f) and a reducible transformation group by (X, T, Π H, p, / ) .

LEMMA 7. Z^ί {X, T,U; H, Π*, p, / ) έ# # semi-reducible transformation group.

Let Kev(f) = N. Then N is a closed, normal, syndetic subgroup of T and for each

?X, p(cl(U(x9N))) =

Proof Let t<=N. Then f(t) = e,p{H{x9t)) =Π*(p(a), f{t)) = p{x). Since

p is continuous and X* is Hausdorff, we have p{cl(U{x,N))) = p{x).

DEFINITION 4. A semi-reducible transformation group (X, T, Π X*, H,

Π*, p,/) is called separable if for any pair cc, t/ in X such that x^cl(U(y,N))

then p(a ) ̂ = p(y).

LEMMA 8. Let (X,T,ϊl;X*,H9ΐL*,p,f) be a separable transformation group.

Then for each x^X, cl{ΐl(x,N)) is a minimal set under N in X.

Proof Let x&X. Suppose that cl(ΐl(x,N)) is not a minimal set. There

exists y^cl(Iί{x,N)) such that cl{Ίl{y,N))c:cl(Il{x,N)) but they are not co-

incided. There is an element z^cl(Iί(xfN)) but not in cl{IL(y,N)). By the

definition of separability, we have p(z) ψ p(y). By lemma 7, we have

Ί>(y) — Ί>(χ) a n ( i Viz) — P(χ)- A contradiction!

THEOREM 1. Let {X, T, Π) be a transformation group where X is a locally

compact Hausdorff space. Let N be a closed normal syndetic subgroup of T. If

the induced transformation group (X9 N, Π) is locally weakly almost periodic, then

(X, T, Π) is a separable transformation group and the map p : X-> X* is closed and

p~ιix*) for every x* in X* is compact. Conversely, if {X, T, Π X*, H, Π*, p9 f) is

a separable transformation group and the map P is closed, and P~ι{x*) for every #*

in X* is compact, then the induced transformation group (X9N,Iί) is locally weakly

almost periodic, where N = f~\e).

Proof The first part of this theorem is a direct consequence of Lemma

2, Lemma 3, and Lemma 4. The second part is a direct consequence of

the definition of separability, Lemma 6 and Lemma 8.

Remark. Notice that the map p in Theorem 1 is proper.

§4. Minimal Sets,

DEFINITION 5. Let (X9 T, Π) be a transformation group. Let iVbe a
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closed, normal syndetic subgroup of T. We say N has a property (A) if every

a ε l , the group {t^T\U(cl(xN), t) = cl(xN)} is equal to N.

LEMMA 9. Let {X9 T,U; H, p9 f) be a reducible and separable transformation

group. Then X is minimal, but not totally minimal, under T, and N = f~ι(e) has

the property {A).

Proof, Let l e i . We shall show that cl(H{x9 T)) = X. For each yeX,

we have p{y)^H9 which is a group. Since the homomorphism / is onto,

there exists t^T such that p(x)f(t) = p(y). By the reducibility of this trans-

formation group we have p(x)f(t) = p{ΐl(x9t)). Consequently, p(y) = p{U(x9t)) =

p{Iί(xt,e)). By the separability and Lemma 8, we have cl(U(y,N)) =

cl(IL(x, tN))dcl(U(x9 T)). Hence y^cl(U(x, T)). This shows that A"is a minimal

set under T. Since H is not trivial, there are at least two distinct points, x

and y9 in X such that p{x)i=p{y). It follows that cl {U{x,N))f]cl{U{yf JV)) = 0

and X is not minimal under JV. From Lemma 7, we know that N is a

closed, normal, syndetic subgroup of T. Hence X is not totally minimal.

For XΪΞX let S = {fe=T| H{cl(xN))91) = cl(xN)}, for *e=S, we have p(a ) =

p(cl(xN)) = p(U(cl(xN)91)) = p(cl(xN)) - f(t) = p(x)f(t) in H. Hence f(t) = β,

ίeTV and S = N. This shows that N has the property (A).

LEMMA 10. Let (X, T, Π) fo a transformation group. Let X be a locally

compact, Hausdorff, minimal set under T. Let N be a closed syndetic, proper normal

subgroup of T with the property {A) such that for each X G I , XN is compact. If

X is not minimal under N9 then {X9 T, Π) is reducible and separable.

Proof. By Lemma 5, we know that X is locally weakly almost periodic

under N. Let R be the relation on X defined by the orbit-closures of N.

Let X* = XIR be the quotient space of X, T* = T/N be the quotient group

of T a n d Π* :X*xT*-»X* be defined by Tl*(x*,t*) = (U(x,t))*. Let p be

the quotient map of X onto X* and / the quotient homomorphism from T

onto T*. By Theorem 1, we know that {X9 T, Π X*, T*, p, f) is separable

transformation group.

Let p(xo) = #* for Xo^X. We shall show that the isotopy subgroup Gx*

of a;?-is the identity in T*. Suppose Π*(ajJ , t*) = B? for **eT*. Choose

/εΓ, so that f{t) = t*. We have p(IL{cl(x0N)9Nt)) = p(cl(x0N)) and by the

separability and Lemma 8 IL(cl(x0N),Nt)-= U(cl{x0N)9t) = cl(x0N). Since iV
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has the property {A), we have t^N or t* — identity in T* and Gx* is trivial

for all xξ in X*.

Let XO<ΞX and p{x0) = X { G Γ . Consider the map Π** : T*->-X*, by

Πίj(/*) = Π*(&J, **), which is continuous, one-to-one, and onto. Since both

T* and X* are compact and Hausdorff the map Πί* is a homeomorphism.

Identify the topological group T* with X* by ΠJ*. Then X* is a topologi-

cal group, x% is its identity and Π* is the multiplication of the group.

Consider the following diagram:

Π
X x T—> X

hi 4 m ih

T* x T*—> T*

p (ΠJ )~1

where h = (Π^)"1^ : X—>Z* > T* and m is the multiplication in T*.

Let XΪΞX, t<=T. Let h(x) = 5* and /(*) = /*. Then Π**(5*) = p(α;). We show

that h(U(x,t)) = h{x) f(t). We know that from the preceding commutative

diagram, we have Π*(j)(a?), f(t)) = p{TL(x,t)) and AΠ(α;,ί) = (ΠSj

, 5*)

This shows that the transformation group (X, T, Π) is reducible. The lemma

is proved.

LEMMA 11. Let (X, T, Π) fo <z transformation group where T is an abelian

topological group. Let X be a compact, Hausdorff, minimal, but not totally minimal

set, under T. Then T has a proper, closed, syndetic subgroup with the property {A).

Proof. Since X is not totally minimal set, there is a proper, closed,

syndetic subgroup N of T such that cl{U(x,N)) ψ X for every a j ε l If N

does not have the property (A) for some xo^X, let N/={t<=T\U{cl(x0N),t) =

cl(x0N)}. It is clear that N' is a proper, closed, syndetic subgroup of T,

N'Z)N and cl(x0N) = cl{x0N
f). Let R be the relation on X defined by the

orbit-closures of N\ Let X* = X/R be the quotient space of X, Γ* = T/N'

be the quotient group of T and Π* : I * x T * ^ Γ be defined by Π*(z*, /*)

= (ΐl(x, /))*. Let p be the quotient map from X onto X* and # the quotient
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homomorphism from T onto T*. By Lemma 5 and Theorem 1, we have

(X, T, Π; X*, T*, Π*; φ,f) is a separable transformation group. It is clear

that {t^T\U{cl{x0N
f),t) = cl(x0N')} = N' and <p{N') is the identity in T*. For

each y^X, we have p(y) = f e l * . Since X is minimal under T, we have

the map Π**: T*->X* by Π*;(f*) = Π*(4, **) is onto, there is f? e: T* such

that Π*(4^*) = y*. Suppose π(cl(yN'),s) = cl(yN') for sεT, then Π%*,s*) = y*,

where s*=f(s) and Π*(α?0, JoO?*)^)"1) = &o. It follows that Ή.{cl{x,N% tosΓQ

ι) =

cl(xQN'), where t^f~ι{t%). Hence tost^1 = e in T or 5 = e. The lemma is

proved.

THEOREM 2. Z,^ (X, T, Π) έ* a transformation group where X is compact

Hausdorff. Then X is minimal under T but not minimal under a proper, closed,

normal subgroup having the property {A) if and only if (X, T, n ) is reducible and

separable.

Proof It is a direct consequence of Lemma 9 and Lemma 10.

COROLLARY. Let (X, T,U) be a transformation group where X is compact

Hausdorff and T is abelian. Then X is minimal but not totally minimal if and

only if {X, T, Π) is reducible and separable.

Proof By Lemma 11 and Theorem 2.

§5. Fundamental Groups.

The following lemma is well-known in Homotopy Theory (e.g. see p.

86, Lemma 15.1, [9]).

LEMMA 12. Let f : T-+H be a fiber space with discrete fiber. For each path

a : I-^H joining b0 to bλ and for each e^f"ι{bo) there exists one and only one

covering path <τ* : /->• T such that σ*(0) = e0 and fσ* = σ.

THEOREM 3. Let {X, T, Π) be a reducible transformation group, where T is

a locally compact, but not compact, connected, locally pathwise connected, X is a locally

compact, Hausdorff, connected, locally pathwise connected space and f is a group

covering. If every orbit-closure under T in X is compact, then for each x0 e X, the

fundamental group

Proof Since {X, T, Π) is reducible, there exists a compact group H and

a group covering f \ T-+H and a continuous map p : X-±H such that the

following diagram is commutative:
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X

1
H

X

X

HSIN

T -

4
if -

CHU

π
—>
m

—>

X

[:
H

where m is the multiplication in H. Let y^X, such that p(2/0) = e, where

e is the identity of H. Define Πo: T-+X by Π0(f) = Π(y0,*) for / e Γ . Then

Πo is continuous and the following diagram is commutative:

Πo
T — > H

A A
H

Suppose that πι(X, y0) = 0. We have p*{πι(X, y0)) = 0 which is obviously

contained in f*{πi(T,e))9 where e is the identity of T. By the lifting theorem

of Homotopy Theory (e.g. see p. 89, [9]), there exists a unique continuous

map g : X-± T such that g(yQ) = e and fg = p. We shall show that it is

impossible.

Since T is a locally compact, connected, but not compact, topological

group, by a result of Iwasawa, there is a closed one-parameter subgroup R

of T such that it is topologically isomorphic onto the usual additive group

of real line (see [10]). Restrict Πo to R. For the matter of convenience we

denote the multiplication in R by the usual addition. Let / = [0,1] be the

f [0, ft], if ft is positive
unit interval. Define hn:[0,1]—>\ # β # by hn(t) = nt,

{[ft, 0], if ft is negative

where [0, ri] are subsets in R. I t is clear that hn is a homeomorphic onto

map. The path ξn = Πo o % o hn : I-±X has the property that ξn(t) = H0{nt)

where i = [0, n\ -> T is the inclusion map (or i : [ft, 0] -> T if ft is negative).

In particular, £n(0) = y0 and $n(l) = Π0(ft) = yn for some yn in X The

composed map σn — pεn : I-+H is a path. Then σn(0) = 0 in H, where e is

the identity in H. By the Lemma 12, there is a unique path ζn : [0,1]-»• T

such that fn(0) = e, where e is the identity in T and /fn = σn. Consider

i o hn, where the map i is defined as above. We have (i o ̂ )(0) = i(0) = ̂ ,

and σn = ^ ί n = p o U0oiohn = foiohn = fo(io hn). Hence / o (i o ̂ n) = <rft.

By the uniqueness of ζn, (see Lemma 12), we have ζn - i o /ίn.
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[0,1]

By the usual construction of g : X-> T (e.g., see p. 90, [9]) we have g(yn) =

ζn(l) — (i o hn)(l) = n e Rcz T, for all integers n and h(y0) = 0, we have

flfΠo(w) = g(yn) = n for all n in R. Let Z = {0, + 1, ± 2, }c/?c T. Then

Z is a discrete subgroup of T. By assumption, we have c/(Πo(T)) = c/(Π(2/o, T))

is compact, so is its closed subset c/(Π0(Z)). Consequently g(cl(U0[Z)) is

compact in T. However, we know g(Yίo[Z)) = Z and Z is closed in T, it

follows that Z = cl(Z) = cl{g(IL0(Z))) is compact, a contradiction! Thus,

Πi(X, 2/0) ̂  0. Since a connected, locally arcwise connected space is arcwise

connected, we have π1(X9x)—π1(X9y0) for every x^X. The theorem is proved.

COROLLARY 1. Let {X, T, Π) be a reducible transformation group, where T

is a locally compact, but not compact^ connected, locally pathwise connected, X is a

compact, Hausdorff, connected, locally pathwise connected space and f is a group

covering. Then for each xo^X, the fundamental group Π^X, x0) ψ 0.

THEOREM 4. Let {X, T, Π) be a transformation group where T is a locally

compact, but not compact, connected, locally pathwise connected group and X is a

compact Hausdorff minimal set under T. Let N be a proper, discrete, normal syndetic

subgroup of T having the property (A). Then Π^X,^) ¥= 0, where

Proof Notice that for each x^X, xTψxN, otherwise the subgroup iV

can not have the property {A). Hence X is not minimal under N.

From Theorem 2 we know that the transformation group (X, T, Π) is

separable and reducible. Since N is discrete and normal, the quotient

homomorphism, / : T-> T* = T/N, is a group covering. By Theorem 3, we

know that TL1(X9x0)ψO. for each
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COROLLARY 1. Let (X, R, Π) be a transformation group where I is a

compact HausdorfF locally arcwise connected, minimal, but not totally mini-

mal set, under the real group R. Then ΐl^X, x0) ψ 0, for each

Proof. Since X is not totally minimal under R, by Lemma 11 there is

a proper closed syndetic subgroup Z having the property {A). As we know

that every proper closed subgroup of R is discrete and isomorphic to an

integer group. Now the corollary is a consequence of Theorem 4.

§6. Fibre Bundles

By a fibre bundle we mean an equivalence class of coordinate bundles

(see [14]).

L E M M A 13. Let {X, T, Π H, p, f) be reducible and separable transformation

group where X is compact. Hausdorff and f:T-*H is a group covering. Then

{X,H,p) is a fibre bundle.

Proof. Since / : T-±H is a group covering, f'^e) = N is a discrete,

normal syndetic, proper subgroup of T. By Lemma 9, we know that X is

minimal under T but not minimal under N. From the reducibility we have

the following commutative diagram:

Π
X x T—> X

P[
 fi m

H x H—> H

where m denotes the multiplication of H. Let a e l such p(x) = e in H.

Let Y = cl(xN), we have p(Y) = e. For each h&H, there exists a compact

neighborhood V of h and a compact neighborhood V of r in T, where

f(r) = h such that the restriction of / to V", fv:V~>V is a topological

isomorphism onto. The set V is so chosen that any pair of elements in

{nV\n^N} are disjoint. Define

φr:YxV-+p-1(V) by φv(y,z)= U(y,f^(z))= U(y,t),

where t<BΫ with fγ{t) = z. We shall show φv is a homeomorphism from

YxV onto p~λ(V). It is obvious that φv is continuous. We first show that

φv is one-to-one. Let zlf z2 in V and yl9 y2 in Y. If φvivuzj = Φv{yz,z2),

then Tl(yl,fv
1(z1))=U(y2,fv

1(z2)). Since p{yx) = p(y2) = e, by the commuta-
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tive diagram above we have ezx = ez2 or zx = z2. It follows easily that

Vi = 2/2. We shall show that φv is onto. Let x^p'^V). Then p(xo) = ho^V.

Since this transformation group is separable we have jΓHW = cl(x0N) and

YfvHhoKp'Hho) = cl{x0N). Let [ / ^ ( W r = g, we have /far) = h~0\ By the

above commutative diagram we have p(cl{x0N)g) = p(cl(x0N))f(g) = /̂ ô ό1 = 0.

It follows that cl{x,N)gap-\e) = Y or cl(x0N)aY(fϊι{h0)). Hence 7(/^(/*o)) =

cl{x0N) and there exist ^ 0 ^ F such that φv{y^hQ) = U{y09fv
ι(h0)) = x0. This

shows that 0F is onto. Hence 0Fis a homeomorphism from F x 7 onto p'^V).

Let Fo be the interior of B. By the preceding argument we have Φv\vo=Φvo

maps YxVo onto jΓ^Vo), where p~ι(V0) is open in X as well as in p~ι(V)

and FxFo is open inFxTΛ Hence φVo : ΓxFo-^p'H^o) is a homeomorphism

from FxFo onto p~ι{VQ). Let S be a family of those open sets, Fo, which

covers #. Let the elements in S be indexed by a set /, i.e., S={Vt\i^J}

and denote the corresponding neighborhoods in T by Ϋt and the corres-

ponding homeomorphisms by ft and φt respectively. It is obvious that

{Vi} are coordinate neighborhoods in H and {φι} are their corresponding

coordinate functions.

For h^Vj and 2/eΓ, we have

(1) pφjiy, h) = p(U(y, ff{h)) = p(y)

By the separability, we have p~ι(h) = Π(F, 0 = Y t, where t<=f~ι(h).

Define the map φjΛ :Y-+p~ι(h), by Φj,h{y) = Φj{y,h) for y^Y. It is easy

to see that φjth is continuous, one-to-one, onto and because that both Y

and p~ι{h) are compact, it is a homeomorphism. For each pair i, j in /

and each h^V^V3, we have φith(y) = U(y, fi\h)) = yf-ι{h\ φjΛ(y) =

K(y,f-ι(h)) = yfϊ1(h) where fV(h)<=Yt and fJWe-Yj. If 7 t n V ^ 0 . It

is easy to see that there exists an n^N such that Ϋif)nVj ¥= 0. We shall

show that there is only one such n e JV that has this property. Suppose

there is an m^N wish the same property: VtΠmF^ ψ 0. Choose h^ViΠVjf

then there is ί = n^ e ViΠnVj and ί1 = mί2 e ^ Π w ^ such that f(t) = ^

and /(ί1) = A, where ί, ί1 in Vt and ^, ί2 in Vj. Since /i^. = ft is a

homeomorphism from F^ onto Vi9 we have ί = t1. From f{m,tί)=f(tί) = h

and f{nt2) = f{t2) = h, we have f(tx) = f(t2). Since f\γ. = f5 is also a

homeomorphism, we have t1 = t2. It follows that ntx — mtx and we have

n — m. Hence for each pair / and j if ViΠVj ψty there is a unique n<=N

such that ΫiΠnΫj^g. Let /zeFiΠF^, choose t^Vt and ^ G f j so that
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t = tt = ntj and f{t) = h, where n e f t It follows that / I 1 ^ ) = tt and

f~jl(h) = t j . Consider φj}h° φith :Y~^Y9 we have

n, ί y) = ̂ 7,UΠ(2/ n, /7 1 W) = yn= H(y, n)

or Φ~j}hΦi,,h = n^N, on F. Thus we have

(2) For each pair i and j in / a n d / Ϊ E K J Π F J , we have that φ~j}hφith is a

homeomorphism from F onto F and Φ~j}hφi,h^N and

(3) Define flr^(A) = Φ~]}hφί,h, the map ^ :VtΓ\Vj-+N is trivial, i.e. gjt{h) = n

for every AeVίίΊV^. Consequently ^ i t is continuous. Hence it is a coordi-

nate bundle with X as the bundle space, H as the base space, P as the

projection from X onto H, Y as the fibre, N as the group of bundle, the

open covering on X X, {F*}, as coordinate neighborhoods and {^} as co-

ordinate functions.

LEMMA 14. Let {X, T, Π H, p, f) be a reducible and separable transformation

group as we stated in Lemma 13. Then {T9f,H,N,N} is the associated principal

bundle of the fibre bundle {X,p,H,Y,N} as we constructed in Lemma 13.

Proof. It is a direct consequence of the definition (see [14]) of associated

principal bundle and the way we constructed the coordinate neighborhoods

{Vili&J} and coordinated functions {φi\i^J} and coordinate transformation

^j} in the proof of Lemma 13.

LEMMA 15. Let {X9φ_9H9Y9N9 {F*}, {φt}} be a fibre bundle, where X is a

compact Hausdorjf space, H is a compact group and N is a discrete group. Let

YxN-¥N be a transformation group. Let p : T-+H be a group covering from T

onto H such that {T, p, H, N, N] is the principal associated bundle of the given fibre

bundle. Then there exists an action σ of the group T on X so that {X, T,σ; H,p, p)

is a reducible transformation group. There is a closed subset Y1, invariant under

N, in X, such that (F1, N\9 in (X9T9σ), is equivalent to the transformation group

(Y9N). If furthermore, N is a minimal set under F, then (X9T9σ; H9p,p) is

separable.

Proof. Let j ^ = [X,p,H,Y9N}. Let J?= {T9p,H,N,N}. Let

{YxT9q, T9Y9N}9 q(y9b) = i> where δ e T a n d j / e F , be the product bundle

with group N. - Define the principal map:
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by P(y,1)) = Φi(y Pi(b),x), where x = p(δ)eF t in # and p* : v'KVt) -> TV by

P<(0 = ΦΊ!h(t)^N with ί e ? " 1 ^ ) and p(0 = Λe/f (see p. 8 [14]). Then P is

well defined and continuous and the following diagram:

P

H

is commutative. In fact P is a bundle mapping (see p. 38 [14]). From the

facts that p is open and ^ is a homeomorphism, it follows that P is open.

We shall show that P is onto.

For each x^X, there exist f e / such that x e p'KVi) and φt :ViXY->-

p'KVi) is a homeomorphism and onto. Consequently there exist h^Vi and

yzΞY so that φi(y, hi) = x. Let t^T, with v{tί) = hι. We have P(y (pt(*))~S *ί) =

Φi{yVi{ti)(Vi{ti))-\ p(t'i)) = Ψi(y,hi) = x. Hence P is an onto mapping.

Let P(yl9 bx) = P(y29 δ2), for Si and 62 in T and 2/1 and 2/2 in F. We

shall show that 62 = ^6! for some n&N and 2/2 = 2/î -1- From P{yί,b1) =

P(V2^2)9 we have φί{y1 p^^),^) = Φj{y2 Pj(52),fl?2) where ^ = p f δ ^ e ^ and

^ 2 = P ( 5 2 ) e F i . Since ^t(y1 pt(δ1),a?1)ep-1(α1) and ^̂ (2/2- P ^ ) , ^ ) ^ - 1 ^ ) , we

have p'̂ ίCi) = p'1(x2) in X It follows that they are the same fibre in X

and we have x1 = x2. From p(δi) = p(δ2). We conclude that bx and b2 are

in the same coset in T. Consequently, we have δ2 = nbi for some neiV.

Now, we may choose i = j . Φlyλ Vi(bι), xλ) = Φi(y2 vΛnbJ, ^ ) , we have

2/i Pt(δi) = 2/2 ViinbJ or T/J ^ A ) = 2/2 Φllx^nb,). The mapping & iX : Â ->

P"1^) in the covering group T is corresponding to the multiplication of iV

by an element in T such that φί)Xl{m) = mt for every m in N. 2/1 ?7,1a?1(δi) =

2/i ( δ j r 1 and 2/2 Φ7!χ(^i) = 2/2 (nb^t'1. From 2/2 (nb^t'1 = yx (δjr 1 , we

have y2~y1n~1. Consequently, we also have P(y,mb) = P{ym,b) for δ<Ξ T,

and

For every ^ G 7 , we define that g acts on X by {P(y,b))g — P(y9bg) for

every P(y,b)<=X. Notice that P{YxT) = X. We shall show that it is well

defined. Let P(yl9 δj) = P{y2, δ2). Then δ2 = nbx and 2/2 = 2/î ~1 for some

rceiV. (P(y2fb2))g = (Piyitr1,tiling = P(yin"1

9nΈ1gj=φi{y1n^1'Pι{nr61g)9 v{nlxg))9

where vinbxg) = v{bxg)^Vί9 for some /. In the covering group T, there exist
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some t^T such that pt(z) = φ~}x(z) = (z)t^N for every z^p~ι{x), we have

yifΓipiinEtf) = y^rr^nb^gt = yj>xgt where nb^t^N or bxgt^N and (P{y2,b2))g

= Φi(yΛt>ig)t, V(bxg)) = ΦΛviΉbig), P(ίiflO) = P{yiybxg) = {P{yl9bx))g. Since

P is open and continuous, the action of g on X is continuous. For gl9 g2

in T, it is easy to see that ((P(y, b))gι)g2 = P(y9 b)gίg2. Consequently, for

each #<= T, g is a homeomorphism.

Define σ : Xx T-+X by <7(P(y, £),#) = (P(y, b))g for ^ e T and P(y, 5 ) G X

We shall show that <τ is continuous. Let V be an open neighborhood of

(P(y9b))g in X Let p{b) = x in if with x^Vt for some ί. Then P(y9b) =

Φi(y-V~il{b), x)<EΞp-1(Vί) and P(y,b)g<=V {v'λ{Vi))g which is open in X. Since

# is continuous from YxT onto X and P(y9b)g = P{y9bg)9 there exist an

open neighborhood W of bg in T and an open neighborhood U of y in F

such that P(U>W)czVf)(p~1(Vi))g. In the group T, there exist an open

neighborhood Wx of g and an open neighborhood W2 of 5 in T such that

and WY^cW, we have P(U,W1)W1 = P(U9W2 W1)aP{U,W)c:

g. Since P(U,W*) = ΦΛU-MWJ, v(W2))9 p(W*)), v(W2) is open

in H9 U'Pi{W2) is open in Y and ^̂  is a homeomorphism from F x F j onto

φ-KVt), we have that φ^U- Vi(W2)9 v{W2)) is open in p " 1 ^ ) , therefore P(C7, T72)

is open in X It follows that P(U9W2))WιdV9 where P(£/,W2) is a neigh-

borhood of P(y,b) and WΊ is a neighborhood of g. This shows that σ is

continuous. It is easy to see that σ(σ(x, tx)912) = σ(x9 t1t2) and σ(x, e) = x where

x^X, tlf t2&T and e is the identity of T. Hence {X, T9σ) is a transforma-

tion group.

We shall show that (X, T,σ; H, p, p) is a reducible transformation group.

It is sufficient to show that the following diagram is commutative:

X x T - ^ > X

Γ ψ m
H x H—> H

We know that P: YxT-^X is onto. Let t^T and P(y,b)<=X for y<=Y and

£<Ξ 7. We show that pσ(P(y, b)91)= p(P(y9 b)) p(t). σ(P(y, b), t) = P(y, bt) =

Φάy-Vi(bt\ p{bt))9 where p(St)eVt in if for some i. p{σ{P{y9b),t)) = p(bt)

and p(P(y,b)) p(t) = p(φj(y *Pj(b)9 p{b)) p{t)=p(b) p{t) = p(bt)9 where P(5)GVJ

for some y. Hence it is reducible.

Let P(Y9e) = Y1 where e is the identity in T. It is not hard to see that

https://doi.org/10.1017/S0027763000014586 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014586


TRANSFORMATION GROUPS 111

F1 is invariant under N. For weiV, y^Y9 we have P(y n,e) P(y,n e) =

P(y,n) = (P(y, e))n. Hence (F1, N), as in {X, T, σ), is equivalent to the

transformation group (Y,N).

Furthermore, if Y is minimal under N, we shall show it is reducible.

It is enough to show that for P{yX9Bι) $ cl((P{y9 b), N))9 p{P(yu ίi)) Ψ

p(cl(σ(P(y,b),N)). φ(P(y19bί)) = p(Φι(yiΉSi), P(*i)) = p(5i) where p ίS jeK,

in 77 for some i. σ(P(y,b),N) = P(y,bN) = P{y,Nb) = P(y N,b) = φj(y N>

Vj(b), V(b)) = φj(y 'N,v{b)), where P ( J ) G F ; in H for some j and fj{b)^N.

cl(Φj(vN,p(5)) = cKφjjmiy N)), Φj,~Pω(cl(y N)) = ^ i t W ) ( F ) = ^-(Γ, p(6)) =

P(F, 5). Thus c/(σ(P(y, 5),ΛΓ)) = ̂ , (F, p(5)) = P(F, 5) and p(cl(σ(P(y, b),N)) =

p(Φj(Y, P(5)) = P(£). From P(y l f 6J φ P(F, 5), we have φ^y^Ub,), p(bι)) φ

^^(F, p(5)), it follows that p(5i)f= p(6). By Lemma 9, we know X is minimal

under T. By Lemmas 14 and 15, we have

THEOREM 5. Let (X, T, Π if, 2?, / ) έ# reducible and separable transformation

group where X is a compact Hausdorff space, and f:T-*H is a group covering

then {X,p,H,Y,N} is a fibre bundle and {T9f,H,N,N} is its principal associated

bundle. Conversely, if {X,φ,H,Y,N} is a fibre bundle, where X is a compact Haus-

dorff space, H is a compact group, Y is a minimal set under N, and N is discrete

group, let f : T-+H be a group covering from T onto H such that f~ι{e) = N and

{T,f,H,N,N} is the principal associated bundle of the given fibre bundle, then there

exists an action σ of the group T, on X so that (X, T, Π H,p9 f) is a reducible

and separable transformation group and X is minimal under T.

§ 7. Extension of transformation groups and universal minimal

sets.

THEOREM 6. Let p : T-+H be a group covering, where H is a compact group

and T is connected. Let v~ι{e) = N. Let Y be a compact Hausdorff space such that

(Y,N,U) is a transformation group. Then there is a compact Hausdorff space X

such that {X, T, σ) is a trnasformation group and there is a proper closed subset F 1

in X, which is invariant under N, so that iyx

9N9σ) is equivalent to (F, AT, Π).

Furthermore if Y is minimal under N, then X is minimal under T. If Y is universal

minimal under N, then X is universal minimal under N. Conversely, if (X, T,σ) is

a universal minimal set under T, where T is a connected group, X is a compact

Hausdorff space and there is a group covering f from T onto a compact group H,

then for each x e X (Yx, N, σ) must be a universal minimal set under N, where

N=keτ{f) and Yx = cl(σ(x,N)).
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Proof. It is easy to see that {T,p9H,N,N} is a principal bundle. Let,

in this principal bundle, {Vi\i^J} be a set coordinate neighborhoods in

H. Since H is compact the index set / must be finite. Let {&Ji,./e/} be

the set of coordinate transformations in this principal bundle. Then there

exists a unique fibre bundle, (see p. 14 [14]), J ^ = {X,$,!!,¥,N] with pro-

jection p, base space H, fibre F, group N, coordinate neighborhoods

{Vi\i^J} and coordinate transformations {9ij\i9j^J}. Since H and F are

compact Hausdorff spaces and / is a finite set, X must be compact Haus-

dorίf. It is easy to see that {T,f,H,N,N} is the principal associated bundle

of &= {X,p,H,Y,N}. By Lemma 15, there exists an action a of the group

T on X such that {X, T, σ) is a transformation group and a closed subset

Y1 in Xsuch that (F1, N,σ) is equivalent to the transformation group (Y,N, Π).

Again by Lemma 15, if F is minimal under N, then X is minimal under

T.

Let now F be universal minimal under N. Since (X, T, σ) is minimal,

there exists a compact Hausdorff, universal minimal set {X1, T, IF) (see [3])

and a continuous map / from X1 onto X such that the following diagram:

Π
X1 x T — > X1

-Y x T — > x

is commutative. We know that from the proof of Lemma 15, P(Y, T) = X,

we shall show that for each / E T Yt = P{Y, t) = p'Hh), where h = φ{t), is

invariant under N and (Yt,N,σ) is equivalent to (F, JV, Π). For z = P(y,t)&Yt

and n^N where 2/eF and / G T , we have z n = P(y,t)n = P(y,tn). Since

T is connected and N is a discrete normal subgroup of T, N must be in

the center of T. Hence, we have in = nt for t^T and n^N. It follows

that s w = P(y, tn) = P(y, nt) = P(y n, ί )eF f , this show that Yt is invariant

under N. For a fixed /εT, define / t : Y^Yt by /£(τ/) = P(y,t). It is easy

to see that /* is a homeomorphism from F onto F,. In fact, ft(y) = P(y,t) =

ΦiiVPiWf V{t)) = φith(y Vi{t)) where h = !p{t)^Vi for some ί e / and pt{t) =

Consider the following d i a g r a m

Π
F x AT — > F

Yt X AT > F ;
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For 2/GF and n^N, we have

Thus the diagram is commutative, (F,iV, Π) and (Yt9N,σ) are equivalent,

and (Yt,N,σ) is universal minimal set under N for each ί ε Γ .

Since X' is minimal under T, we have, for each x'&X'9 %' is almost

periodic under T. Since N is discrete and H is compact, T must be locally

compact. From the fact that N is a syndetic closed subgroup of T, this

implies that for each a ' ε l ' , x' is almost periodic under N (see [8]). Thus

cl(IL'(x',N)) = cl(x' - N) is minimal under iV. For each / E X , there exist

2/G7 and ίe=Γ such that f(x') = P{y,t). We know that /(c/(Π'(α?',N)) =>

c/(/(IΓ (*',#)). However, c/(/(Π'(a/,Λ0) = cl(σ(P(y,t), N)) =

cl(P(y,Nt)) = cl(P(yN,t) = cl(φίth(y.N-Mt))) = cl(φίth(y.N)), where » =

for some fe/, in 77, and pt(t)^N. Because φίΛ is a homeomorphism from

F onto p-*{h), we have c/(^iiΛ(y N)) = ^iiΛ(c/(y iV)) = φiΛ(Y) = φ^Y, h) =

P(Y,t) = Yt. Hence f(cl{n'(x',N))z)Yt. Since both f(cl(Uf(x',N)) and F,

are minimal under N in (X, 7 » , we have f(cl(W(x',N)) = Yt and /(c/(Π'(a;,iV)),

for each / ε l ' , is a universal minimal set under Λ7". It follows that, on

cl(IL'(x'9N))9 f is an one-to-one map for all a 'εX', We shall show that /

is an one-to-one map on Xf.

Let Xι and x2 in X' with the property that f{xx) = /(»2). We shall show

that x2^cl(U/{xuN)). Notice that cl{IL'(xl9N)) is a universal minimal set

under N. Since iV is syndetic in T9 there exists a compact subset i ί in T

such that T = N K and Xr = cl(W(xl9 T))=cl{xx-T) = cl(x^N)^K. It follows

that there is A e X and x'Gc/fe AT) such that χ2 = χ' k= W{x',k). There

exist ?/! and yr in F and tx and ί' in T such that f(xΐ) = P{yi,t1) and

/(*/) = ' W , /). From the fact that f{cl(Tl'(xuN)) = P(Y, tx) = F^ and /fe) =

/(Π/(aj/,ft)) = ^(/(*/),fc)=σ(P(y/,n,*) =P{yf,tfk)9 we have P(y\t/k)^P(Y,tι)

and trk^Nt1. Since x'ec^Π'fe,TV)) we have f(xf) = P(yr

9t
r)^f(cl(W(xuN)) =

P{Y,tx) and tr^Ntx. Consequently (tTίNt1 = ^ W ^ = iV and fceiV. Let

A; = n for some neiV, we have #2 == Π^α?', ft)ec/(Π(α;1,iV)). It follows that /

is an one-to-one map from X' onto X. Since X' is compact Hausdorff, /

is a homeomorphism and [X, T, σ) must be a universal minimal set under T.

Conversely, assume that {X, T, σ) is a universal minimal set under T.

Let ^ ε l and ^ = cl(σ{xl9N)). We know that (F^iVjj) is a minimal set.

There exists a universal minimal set (F, iV, Π) and a continuous map £ from

F onto Yx such that the following diagram is commutative:
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n
Y x N —> Y

Fi x N — > Fx

By the first part proof of this theorem there exists a transformation group

(X'9T,W) such that &={X',φ,H,Y,N] is a fibre bundle, {X'f T,Π) is a

universal minimal set under T, and for eachα 'eX ' c/(IF(#',iV)) is a universal

minimal set under N and equivalent to (Y,N,ΐl). Since universal minimal

set is unique up to equivalence class, there is a homeomorphism <f> from Xr

onto X such that the following diagram

X'

i
X

X

X

T

Ί
ir
—> X

.*ϊ
> X

is commutative. Let φ'1^) = xf then φ(cl(Iί'{x'9N)) = cl(φ(IL'(x',N))) =

cl(σ(xl9N)) = Fj and (F^Λ^σ) must be also universal minimal under N. The

theorem is proved.

Remark. In the classical topological dynamics, it is known (e.g. see [8])

that for any discrete flow (F, Z, Π) where Y is a compact Hausdorff space

and Z is the integer group with the discrete topology, there is an extension

to a continuous flow. Let / = [0,1], the closed unit interval. Consider

Y x l . F o r y 9 y r i n F , t,tf i n /, w e s a y ( y 9 t ) a n d ( y 9 t f ) a r e e q u i v a l e n t i f

t = 0 and ίr = 1. Let L be the closed equivalence relation induced by this

equivalence relation in Yxl. Let X = (YxI)IL. Let (y,t)L&X, r&R and

WGZ. Define I Γ : X x i ? - > X b y IΓ((y, t)L,r) = {yn,rx)L where / + r = rx + n

with Γjep), 1]. It is known that (X, R9 IF) is a transformation group. We

call (X, i?, IF) the P-extension of (F, Z, Π). It is clear that this extension is a

special case of the extension in Theorem 6, with N = Z and T = R. Hence

we have the following corollary:

COROLLARY: If {X,R, Π) is a compact Hausdorff universal minimal set under

R, then there exists an integer subgroup X of R9 Y = cl(xZ) is a universal minimal

set under Z. Conversely, if {Y9Z9U) is a compact Hausdorff universal minimal set

and (X, R, IF) is the P-extension of (Y9Z9 Π), then (X9 R9 IF) is the universal minimal

set under R.
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§8. The Whitney Sum

Let (X,T,U;X*,H,Tl*,p,f) and (X\ T, IT; X*,H, Π*,p',/) be two semi-

reducible transformation group. Let X" be the subset of XxXr consisting

of all pairs (x,x') such that p(x) = p'{xr). It is obvious that X" is closed in

XxX'. Define p : X" -> X by p1(x,xf) = x, p2 : X" -+ X' by j>2(x,x') = x',

p" : X"->X* by p " (»,&') = ppifax') = p 'p 2 te »'), Π" : X" x T->X" by

Π"((&,a;'), t) = (Π(a, 0, Π'(α/, t)) = (&*,&'/). We shall show that p(xt) = p'(&'f).

By the semi-reducibility, we have

P(xt) =

It is easy to verify that (X", T, Π") is a transformation group. We shall

show that the following diagram is commutative,

Π
X" x T — > X"

*"\ 4 π* I*"
X* x H — > X*

Let {x,x')eίX", ί e Γ . We have

Π'^α, x'), t)) = (xt, x't), φ"U"((x, x'), t) = pff{xt, x't) = φ(xt)

H*(p"(x, *'), fit)) = Π*(p(^), /(/)) = P(ΐl(x, t)) = p(xt).

Hence it is semi-reducible.

DEFINITION 6. We call this transformation group (Xff, T, Π") is the

Whitney sum of (X, T, Π) and (Xf, T, IT). This definition is same as the

Whitney sum of two fibre bundles (e.g. see [11]).

LEMMA 16. Let (X, T, Π) and (X'9 T, Π") be two transformation group. Then

if both are semi-reducible, so is its Whitney sum.

THEOREM 7. Let (X,T,U; H,p,f) and (X,T,W; H,p',f) be two reducible,

and separable transformation groups where f : T-+H is a group covering and X and

Xf are compact Hausdorff spaces. Then its Whitney sum is separable if and only if

the cartesian product Y" of fibres Y and Yr is minimal under N, where N = f'Ke).

Proof. From Theorem 5 (X,p,H) and (Xf,p',H) are fibre bundle, it

follows that their Whitney sum {X",H,p') is also a fibre bundle with H as

its base space, Y" = YxY' as its fibre, iV as its group and N acts on Y"
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induced from actions of N on Y and Yf. The theorem is now a consequence

of Lemma 15 and Lemma 9. However, we give a direct proof here. Let

Y" be minimal under N. Then for each h<=H, ((p'TW.W Π") is minimal

under N. We know that both Y and Yr are minimal sets under N, for

(y,y')ezY", where y^Y and 2/'eF', we have cl{U"((y,y'),N)) = cl(U{y,N)x

cl(U(y'9 N)). Consequently, if {z,z') <£ cl(TL"(y, y')N) in I " , then both

zφcl(U(y9N)) and z' $ cl{TL'(y',N)). Say 2tc/(Π(^,iV)) then p(z) ψ p(y).

From p(z) = p'(z') and p{y) = pf(yf), we have p!{y')Ψpr(z') and z'φc/(IΓ(2/,TV)).

It follows that p"(s, z') = p(z) ^ p(y) = p"{y, 2/'). This show that [X", T, Π")

is separable. Conversely, let {X', T, Π") be separable, then if {z, z') $

cl{Il"((y,yf),N)) we have j>"(z,z') ¥= p"{y,yf) or p{z)ψp{y) and p'(z') ^ p'(y')-

It follows that zef=c/(Π(y,iV)) and z' $cl(TL'(y',N)). We have (2 ,^) ί

cl(U(y9N))xcl(Tl'(y',N)) and c / t Π ^ ^ ^ i V ^ c / t Π ^ ^ j x c / t Π ' ^ i V ) ) . It

is obvious that cl (Π;/ ((y, y!\ N)) c c/ (Π (2/, Λ0) x c/ (Πr {yf, N)). Hence

cl(TL"(y,y'),N)) = c/(Π(y,iV)) x c/CΠ^',/^)). Since both cl(U(y,N)) and

cl(W(yf,N)) are minimal, this implies that c/(Π(y,JV))=F and c/(Π/(2//,iV)) = F/

for all ί/GF and y'eY', we have c/(Π//((?/,ί//))iV)) = F x Γ = F r / for all

{y,yr)<E.Yrr and it must be minimal. The theorem is proved.

Remark. This theorem shows that the cartesian product of two minimal,

but not totally minimal, real flows is not minimal, if they have a same

integer subgroup satisfying the property (̂ 4), because, by Theorem 7, at

most its Whitney sum is minimal.
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