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1. Let R™ be the n-dimensional Euclidean space, each point of which
is denoted by its coordinate x = (%, + - -, %,). The variable ¢ is in the real
half line [0,0). We consider a differential operator

(1) L= 3 ayalet S1b,0 +c— -2
TR Y vy T S 0wy at

in the (# + 1)-dimensional Euclidean half space R™ X (0,c0) and assume that
the matrix (a;;) is positive definite in R"X (0, o). Suppose that for coefficients
of L there exist constants K,(>0), K,(=0), K;(>0) and 2 € [0,1] such that
la;l = K(le]2+ 1'%, 1<i, j=mn,
[b;] = Ky(|®]® + 1)'2, 1=i<mn,
le] = Ky(l=|® + 1A
Besala and Fife [1] investigated the asymptotic behavior of solutions of
the Cauchy problem for such a parabolic differential operator L under a

non-negative Cauchy data not identically equal to zero.
One of their result is as follows:

Let a continuous function u(x,t) in R™ X [0,00) have the following properties;

1) Lu=<0 in R™ X (0,00) in the usual sense,

il) w(x,0) ts non-negative and not identically equal to zero

and
iii) there exist positive constants p and v such that
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. — per(Iplt+DA, 1< (0,1],
u(x, t) =
—u(lzlP+1% 2=0

m R™ X (0, 0).
If there exist a sufficiently large constant o and a positive B satisfying

n n
42|22 + 1B 2 ayw,x; — 4a2(2 —1) (|2 |2+ 12 _El ;%2
2, 3=

2, j=1
—2aa(|z]? + 1)1—1__§1 (@ + b)) + ¢ = B

im R" X (0,0), then u(x,t) grows exponentially as t tends to co and this exponential
growth of u(x,t) is uniform with respect to x € R™.

In their proof of this result, the condition that « is sufficiently large,
is essential. In this note we shall give a rather simple condition than that
of Besala-Fife under a somewhat different condition for coefficients of the
operator L.

2. In the following we assume that coefficients of the operator L in
(1) satisfy the following condition in R™ X (0,) for some 2 € (0,1]:
E(le]?+1)02E1P < 21 a6, = K(|x|® 4+ 1)'7%[¢]?
i,j=
) for any real vector & = (&, - - -, &,),
[6;] = Ky(|®]®+ 1)3, 1<i<n,
— k(|22 + 1P+ ki = c = K(|2|2 + 1)
where k,(>0), K,, Ky=0), ky(>0), k4(=0) and K> 0) are constants.
First we construct a function of the form H(z,?) = exp {—a(t)(|2]? + 1)
+ 8(#)} satisfying LH=0 in R" X (0,), where a(f) and g() are positive and
differentiable once in (0, o).
Obviously the condition (2) implies

LH = gart)oh| 012 + 10212 — 2a(t) 0K,

— 2a(8)anKy(|%|? + 1 — ks(l 2|2 + 1) + k3
+a'(2) (2|2 + 1) — §'(2)

= (]2 + 1)[4a®($) 2%k, — 2a(t)anK, — ks + o' ()]
— 2a(t)anK, + k4 — 4a®(t)3%k, — 8(1).
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We can easily verify that the function

T 1 7o nk, _ ntK? \1/2
olt) = Wk, etrodkit—1 + ok, 4k’ To <k3+ 4k, >

is a solution of the differential equation
4a¥(t)2%, — 2a(t)AnK, — ks + a'(¢) = 0

of the Riccati type in (0,00) and that for this «(¢) the function

2
() = [ (4 K — e (4 K — e+ et
1

_ n(K + Kp)
22k,

,2]/];; eirodlkt — 1

log(etrodvkit — 1) +
satisfies

—2a(t)AinK, + ki — 402(t)2%k, — f'(t) =0

in (0,). Hence we see LH=0 in R"™ X (0,) for the function

(K KD To 1
Hlw, 1) = (etrafit — 1) "5 exp | 0= Sy =1 | ¥

_ 7 1 7‘0 %Kg P 2
(3) x exp| <2:/;E P L e V1% Ylalr+1)
nr nikK, _ ’

[ (B K = Ll (4 K e+ 5 ]t}

where 7‘0=<k3+ ":fg )1/2. Since
1

) nKy — 0 and —To {1—(|x]2+ 10} <0 0

T + k. >0 an Wi {1—=(lz|*+ 1)} <0, z+0,
it holds that
(4) }ifg;H(ﬂG,l‘):O for % = 0.

3. Suppose that the function u(x,?) non-negative and continuous in
R" x [0,) has the following property:

& i) Lu<0 in R"™ X (0,00) in the usual sense,
5

i) u(x,0)(=0) is not identically equal to zero.
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Here L is a differential operator of the form (1) with coefficients satisfying

(2) and
_ 7o nK2 nK, \%., ,
(6) 2( o+ i Ao ) akm —4(— 1 e Tk ) 2%, + k5 >0,
_ n2K2 1/2
——<k3+—4k12 )

We can find a positive number ¢ so small that

— nKy - 1Ky Vo ’
(7) 2(e+—L e T ik )2k — a(e + T e ) 2%k, + k5 >0,
Let T be a positive number such that
0< To_ L <e.

,{-‘/k e2rodViaT 1

From the assumption for u(x,¢) we see by the strong maximum princi-
ple due to Nirenberg [5] that u(x,#)>0 in R" X (0,). So the value

m = min u(x,t) is positive for an arbitrary »(>0) and for any (> 0) fixed

le‘[?? T]

sufficiently small. We may assume that ~72‘—<T—5 For these » and g,

clearly 0< M, = max H(xz,t —§)<oo, where H is the function given by (3).
teu? T]

Put

™M _ H(x,t—8) — u(z,t).

w(x, t) = M,

Evidently we have Lw=0 in 2 x (3,7), where 2 is the set of all points
2 € R™ such that »<|z|. Moreover, w(z,¢) is continuous on £ X [d,T],
w(x,8) <0 for || =7 and w(x,?)<0 for || =~ and ¢ €[5, T]. Bodanko’s
maximum principle [2] implies that w(x,?)<0 in 2 x[5,T]. Therefore we
get

H(x, T —0) < u(x,T)

M:

for |x| =#(>0). As is seen easily, there is a positive constant M, such that

MH (%, T —3)=u(x,T) in |x] <r. Hence by putting M, = m1n<— MZ)
1

we have M;H(x,T — 8) < u(x,T) at every point 2 € R".  Since %— <T-—9o,

we obtain
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u(x, T) = M,H(x,T — )

= My exp (s + T + ) (alt 17

in R™ for some positive constant M,.
4. Now we can prove the following theorem.

THEOREM 1. Let L be a parabolic differential operator of the form (1) with
coefficients satisfying (2) and (6).  Assume that the function wu(x,t) continuous in
R™ x [0, 00) satisfies (5) and u(w,t)= — pe*(=1*+DX for some positive constants p
and v.  Then u(x,t) grows to infinity exponentially as ¢ tends to oo and this
exponential growth of w(x,t) is uniform in any compact subset of R™.

Proof. Bodanko’s maximum principle shows that «(x,#) =0 in R*X[0, »).
As was shown in §3, for a positive number e satisfying (7) there exist a
positive number 7 and a positive constant M, such that

> — _ T nk,
ule T2 Myexp (s + Lo+ 8 ) (Il + 17

= M,Hyx), say.
From (7) we can take a positive number g8, which satisfies

an
42k,

~a(e+ Lo+ 2 Vg —a(e Do ) 2tk + k5 — > .

22/k, 42k, 22/ky
Putting
e, t) = M,Hy(x)ePo(t=1)
and o(x,t) = u(x, t) — h(x,t) in R™ X (T, ), we see
Lv=—1Lh
= —hldat2|2]* + 1472 31 aa,ay

i,j=

— 42— 1) (|2 1? + 1 33 aga,
i, 5=

— 2a02(|®|? + 1) é (s + byzs) + ¢ — o]

in R® X (T, ), where «,= ¢+ To 4 nK, Hence it follows from (2)

22k, 42k,

that
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Lo < — h[(]2]? + 1 {4a32%k, — a2 Kyn — ks}
— 2 Kyn — 4%, + I} — Bol.

Evidently @, and g, satisfy
4022%, — 20,2 Kon — ks >0 and — 2a,AK 1 — 4a222k, + k% — By > 0.

Therefore we have Lv <0 in R™ X (T, ). Further, we see v(x,T) = u(x,T)
— MHyz)=0. Applying Bodanko’s maximum principle again, we can see
v(z,t)=0 in R" X [T, ), so

M, Hy(2)ePo-T> < y(x, t) in R™ X [T, ).
From this we get the assertion of Theorem 1.

Example. Consider an operator

n g )
(8) Ly= 3 pr + (=R |ol*+]) — 5

in R* X (0,00). Let u(x,¢) continuous in R"™ X [0,) satisfy L,u <0 and
u(x,t) = — pe*l*1* in R™ X (0, ) for some positive p,» and let «(x,0) be non-
negative and not identically equal to zero. The condition (2) is satisfied
for 2=1, k=K, =1, K, =0, ks=Fk* and k{ =k*+ . Theorem 1 implies
that, if the condition />kn corresponding to (6) is fulfilled, then u(w,t)
grows exponentially to infinity as ¢ tends to infinity. This fact was es-
sentially proved by Szybiak [6] although his theorem is false as Besala and
Fife pointed out. Szybiak missed the condition !> kn out of the statement
of his theorem.

5. Assume [ <Fkn in (8). In this case, Krzyzanski [4] proved the
following by constructing the fundamental solution of the Cauchy problem
for the equation Lyx = 0: Let # be the solution of the Cauchy problem

Lou =0 in R" X (0’ 00)3
u(x,0) = f(x)
for the Cauchy data f(x) bounded in R™. Then u(x,¢) tends to zero uni-
formly in « € R™ as ¢ tends to infinity.
Recently Chen [3] treated an analogous problem for an operator of a

general form and proved the following fact.
Let the differential operator L in (1) satisfy the condition
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k(lz]® + 1) €]2 é_ﬁlau&& = K(l2|*+ 1)'7*[&|* for real vector &,

i, j=
[6;] = Ky(lx]*+1)% 1=<i<mn,
c=—ky(lx]®+ 1) + k3
Jor some 2 (0,11, k(>0), K, Kyi(=0), ky(>0) and k. Further, let u(x,t) be
a solution of the Cauchy problem Lu =0 in R™ X (0,), u(x,0)= f(x) in R™ and
satisfy |u(x, t)] < per(=*+D4 for some constants p and v positive. If f(x) is
bounded in R™ and if

711{_[21{1(1 — ) — k] WPK2 + 4K ks — nK,) + k<0,
1

then u(x,t) tends to zero uniformly in x € R™ as t tends to infinity.

6. Here we shall discuss the case when 2 [1,o) in Chen’s theorem.
Let L be an operator of the form (1) with coefficients satisfying (9) for
A€ [1,00). For H(z,t) = exp {—a(t) (|z|2 + 1)* + p(t)} with a(t)(>0) and §(¢)
differentiable once in (0,) we have

LI < (1212 + 1 2K e(t) + 20nKoa(t) — ks + o (2]
— 2heynalt) + k} — 42K, a%(2) — B'(2).

Hence, if we take

(10) a(t) =7 tanh 422K,7¢
and
kon e8AEqrt 21
ﬁ(t) = [— 22]61”7‘ - 422K1T2 + ké]t —I‘— ZZIKI log eglzKITt—}-l - eSHKITt—l—l

for the positive root 1 of the quadratic equation 42K, X? + 2inK,X —k; =0,

S LI Py
then we get LH=0 in R" X (0,0). Clearly H(x,0) = ¢f(® = ¢ 2 e

Putting w.(x) = Me-POH(z,t)+ u(x,t) for M= sup |f(x)|, where u(x,t) is a

rER"

solution of the Cauchy problem Lz =0 in R" X (0,), u(x,0)= f(x) for the
bounded Cauchy data f(x) and satisfies |u(x,t)] < per(1#1*+D* for some posi-
tive # and v, we have Lw.=<0 in R"™ X (0,) and w.(x,0)=0. From
Bodanko’s maximum principle in the case of 21&[1,00) we get w.(x,¢)=0
in R" x [0,00), so
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lu(x, £)] < Me—P©H(z, 1)
=< Me—B®eB®E) < Me—B(0e(—22kiny —4A2 Ky 72 +ks')t

in R* x [0,00). Therefore, if
(11) — 22kt — 422K + kL <0,

then u(x,t) decays to zero exponentially as ¢ tends to infinity. Thus we
have the following

TureoreM 2. Let L be a differential operator of the form (1) with coefficients
satisfying (9) for some 2 € [1,00) and let u(x,t) be a solution of the Cauchy problem

Lu=20 ln R™ X (0900),
w(2,0) = f(x) in R®

Jor a bounded continuous Cauchy data f(x) in R™. Assume that there exist positive
constants p and v such that |u(z,t)] < pe*(#12+D% in R™ x [0,00). If the condition
(11) s valid, then wu(x,t) decays to zero exponentially as t tends to infinity and this
decay of u(x,t) is uniform in R™.

7. We apply Theorem 2 to the operator (8). In this case we may

take 1=1, k=K, =1, K, =0, ks =k ki =k +1 and 7 in (10) equal to
—125— . So (11) reduces to kn > . This is nothing but the result of Krzyzanski

stated in §5.
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