
DIRECT SUMS OF PARTIAL ALGEBRAS AND FINAL 
ALGEBRAIC STRUCTURES 

JÛRGEN SCHMIDT 

Slominski (9), as well as the author (8), gave a descriptive, i.e., non-
category-theoretic, définition of the direct sum of partial algebras, i.e., the 
co-product in the category of partial algebras (A,f), where / = (/*)*€/, 
ft: dom ft —» A, dom fi C AKi, of fixed type A = (Ki)i€I. In the case of total 
absence of fundamental constants, i.e., K{ 9e 0 for all indices i Ç I, the 
direct sum (A,f),f = (fi)iei1 of partial algebras (At,ft),ft = (/"«*) i€/, t G T, 
may be described loosely as the disjoint union A = SAt = \J{t} X Au where 
the sum operations ft are only operating, in a self-evident manner, on argu­
ment sequences (of type Kt) all members of which are within one and only 
one of the classes {t} X A t. Even in the presence of constants, Kt = 0 for 
some i 6 / , this description of the partial direct sum may remain correct; in 
general, it becomes false. The formal reason: the empty argument sequence 
is a sequence in any of the classes {t} X A u indeed in any set M. Hence, 
in the case that there are two different indices t such that the nullary operation 
ftt is non-empty, i.e., d o m / H = {empty sequence}, or briefly, fti £ A t (by 
the usual identification of a nullary operation with its unique value), the 
nullary sum operation ft (which should be an element of A = SA t) does 
not know how to decide on one or the other of the possible values (t,fti)> In 
other words, we have to identify (s,fsi), (t,fti) when s ^ t, and our de­
scription of direct sum as disjoint union no longer remains true. On the 
other hand, the direct sum of partial algebras, or partial direct sum (as we 
may call it), always exists. One might take this from general category theory 
assuring complete categories of some sort, e.g., categories of models, to be 
co-complete, i.e., their duals to be complete. Still, it is unnecessary to 
use a general argument of this kind that fails to give information on the 
concrete structure of direct sum in our relatively concrete case of partial 
algebras. In fact, algebra itself immediately remedies the failure described 
above. 

This failure represents one more striking example of the anomalies of the 
empty set, which (far from being a purely dogmatic affair) are responsible 
for many significant mathematical facts (as is shown in this paper). The author 
had always been so certain that he would never overlook the perversities of 0 
that something like this was bound to happen. Thus it remains only to admit 
the fault and to correct it in the present paper. 
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1. F ina l a lgebraic s t r u c t u r e . We s ta r t from the specialization to part ial 

algebras of a general concept introduced by Bourbaki (1). 

T H E O R E M 1. Let (Auft) (t £ T), (B, g) be (partial) algebras of type A, and 

let cj)t map set At into set B. Then the following statements are equivalent: 
(i) g is the poorest algebraic structure on set B such that all<f>t: (A t, f t) —>(B,g) 

are homomorphisms ; 
(ii) for any index i £ I, any sequence b £ BK\ any element b £ B: gi(b) =b 

if and only if 4>t(cLt) = b, <j>t(dt) = b, and fti(at) = at, for some t £ T, some 
sequence at 6 AK\ some element at £ At; 

(iii) for any (partial) algebra (C, h) and any map \p of set B into set C: 
x//: (B, g) —> (C, h) is a homomorphism if and only if allxf/o <j>t: (A uft) —» (C, h) 
are homomorphisms. 

Proof, (i) => (ii). Necessity follows by definition, in fact, is the definition 
of homomorphisms. For sufficiency, we introduce a new algebraic s t ructure 
g* of type A into set B by the definition: 

g*(b) = o if and only if the condition of (ii) holds true, i.e., if <t>t(dt) = b, 

<t>t(at) = by and/H(et*) = au for some /, at, and at. 

This definition is independent of the choice of /, 21*, and at since all 
(j>t\ {A uft) —> (J3, g) are homomorphisms. Still, all 4>t\ (At,ft) —> (B, g*) are 
also homomorphisms, which gives g <Z g* by hypothesis, i.e., gi(b) = b 
implies g*(b) = b. 

(ii) =̂> (iii) is trivial, (iii) =^> (i) is the special case of the general conclusion 
drawn by Bourbaki (1). 

According to Bourbaki, we call g the final algebraic structure on set B 
induced by the family of maps <f>t: (At,ft)—>B. Condition (ii) gives an 
explicit description of this s t ructure ; it s tates t h a t the <j>t are homomorphisms 
such t h a t 

\}ttT<i>t(àomfH) = domgi 

(for general homomorphisms, only C holds t rue) . In the special case of a 
single m a p <f>: (A,f) -^>B, we may call <£: (A,f) -+ (B, g) a final homomor­
phism. In this case, B — im </> has to be a discrete relative algebra of part ial 
algebra (B,g); to make the notion of final homomorphism free from this 
undesirable relativity, we call <£ a strong homomorphism if 0 is a final homo­
morphism from algebra A onto relative algebra im <j> C B (Slomifiski (9) also 
demands im <j> to be closed, i.e., a subalgebra of B). So in the case of on to 
maps, "final" and "s t rong" is the same: this is the obvious analogue of 
strongly continuous functions in the sense of Alexandroff-Hopf. 

As an answer to the question of the existence of this final s t ructure, we 
have the following corollary. 

COROLLARY. Let <t>t map algebra (At,ft) into set B, for all t Ç T. Then the 
following statements are equivalent: 
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(i) the final algebraic structure g on B exists] 

(ii) for any index i £ I, any indices s} t G T, any sequences as G As
Ki, 

at G At
Ki, any elements as G As, at G A t: if fsi(as) = aSJ fti(at) = au and 

<t>s(as) = <t>t(at), then </>8(a8) = <t>Mt)\ 
(iii) there is an arbitrary algebraic structure h on B {not necessarily the final 

one) such that all 4>t: (At,ft) —> (B, h) are homomorphisms. 

Condition (ii) is the independence of the choice of t, at, and at in the 
definition of g* in the proof of Theorem 1 and, as has been used in this 
proof, it follows from the hypothesis t h a t all <t>t are homomorphisms: (iii) => 
(ii). By (ii), we m a y define an algebraic s t ruc ture g* on set B as in the proof 
of Theorem 1; then g = g* is the final s t ruc ture by Theorem 1 (ii): (ii) => (i). 
(i) => (iii) is trivial. 

In the case of a single m a p 0: (A,f) —> 5 , condition (ii) of this corollary 
s ta tes t h a t the associated equivalence relation, R = R^ = <jrlo<j>} has to be 
a congruence relation of algebra (A,f). In the general case as well, all equiva­
lence relations Rt = 4>flo<j)t have to be congruence relations; this is the 
special case s = t of condition (ii), hence not sufficient for (ii) if \T\ ^ 2. 
Still, if 

(*) the family of im <j>t is pairwise disjoint, 
condition (ii) implies t h a t also 

(**) the family of index-subsets It:= {i\ Kt = 0 , / ^ non-empty} is pairwise 
disjoint. 
Conversely, if all Rt are congruence relations, (**), together with (*), implies 
condition (ii) ; hence, under the hypothesis (*), (ii) is equivalent to (**) and 
the condition t h a t all Rt are congruence relations. Hence, under the hypo­
thesis (*) and the injectivity of the </>t, Rt = idAt, (ii) is equivalent to (**). 
This is the phenomenon described in the int roduct ion; let us again note 
t h a t (**) holds in the special case if all It themselves are empty , i.e., if all 
algebras (At,ft) are wi thout constants and, in particular, if all Kt are non­
empty , i.e., if type A is wi thout constants . 

T h e typical case of injective maps <j>t\At—^B with pairwise disjoint 
images occurs if B — SAt, <f>t = iu the canonical injections it{a) := (t, a) 
(t G T, a G At). Hence, if in this case we have algebraic s t ructures ft on 
sets A t, the final algebraic s t ruc ture g on the disjoint union B exists if and 
only if (**) holds, and is defined (according to Theorem 1) by 

gi((tKj aK) | K G Kt) := {t, a) if and only if tK = t, for all 
K G Ku and fti(aK\ K G Kt) = a; 

(B, g) then is the partial direct sum of algebras (A uft) as defined by Slominski 
(9) and the au thor (8). 

2. T h e g e n e r a l part ia l d irec t s u m . Le t us consider the case of com­
pletely arb i t rary summand algebras (Auft), i.e., (**) m a y or m a y not be 
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fulfilled. We pass to the reduced type A* := (Kj)j(zj, J : = {j\ j Ç / , Kj ^ 0}. 
The corresponding reduced algebras (At,ft*), where /<*:= (ftj)j^j, fulfil (**), 
and we may construct their partial direct sum (J3°, g°), with canonical in­
jections i°t: At—>B°, as described above. Let R be the congruence relation 
in (B°, g°) generated by the set of all pairs 

such that Kt = 0,fSi,fti non-empty. There is (see Corollary above) a strong 
surjective homomorphism p: (B°, g°) —> (B, g*), where (B} g*) is a partial 
algebra of type A*, such that p induces R (to obtain this canonically, take 
B = B°/R, p the associated canonical projection). Besides, (**) states 
that the above pairs ((s,/^)> (l,ftù) belong to idBo, i.e., that R = idBo ; 
hence we may take p = idBo, (B, g*) — (B°, g°): in case J = I, i.e., type A 
without constants, (B, g*) is our old partial direct sum. In case J 9^ I, with 
any index i £ I — J such that there exists t Ç T with non-empty nullary 
operation / H £ A tJ we associate a non-empty nullary operation in B, 

gi:= p(t,fti) : = (Poi\)(fti) 

(the definition being independent of the choice of index t £ T by construction) ; 
in all other cases, nullary operation gt shall be empty. (In case (**) and 
p = idfiO, this definition of gt coincides with the old one given at the end 
of (1).) We consider algebra (B,g), where g = (#*)*€/> and the maps 
it := po i°t: A t —> B, which are homomorphisms not only in the reduced 
sense (A t,f*t) —» (B} g*), but also with respect to constants, (A t,ft) —* (B, g). 
Clearly, the it need no longer be injective, but even if they were, they need 
not be strong as we shall show by a striking example. Let us first state the 
following theorem. 

THEOREM 2. The partial algebra (B, g) as constructed above, together with 
homomorphisms it: (Auft)^>(B,g), is the direct sum of partial algebras 
(Au ft) in the category of all partial algebras; g is the final structure for the iu 

and the it cover B, i.e., U im it = B. 

The proof is an immediate consequence of the construction. Let 
Xt- (At, ft) —» (C, h) (t Ç T) be homomorphisms. There is exactly one map 
f°: B° -> C such that ^ oi\ = xt(t € T), and since all Xt'. (At, /*,) -+ (C, h*) 
are homomorphisms and (B°, g°) has the final structure for the i°t, 
xf/0: (B°, g°) —> (C, h*) is a homomorphism. But if Kt = 0, fti non-empty, we have 
^°(ljfti) = Xt(fti) = hi', hence congruence relation R is contained in the 
one induced by f°. So if/0 being surjective, there is exactly one map \f/: B —» C 
such that f o p = \p°, and since f°: (B°, g°) —» (C, h*) is a homomorphism 
and (B, g*) has the final structure for p, \j/\ (B, g*) —> (C, A*) is a homo­
morphism. But \p also respects constants: if Kt = 0 and / ^ non-empty, 
we obtain f(gO = yp(p(t,fH)) = V(hfti) = ht; so f: (5 , g) -> (C, A) is a 
homomorphism; moreover, we have f o i f = \//Opoi0

t = \l/°oi°t — xt- Let 
\l/f: B-^C be an arbitrary map such that \[/' o it = x* (such that all 
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\p' o it: (At, ft) -^ (C, h) are homomorphisms). From \pf o p o i°f = x*> we obtain 
i// o p = \p° by the uniqueness of map \p°, hence yf/f = \[/ by the uniqueness 
of map ^. So the homomorphism \[/\ (B, g) —> (C, h), such that \poit = xt 
(t G T), is unique; hence the family of the it: (Auft) —> (5, g) (t G r ) is 
the direct sum of the (At,ft) in the category of all partial algebras; more­
over, g is the final structure for the it. The covering property of the it is 
quite clear: \Jit(At) = p(\}i\(At)) = p(S°) = B. 

Again, we call (B, g) the partial direct sum of algebras (At,ft). Concerning 
the homomorphism \f/: (B, g) —» (C, h) as constructed in the proof of Theorem 
2, we have the following. 

ADDITION 1. The following equivalences hold true: 
(i) for any single index t £ 2": ^|im ^ is infective if and only if it and xt 

induce the same congruence relation) 
(ii) \f/ is surjective if and only if the xt cover C, U im Xt = C; 

(iii) \p is strong if and only if relative algebra (J im xt C C has the final 
structure for the x «• 

(i) is nothing but a simple fact from general set theory: note that map 
it\ At-+\mit is surjective, and (^| imit)oit = xt- 00 and (iii) rest upon 
the equation 

i m * = HB) = *(\Jit(At)) = \Jxt(At) = U i m x i . 

In particular, if we restrict considerations to subset im \f/ C C, the alge­
braic structures k of im \p, such that \[/: (B, g) —-> (im *, &) is a homomor­
phism, are precisely those k for which all xf- {Au ft) —* 0 m *> &) are homo­
morphisms, as (5 , g) has the final structure for the it\ moreover, \p: (B, g) 
—> (im *, ko) as well as x«- {Auft) ~> 0 m */s ^o) is a homomorphism, where 
&o is the relative algebraic structure (restriction) of h to im xj/. 

We have already proved the main part of the following. 

ADDITION 2. The following statements concerning the partial direct sum are 
equivalent: 

(*) the imit are pairwise disjoint; 
(**) the index-subsets It = {i\ Kt = 0, fti non-empty] are pairwise disjoint. 

If this is the case, then the it are infective and strong. 

It only remains to note that, more generally, if some partial algebra (B, g) 
has the final structure for some family of homomorphisms it: (A t,ft) —> (B, g) 
and (*) holds, then the it are strong. 

Let us consider the example A0 = Ai = B = {0, 1} ; let / : B -—> B be the 
non-trivial permutation, ft := f\{t\ (t = 0, 1). Then 

{B, ( O , / , , / ) ) ^ ^ - - ^ (B, (0 , / , / ) ) 

is a direct sum representation of partial algebras (of type A = (0, 1, 1)) 
( 3 , ( 0 , / „ / ) ) ( * = 0 , l ) ; for if Xt: (B, (0 , / , , / ) ) - (C, (c,g,h)) (t = 0, 1) are 
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homomorphisms, then xo = Xi ( = ^)« Note t h a t both universal homomor-
phisms it are bijective, bu t fail to be strong. 

3. Genera l i zed a m a l g a m a t e d d irect s u m s . In this section, we wish 
to solve the problem when the homomorphisms it\At-^B in a partial 
direct sum representation are injective. T o make the si tuation clear, let us 
compare our problem with the analogous problem for full (complete) alge­
bras. As is well known (cf. Kerkhoff (5)) , and may easily be derived from 
the unrestricted existence of the part ial direct sum (cf. Srominski (9) and 
Schmidt (8)) , the direct sum in the category of full algebras, which we may 
call the full or complete direct sum (Kerkhoff (5): absolut freies Produkt), 
(also) always exists. Let it: A t —» B be a full direct sum of full algebras At 

(t G T), then, as is well known (5), the it\ A t —> B are injective if and only 
if their restrictions it\Ot: 0t—>0 also are, where 0t and 0 are the smallest 
subalgebras of At and B respectively, i.e., the subalgebras generated by the 
empty set 0. In fact, in this case the it\Ot: Ot—>0 are isomorphisms, and 
it: At-^B may be considered as an amalgamated direct sum (with amalgam 
0) in the classical sense, i.e., as a co-fiberproduct of the (it\0t)~

l\ B -^ A t. 
Still in the case of part ial algebras, the situation is more complicated, because 
here the it\Ot: Ot—>0, even if injective, need neither be bijective nor strong 
(cf. the example given above) . Hence, a more general concept of amalgamated 
direct sum than the classical one becomes necessary; we may take it as well 
from the theory of general categories. 

T h e general si tuation then is as follows. Instead of the inclusions 01 C A u 

we consider completely arbi t rary (homo)morphisms </>,: Bt —> A t; instead of 
the restricted natural maps: it\0t: Ot—> 0, we consider completely arb i t rary 
(homo)morphisms (3t: B * —> B, A u B UB being arbi t rary objects of a category 
(e.g., t h a t of part ial algebras) §1. If §1 is co-complete (right-complete), i.e., if 
21-direct sums (co-products) as well as co-equalizers (difference co-kernels) 
exist, then, as is well known, direct limits exist for all "smal l" diagrams [cf. 
Freyd (4), Mitchell (6), and Felscher (3)]. In particular, this is the case 
for the diagram 

arising in our si tuation: there is an object A and (homo)morphisms 
at: At—> A as well as <f>\ B —> A such tha t , for all t G 7\ the diagram 

•T 

B.—JT-+B 
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commutes and is universal with respect to this proper ty . In fact, this special 
direct limit, which we may call the generalized amalgamated direct sum, m a y 
be constructed as follows: Let a°t: At—> A0 and <j>°\ B —> A0 be the direct 
sums of the A t and B. Then there is IT: A0 —> A such t h a t 

( + ) 7rOa\o(j>t = irO(t)0ol3t for all t £ T, 

and T is universal with respect to this proper ty . T o obtain this ir directly 
from direct sums and co-equalizers (of pairs and morphisms) , one might take 
the direct sum fi°t: Bt—>B° of the B t. Then there is exactly one p: B° —> B 
such t h a t pofi°t = fit for all t £ T, and exactly one <r: B°-^ A0 such t h a t 
ao (3°t = a°to <t>t for all 2 £ T. Then for completely a rb i t ra ry IT: A0 —* A, ( + ) 
is equivalent to 

( + + ) 7TO(7 = 7 T O 0 ° O p , 

showing t h a t we may only select T as the co-equalizer of the pair of (homo)-
morphisms a and 0 ° o p : B° —* A0. In the concrete case of part ial algebras, 
one might simply take A := A°/R, where R is the congruence relation in A0 

generated by the set 

i ( ( a ° « o * t ) ( i ) , WoP,)(b))\te T,b £ Bt], 

and T : = the na tura l s trong surjective homomorphism onto this quot ient 
algebra A°/R. Finally, defining 

a , : = 7 r O a ° „ 0 : = w o $°, 

we obtain the universal (homo) morphisms of our generalized amalgamated 
direct sum. 

In the classical case (as quoted above) , the /3t: Bt—*B are isomorphisms. 
Then ato<j)t = (j>ofit if and only if ato (<j>tofit~

l) = <£, making clear t h a t 
the universal (homo)morphisms at of the generalized amalgamated direct sum 
const i tu te nothing bu t the co-intersection ("pushout" , co-fiberproduct) of the 
cj)to Pr1: B —> A t, i.e., the classical amalgamated direct sum (with amalgam 
B). Concerning part ial algebras, we have the following theorem. 

T H E O R E M 3. The generalized amalgamated partial direct sum A has the final 
structure for the universal homomorphisms <xt:At-*A and <j>\ B —> A. If 
"amalgam" B has the final structure for the given homomorphisms fit: Bt—^B, 
then so has A for the at: A t —> A alone. 
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The first statement is an immediate consequence of the construction given 
above, since partial direct sum A0 has the final structure for the a°t: A t —» A0 

and </>°: B —> A0 (Theorem 2), and A has the final structure for T: A0 —» A. 
Let us now consider an arbitrary map yj/: A —> C, C a partial algebra, such 
that \poat: At—>C is a homomorphism for all / G 2". Since \l/o<j>ofit = 
\poato <j>t} if B has the final structure for the $t\ Bt-+ B, xpo </>: B —» C is 
a homomorphism; so ^: 4̂ —> C is a homomorphism as A has the final struc­
ture for the at:At—>A together with <f>\ B —> A, showing that the latter 
statement remains true if we disregard <f>. 

If we call the properties of the f3t: Bt—*B local ("in the small"), those 
of the at\ At—>A global (uin the large"), the second part of Theorem 3 is 
a typical conclusion from the small to the large (whether one may draw 
the opposite conclusion in general remains an open question). Another simple 
conclusion of this kind is the following. 

ADDITION. If the small homomorphisms /3t: Bt—>B cover B} U im/^ = B, 
then so do the large homomorphisms at\ At—>A, \Jimat = A. 

For by Theorem 2, A = irA0 = 7r(</>°5 U l)a°tAt) = <\>B \J [}atAt = 
0 l l / 3 ^ U \JatAt = \Ja^tBtU [}atAt= [}atAt. 

(In an arbitrary category 21, one can conclude: if family ((3t)teT is epi-
morphic in the sense that for all morphisms x> X'• B —> C into arbitrary 
objects C, x ° Pt = X ° fit for all t G T implies % = x'> then family (at)teT is 
epimorphic.) Moreover, if family (filter is an 21-direct sum, then family 
(<xt)t£T is an 2I-direct sum. 

4. Injectivity of t he at. An important conclusion from the small to the 
large is closely connected with an internal characterization of the generalized 
amalgamated partial direct sum, which gives complete insight into its interior 
structure in this special case. (A complete internal characterization of the 
generalized amalgamated partial direct sum in the general case remains an 
open problem.) We begin with the following theorem. 

THEOREM 4. Given commutative diagrams of homomorphisms of partial al-

At y A 

Bt yB 

gebras, where the ft t cover B,theat cover A,<t>as well as the restrictions at\(At — <t>tBt) 
are injective, and A has the final structure for the at and </>. Then, if 

(i) at(At-4>tB1) CA -<j>B (teT), 

(ii) aaAsr\atAtC<\>B (s t* t, s, I € T), 
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then at: At—> A, <£: B —> A is the generalized amalgamated partial direct sum 
of pt:Bt^By <t>t:Bt->At. 

Proof. We consider homomorphisms yt:At—>C, x- B —> C such that 
xofit = 7t0 4>t for all / £ T\ we have to find a unique homomorphism 
\j/: A —+ C such that \f/oat = yt for all t £ 2", and ^ o 0 = x- The uniqueness 
of \p is clear since the at cover ^4. We now define \p := U ytoat~

l, i.e., 

^(a) = 7«(^«) Of a = ««(««)) f° r s o m e * € r , a t 6 4̂ „ 

where dom ^ = A since the o^ cover A, and ^(a) is unique by (i), (ii), and 
the injectivity of the at\(At — <j>tBt) and <j>. By definition, \f/oat = yt, hence 
also \po <f> = x since the j3t cover B. In particular, the \l/oat as well as \j/o <j> 
are homomorphisms, so, since A has the final structure for the at and 0, 
^ is a homomorphism, concluding the proof. 

Theorem 4 will be used in the proof of Theorem 5. 

THEOREM 5. Let at:At-^A, 0: B —> A be the generalized amalgamated 
partial direct sum of pt: Bt—>B, <j>t: Bt—>A, where the /3t are infective and 
cover B, the <f>t are isomorphisms onto (closed) subalgebras <j>tB t C A t. Then 
the at are infective and cover A, $ is an isomorphism onto the (closed) subalgebra 
<j)B C A, and (i), (ii) of Theorem 4 hold. 

Proof by construction of a partial algebra A' and homomorphisms a t. 
A t —> A', <f>': B —> A' such that all hypotheses of Theorem 4 hold true, even 
in the stronger form that a t (not only the restriction to At — <j>tBt) is in­
fective for all t G T, and that <£' is not only injective but an isomorphism 
onto a subalgebra tfB C A'. Then by Theorem 4, a t\ At—> A', </>': B -> A' 
will be another model of the generalized amalgamated partial direct sum; 
hence there will be an (unique) isomorphism co: A —± A' such that oooat=at 

for all t G T, also coo 4> = <£', showing that the properties established by con­
struction for the a't and <// also hold true for the at and <£ of the present 
theorem. 

Writing A instead of A', at instead of af
 u </> instead of <£', we start from a 

disjoint union A of sets At — <t>tBt and B, with associated injections 
yt: At — (frtBt—* A and 4>: B —> A. One may even construct A in such a manner 
that <t>: B —> A is the inclusion. Defining at := yt^J (</> o)/3t cxfrr1 (t f T)} 

already the non-algebraic statements as listed above hold true: the at are 
injective since the fit and <pt are, the at cover A since the $t cover B, 4> is 
injective, the diagrams of Theorem 4 commute, and we have (i) and (ii). 

In order to show that in A the final structure for the at and 4> exists, we 
have to verify condition (ii) of the corollary of Theorem 1. First, let 

as(as) = at(at), fsi(as) = aSJ /n(a«) = &t 

(s, t G T, i G / , Cts, at sequences of type Kt in AS} Au respectively, fsi, fti 

the fundamental operations in algebras As, At)\ we have to show that 
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oisifs) = oit(at). If s = t, ct5 = a* since at is injective; hence as = at. If 
s ^ t, sequence as is in <I>S(BS), at in 4>t{Bt), as = 0 , (6 , ) , a, = 0«(b«)» where 
bs, b* are sequences in Bs and 5*, respectively. Since (j)s(Bs) and <t>t(Bt) are 
closed subsets of ^4,, At, respectively, we have as G <I>S(BS)1 at G <j>t(Bt); 
as = 4>8(b8), at = 4>t(bt), where bs G J3S, bt G 5 t . Moreover, gs*(b,) = bs, 
gti(bt) "= bt (gsu gti the fundamental operations in algebras BS1 Bu re­
spectively), since $ s , <j)t are isomorphisms onto cj)s(Bs), <f>t{Bt). Hence 

gi(Ps(fis)) = Ps(!>9), gtiPtdt)) = Pt(bt) 

(gi the fundamental operation algebra B) since ps,Pt are homomorphisms. 
From 

Ps(bs) = (4>o/3s)(bs) = (aso<l>s)(bs) = a , (a s ) = a , (a , ) = . . . = pt(bt), 

we obtain 

a 5(a 5) = fco^)W = 0,(6.) = £,(f t (b,)) = gt(Pt(bt)) = . . . = ai(a«) . 

Hence the final s t r u c t u r e / 0 for the at exists: 

f°i(a) = a if and only if at(at) = a, at(at) = a, ftt(at) = au for some 
£ G T, some sequence a*, some element at in 4̂ z. 

If, in particular, a and a are in B ( = <j>(B)), again at and a* are in <t>t(Bt), 
at = <t>t{bt)cLt = (j)i(bt); again gn(b,) = bt, and hence 

g<(a) = gi(at(at)) = gi((ato<t>t)(bt)) = ^<(/3£(b£)) = <*,(a,) = a, 

showing t h a t / ° i ( a ) = a, a, a in B implies gt(a) = a. So by the definition 

fi"f°tVgt (it I), 

we obtain the final s t r u c t u r e / for the at, together with inclusion <£: B —> A, 
and the given algebra (B, g) becomes a relative algebra of (A,f), i.e., inclu­
sion 4> is a strong homomorphism. 

Finally, B = <j>(B) is a closed subset, i.e., (B, g) is a subalgebra of algebra 
(A J). For let i Ç J, Û £ BK\ and / , ( û ) = a Ç 1 If g*(a) = a, trivially 
a G B. If / ° i (a) = a, i.e., at(at) = a, a t(a«) = a, fti(at) = au for some 
t £ T, etc. , a* again is a sequence in subset <j>t(Bt) (ZAt, and since this 
subset is closed, we have at G (j>t(Bt), at = <t>t{bt), with bt G Bu hence 
a = at(at) = (ato $t) (bt) = /3t(bt) G -S, completing the proof of Theorem 5. 

Note t h a t the closure hypothesis for the 4>tBt (Z A t is indispensable. (Cf. 
the trivial bu t striking counter-example: Let at:At—>A be the part ial 
direct sum of partial algebras Au and define Bt = B=01(3t = <j)t = (l) = 
empty homomorphism (viz., the identical automorphism of partial algebra 0, 
the inclusion homomorphism of the empty relative algebra into A t or A, 
respectively); then a t: A t —> A together with <f>\ 0 —» A is the generalized 
amalgamated partial direct sum of the ($t: 0 —* 0 and <j>t\ 0—*A t .) Natura l ly , 
the at need not be injective (this was jus t the point where our problem 
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arose), and this can only happen if 0 is not closed in at least one of the A u 

since all other assumptions are fulfilled in our example. 
From Theorems 3,4, and 5, we obtain the following corollary. 

COROLLARY. Let /3t: Bt-^>B be injective homomorphisms that cover B, and 
let <l>t:Bt—>At be isomorphisms onto (closed) subalgebras <j>tBtC_At. Then 
at:At—>A, 0: B —> A is the corresponding generalized amalgamated partial 
direct sum if and only if 

(1) A has the final structure for the at and 0; 
(2) the at are injective and cover A, 4> is infective) 
(3) the diagrams of Theorem 4 commute) 
(4) (i), (ii) of Theorem 4 hold. 
In this case, 0 is an isomorphism onto a (closed) sub algebra <j)B C A. 

Here we have an internal characterization (description) of the generalized 
amalgamated partial direct sum, at least in a particular situation. Note that 
at least in this particular situation one may conclude, conversely to Theorem 
3, that if A has the final structure for the at alone, then amalgam B has the 
final structure for the (3t) the easy proof is left to the reader. Another addition 
follows. 

ADDITION. For arbitrary s £ T, as: As —» A is strong if and only if 0S: Bs-^ B 
is. 

For if as:As—>A is strong, then so is 4>of3s = aso 05: Bs —» A, hence 
also fis'- Bs —> B, since all homomorphisms are injective, 0 and 05 even strong. 
Conversely, let f3s: BS—>B be strong. Assume ft(as(as)) = as(as) for some 
i G I, some sequence as, some element as in As) as as is injective, we have 
to show that fsi(as) = as. A has the final structure for the at and 0; so 
as(as) = 0Lt(at), as(as) = at(at), and fti(dt) = &u for some t G T, some 
sequence at, some element at in Au or as(as) = 0(b), as(as) = 4>(b), and 
gi(b) = b, for some sequence b, some element b in B. In the first case, if 
5 = /, our proof is complete since as is injective. If 5 9e t, as(as) and as(as) are 
in <t>(B)t again as(as) = 0(b), as(as) = </>(&), for some sequence b, some 
element b in B. Moreover, since 0 is strong and injective, gt(b) = b, and 
we are in the second case. In this case, cts = 0s(bs), as = 4>s(bs), for some 
sequence b5, some element bs in Bs. We obtain 

0(/3,(6,)) = a,(0,(b,)) = as(as) = 0(b); 

hence /3s(bs) = b since 0 is injective, and equally (3s(bs) = b. Moreover, 
since ps is injective and strong by assumption, gSi(bs) = bs, which gives 
fsi(&s) — as since 0S is a homomorphism, completing the proof of the addition. 

5. Application to partial direct sums (the application we wanted). 

THEOREM 6. Let at\ A t —> A be the partial direct sum of the A t, and let the 
B t C A t be (closed) subalgebras. Then the following statements are equivalent: 
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(i) the at are injective; 
(ii) the fit - = &t\B t are injective. 

Moreovery for an arbitrary partial direct sum fi°t: Bt-+B° of the Bu the above 
statements are equivalent to 

(iii) the fi°t are injective. 
In this case, im fit is a partial direct sum of the B t, and 
relative algebra B (Z A is closed, i.e., a subalgebra of A. Moreover, 

(iv) at(At - Bt) CA - B, asAsr\atAt C B for all s,t £ T, s 9* t. 

Proof, (i) =» (ii) is trivial, equally, because of the universality property of 
the partial direct sum, (ii) => (iii). It remains to prove (iii) =» (i) as well as 
the additional statements. Let 4>t: B t —» A t be the inclusion homomorphisms; 
then there is a (unique) homomorphism <t>°: B° —» A such that 0° o fi°t = 
ato 4>t = fit for all t £ T, and at: A f —> A together with </>°: B° —» A becomes 
a generalized amalgamated partial direct sum of the fi°t: Bt —* B°, <j>t: Bt-+ At. 
Since the <j>t are isomorphisms onto subalgebras B t C A t, the at are injective 
by Theorem 5. By Theorem 5, <£° is an isomorphism onto subalgebra 

0°£° = </>*[) p°tBt = [}fitBt = B. 
Hence also fit: Bt —> B is a partial direct sum, and at: A t—> A, together with 
inclusion homomorphism <\>\B-^>A, is a generalized amalgamated partial 
direct sum of the fit: Bt—>B, <f>t: B t —> A t. Hence by Theorem 5, (i) and 
(ii) of Theorem 4, i.e., (iv) of the present theorem holds, completing its 
proof. 

ADDITION. Let at\ A t —> A be the partial direct sum of the A t, all at injective. 
Then for arbitrary s £ T, as is strong if and only if as\Bs is, where Bs is some 
(closed) subalgebra of As. 

Proof. Select, for all t ^ s, subalgebras B t (Z A t. By Theorem 6, fit : = at\Bt: 
B t ^ B := [} atBt (Z A is a partial direct sum. Again, at: A t -^ A , <j>: B—>A 
is a generalized amalgamated partial direct sum of the fit\ B t —> B , (f>t: B t—>A t, 
where <j> and the <j)t are the inclusion homomorphisms. By the addition to 
Theorem 5, the asserted equivalence holds. 

Again, together with Theorems 2 and 4, Theorem 6 leads to a corollary 
similar to that of Theorem 5. 

COROLLARY. Let at: At—>A be homomorphisms such that their restrictions 
fit:=at\Bt to certain (closed) subalgebras Bt(ZAt are injective. Then 
at: A t —> A is a partial direct sum of the A t if and only if 

(1) A has the final structure for the at; 
(2) the at are injective and cover A ; 
(3) fit:Bt-*B := \]\mfit is a partial direct sum of the B t ; 
(4) (iv) of Theorem 6 holds. 

Note that if A has the final structure for the at, then this trivially remains 
true if we add an arbitrary homomorphism into A, e.g., the inclusion homo­
morphism 0: B —> A. So by Theorem 4, if the conditions of our corollary 
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hold, at: At-^> A, together with 0: B-+A, becomes a generalized amalgamated 
partial direct sum of the fit:Bt-^B and the inclusion homomorphisms 
<t>t: B t—+ A t) hence, as (it: B t—+ B is a partial direct sum, so is at: A t —> A, 

Unfortunately, this corollary does not give any real insight into the structure 
of the partial direct sum (as the corollary to Theorem 5 did for the generalized 
amalgamated partial direct sum) ; rather than giving an internal description, 
the present corollary only localizes the partial direct sum property, and as 
the example below shows, not much can be done about it. 

Naturally, this localization obtains its highest possible efficiency if we 
select as subalgebras B t the smallest subalgebras 0t, those generated by the 
empty set 0. If we do so, relative algebra B = \J at0t (which ought to be a 
subalgebra in the case under consideration) will have to pass into the smallest 
subalgebra OC.A, since, trivially, B C 0 in general. On the other hand, if 
we assume that A t = 0t, A = 0 , i.e., all of the partial algebras A u A without 
proper subalgebras, then the localization criteria as given in Theorem 6 and 
its corollary becomes absolutely worthless (a rose is a rose is a rose!). In 
particular, it seems impossible to obtain a complete internal description of 
the partial direct sum of partial algebras Ot (without proper subalgebras), 
even in the special case when the universal homomorphisms happen to be­
come injective. (Cf. the most simple and striking example of a one-element 
set A0 = Ai = A = {a} supplied with three different partial algebraic 
structures of type A = (0, 0) : 

(Ao, (a ,0)) , (A1} (0, a)), (A, (a, a)), 
where a is the only non-empty nullary operation in set A0 = Ai = A, whereas 
0 (y^al) denotes the empty nullary operation.) Clearly, the it\— \àA\ A t —> A 
are injective, even bijective, and cover A; moreover, A has the final structure; 
nevertheless, the it: At^A fail to represent a partial direct sum (cf. Addi­
tion 2 to Theorem 2). 

There is a still more special case in which we find a completely satisfying 
description of the partial direct sum: 

THEOREM 7. Let the A t (t £ T) be partial algebras with isomorphic smallest 
subalgebras 01. Then at: A t —> A is a partial direct sum of the A t if and only 

if-
(1) A has the final structure for the at; 
(2) the at are injective and cover A ; 
(3) \mas C\imat (Z® for all s 7^ t, s, t G T. 

In this case, the at are strong, hence isomorphisms onto relative algebras 
\mat C A, and their restrictions at\Ot are isomorphisms onto smallest sub­
algebra 0 C A. 

Observe that a family of isomorphisms /3°t: 01 -^> B° is necessarily a partial 
direct sum of the Ot; for as B° is generated by the empty set, there is at 
most one homomorphism \f/: B° —» C, C a n arbitrary partial algebra, so for 
arbitrary homomorphisms Xt-01—> C,\p := XtO (/30z)-1' B° —> C is independent 
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of index t. Hence, if the at: At-+ A const i tute a part ial direct sum of the A u 

they are injective and strong by Theorem 6 and its addi t ion; moreover, 
im as r\ im at C B for all s ^ t, where B := U ottOt C 0, even B = 0 since 
B is a subalgebra of 0. Again by Theorem 2, A has the final s t ructure for 
the at and is covered by them. 

Conversely, let the three conditions above hold true. We show tha t the 
at: Ot—>B are isomorphisms. In fact, asOs = atOt = B for all s, t, £ T. For, 
by hypothesis, there is an isomorphism o)ts: Ot —> Os, so 

as o wts and at\Ot: Ot-+ B 

are homomorphisms which, coinciding on generating subset 0, mus t be equal ; 
in particular, asOs = asœtsOt = oitOt. So the at\Ot: Ot—>B are surjective. 
Moreover, they are strong. For let fiatbt = atbt, bt1 bt in Ot (ft the funda­
mental operation in A). As A has the final s tructure, atbt = asas, atb* = 
asa$,fsi&s = Us, for some s £ T, aSJ as in As. Bu t then aso)tsbt = asas; hence 
as = wtsbt is in Os since as is injective; similarly, as = cô &« 6 0 5 , and applying 
the converse isomorphism co^_1, we obtain ftibt = bt. As remarked above, 
at\Ot: Ot—^B becomes a partial direct sum of the Ot. Moreover, from the 
injectivity of the au we obtain 

<*t(At - Ot) =atAt -atOtCA -atOt = A - B. 

So the conditions of the corollary of Theorem 6 hold, and the present theorem 
is proved. 

6. A p p l i c a t i o n to ful l d irect s u m s . This becomes possible by means of 
the following theorem. 

T H E O R E M 8. Let at:At—>A be homomorphisms of full algebras At into 
partial algebra A. Then the following statements are equivalent: 

(i) at: A t —» A is a full direct sum of the A t; 
(ii) A is a free completion of relative algebra A0 := U i m a f C A, and 

at: At—+ A0 is a partial direct sum of the A t. 

T o prove (ii) => (i), let xt'-At—>C be homomorphisms into some full 
algebra C. Then there is a unique homomorphism x ° - ^ 0 — > C such t h a t 
X°oo^ = xt for all t G T. By definition of free completion (cf. Burmeister-
Schmidt (2)) , x° has a unique homomorphic extension %'• A —» C, which is the 
wanted unique homomorphism such t h a t %° at = Xt for all t € T. T o prove 
(i) => (ii), we construct a partial direct sum (3t: A t —* B° of the A t. B° has 
a free completion B (which, in particular, is an extension of B°, i.e., con­
tains B° as a relative algebra) . According to (ii) => (i) (as jus t proved) , 
(}t: A t —>B is a full direct sum of the Au as, by assumption, is the given 
family at: At-^A. Hence, there is a (unique) isomorphism co: B —>A such 
t h a t at = coo /3t for all t 6 T, by means of which the properties of 5 ° are 
t ransported to A0 = co5°, the properties of i3 to A ; also a*: At—> A has pro­
per ty (ii), completing the proof of Theorem 8. 
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Note that relative algebras i m a ^ C ^ are complete, hence closed in A. 
Now, if type A = (Kt)iei is at most unary, i.e., \Kt\ ^ 1 for all i G / , and 
if T 9± 0, then also A0 = [} imat is closed, hence A0 = A. 

COROLLARY 1. For a non-empty family of at most unary full algebras A t, 
partial and full direct sums coincide. 

Without restriction of type A, we have the following corollary. 

COROLLARY 2. Let at: A t —> A be the full direct sum of ftill algebras A t. Then 
the following statements are equivalent: 

(i) the at are infective] 
(ii) the at\ Ot are infective, hence isomorphisms onto 0, where the Ot and 

0 are the smallest subalgebras of the A t and A, respectively ; 
(hi) Os^Otfor all s, t G T. 

Proof, (i) => (ii) is trivial; note that, because of the completeness of the 
AtJ imat = 0. So (ii) => (iii) is trivial, (iii) => (i) follows immediately from 
Theorems 7 and 8 or, if one prefers, Theorems 6 and 8 (for another proof 
cf. Kerkhoff (5)). 

In (7), the author has defined full algebras As, At such that Os~Ot to 
be of equal ^-characteristic. Full algebras of equal O-characteristic are also 
treated in the analogue to Theorem 7: 

THEOREM 9. Let the A t (t G T) be full algebras with isomorphic smallest 
subalgebras {equal O-characteristic). Then at:At—>A (A some full algebra) 
is a full direct sum of the A t if and only if: 

(1) the at are infective and generate A ; 
(2) im as H im at C 0 for all s 9^ t, s, t G T\ 
(3) if g id G TA0 : = \J im at, then sequence a is in im at, for some t G T; 
(4) if gid = gjb i A0, then i = j and a = b. 

Here the gt are the fundamental operations of algebra A, 0 its smallest subalgebra. 

Proof. If at: A t —> A is a full direct sum, then the at are injective; more­
over, im as P\ im at C 0 for s 9^ t by Theorems 7 and 8. But A is the free 
completion of A0 by Theorem 8. So by the internal characterization of the 
free completion by the Generalized Peano Axioms FC1-FC3 (cf. Burmeister-
Schmidt (2)), A0 generates A (Axiom of Induction, FC3). Moreover, 
g*G = gfi £ A0 implies i = j and a = b(FC2). Finally, gta G A0 implies 
a in A0 (FC1). But since A0 has the final structure for the at (Theorems 7 and 
8), a is even in some im at. 

Conversely, let the four conditions of our theorem hold. In particular, the 
Generalized Peano Axioms FC1-FC3 as described above hold: A is the free 
completion of A0. I t remains to show that at: A t —> A0 is a partial direct 
sum, i.e., that the three conditions of Theorem 7 hold true. The only thing 
to show is that relative algebra A0 C A has the final structure for the at. So 
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let g & = a, where a, a are in A0. Hence a is in some imau as is a, since 
imaj is closed. This completes the proof, since at: At-^imat is an isomor­
phism. 
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