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Siegel-Whittaker functions on SO,(2, q) for
class one principal series representations

Taku Ishii

ABSTRACT

In this paper we study a kind of spherical function, which we call a Siegel-Whittaker
function, related to Fourier expansions of automorphic forms on Hermitian symmetric
domains of type IV. We obtain a multiplicity-one theorem and an integral representation
of this spherical function.

1. Introduction

In this paper we study generalized spherical functions which are related to Fourier expansions
of automorphic forms on the bounded symmetric domain of type IV. As is well-known Fourier
expansions play a very important role in the theory of automorphic forms, for instance, in the
construction of automorphic L-functions (cf. [And71, And74, Hor95, Sug85]). However, the theory
is incomplete, especially at the archimedean places.

Before the formulation of our problems in representation theoretic terminology, let us explain
the problem of Fourier expansion of wave forms more classically. We first recall the definition of
wave forms for a Riemannian symmetric pair (G, K) and an arithmetic subgroup I' of G which has
cusps. A C*°-function f on G is called a wave form if

i) f is left T-invariant and right K-invariant,
ii) f is a common eigenfunction of G-invariant differential operators on G/K, and
iii) f satisfies some growth conditions.
We notice that the conditions i and ii imply that f generates a class one principal series represen-
tation of G by right translation.

If we consider the case G = S0,(2,q), the symmetric space G/K is the Hermitian symmetric
space of type IV. Let Ps be the Siegel parabolic subgroup of G with abelian unipotent radical N4 and
the Levi part Ly associated to the zero-dimensional cusp of I'. We investigate the Fourier expansion
of a wave form f on G along P;. Take a unitary character ¢ of Ny and put

Adg) = [ fng)e” () dn
NsNT\ N
the Fourier coefficient corresponding to &. Then we have

flng) = > Acgén),

£e(NsNI'\Ns)"
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for (n,g) € Ny x G. If we consider the system of partial differential equations of A¢(g) deduced from
the condition ii, the dimension of the space of solutions is infinite. Therefore we consider a further
expansion of A¢(g) with respect to a subgroup SO(§) of Ly. If £ is ‘definite’, SO(€) is isomorphic
to SO(q — 1). We fix a finite-dimensional irreducible representation (x, V) of SO(&) and put

Aex(9) = /50(5) Ac(sg) - x(s)ds.

Hence we have

dim x
Ae(sg) = D Aex(@. X () = D D (Aeril9). X7 (s),
X€S0(&)" X€S0(6)" =1

for (s,g) € SO(§) x G. Here x* is the contragredient representation of x and ( , ) denotes the
inner product on V, x Vj«. The Fourier coefficient A¢, ;(g) is a Vy-valued function on the two-
dimensional space SO(£)\Ls/LsNK and the space of solutions of the system of differential equations
for A¢.i(g) becomes finite dimensional. Further, combined with the growth conditions, Ag¢, ; is
uniquely determined (up to a constant) and has an integral expression (Theorem 8.1). This leads
us to the Fourier expansion of f for the ‘definite’ terms. In the case of ‘indefinite’ £, that is,
SO(€) is not a compact group, we do not have a satisfactory answer even for G = Sp(2,R)/%15
(¢ =3).

Now we give a precise formulation of our problem. Let G be a real reductive Lie group with
the Lie algebra g and K a maximal compact subgroup of G. Take a closed subgroup R of G and
an irreducible smooth representation 1 of R. For an irreducible admissible representation m of G,
consider the space of intertwining operators

I(m,m) = Homq sy(m, C> Ind(n)).

For ® € Z(m,n), the realization Im(®) of 7 is called the spherical function for w. The fundamental
problems are

i) determining the dimension of the intertwining space (under some growth conditions),

ii) finding explicit formulas for the spherical functions.

If we take suitable R, the above problems are closely related to the local theory of automorphic
forms. For example, when R is a maximal unipotent subgroup of G and 7 is a unitary character
of R, the spherical functions are called Whittaker functions and have been studied by many authors
(H. Jacquet, J. Shalika, B. Kostant, N. Wallach, etc.).

Let us explain our situation in this paper again. Let G = S04(2,q) (¢ > 3), Ps = Lgs x Ny
and ¢ € N/' and consider the intertwining space Hom g oy (m, O Ind%s (£)). If 7 is the holomor-
phic discrete series representation, this space is finite dimensional and the spherical functions for 7
can be expressed by using the exponential functions. This leads to the well-known Fourier expan-
sions of holomorphic modular forms along P;. However, when 7 is the (class one) principal series
representation, the above space becomes infinite dimensional. Then we take a larger subgroup R
containing Ny as follows. Denote by SO(§) the identity component of the stabilizer of & in L
and define R = SO(§) x N;. Let us take an irreducible unitary representation x of SO(§) and set
n = x - £&. We remark that the induced representation Indg(n) is a special case of the generalized
Gel’'fand-Graev representation studied by Yamashita [Yam88].

In the case where G = Sp(2,R) and ¢ is ‘definite’ (SO(§) = SO(2)), Niwa [Niw91] obtained
the multiplicity-one property for Z(mw,n) and found explicit formulas for the spherical functions,
which we call Siegel-Whittaker functions, for the class one principal series representations.
They appear in the Fourier expansions of Siegel wave forms of degree two. The main purpose
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of this paper is to extend his results to the SO,(2,q) case. Note that sp(2,R) = s0(2,3) and
su(2,2) = s0(2,4).

These kinds of spherical functions have been studied by Miyazaki [Miy00] in the case of Sp(2,R)
and by Gon [Gon02] in the case of SU(2,2) for various discrete series representations. Among others,
the author [Ish02] proved the multiplicity free theorem for the (general) principal series representa-
tions on Sp(2,R).

For the class one principal series representation of G, spherical functions are characterized by
the invariant differential operators on G/ K. We first determine the generators of this algebra by the
classical method (§ 4) and write down the system of partial differential equations (Theorem 7.1)
for ‘definite’ . By considering the Mellin transformation of the system, we obtain the following
theorem.

MAIN THEOREM (Theorem 8.1). We assume that vy, v9,v1 £ vo, the parameters of the class one
principal series representation m,, are not integers. Let £ = &y be the standard ‘definite’ unitary
character of Ny and x» be the irreducible finite-dimensional representation of SO(&) (250(q — 1))
with hjghest Weight A= ()\1, ce 7)‘[(q—l)/2})'

1) If X is not of the form (\1,0,...,0), then
dime Homg ) (7,1, C*° Ind%(n)) =0.
2) If A\ =(\,0,...,0), then
dimc Hom g ) (7,5, C™ Indg(n)“’p) =1,

and the radial part of the spherical function has an explicit integral expression of Euler type.
Here C'*° Indg(n)rap means the space of rapidly decreasing functions in C*° Indg(n).

We comment on the possible application of our result to automorphic L-functions. As is well
known, Andrianov [And71, And74] constructed the (spinor) L-function for holomorphic Siegel cusp
forms of degree two and proved the functional equation. Sugano [Sug85] extended Andrianov’s result
to the SO(2,q) case. Meanwhile, Hori [Hor95] studied the wave form version of Andrianov’s
L-function and proved the functional equation by using Niwa’s explicit formulas for Siegel-Whittaker
functions. Generalizing this further, we already obtained a kind of zeta integral for the (general)
principal series representation of Sp(2,R) in the previous paper [Ish02]. In the same way as in
[Sug85] and [Hor95], it may be possible to prove the functional equation for the L-function of wave
forms on SO(2,q).

2. Structure theory for SO,(2,q) and its Lie algebra

We recall some basic facts on our Lie groups and algebras. Let ¢ > 3 and G = SO4(2,q) be the
identity component of the special orthogonal group of signature (2+, ¢—):

1 0
S0(2,q) = {g € SL(2 + q,R)‘ f9la g9 = 1oy = <02 1 >}
q
Here we denote by 1,, the unit matrix of degree n. A maximal compact subgroup K of G is given
by
(k1 O
{0 2)
The Lie algebra g of G is given by

g=250(2,q) ={X €M2+¢R)| ‘Xly, +12,X = 0}.
829

ky € SO(2), ks € SO(q)} .
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The subspaces

={( 5)[r-—memenx--xeman],
2

(% Dlresean)

give a Cartan decomposition g = £ ® p. We choose a maximal abelian subalgebra a of p as
a= RAl ©® RAQ

with Ay = Ey g2 + Egy21, A2 = Eo g1 + Eyt12. Here E; ; is a matrix with 1 in the (4, j) entry
and 0 elsewhere. Put

A =exp(a) = {exp(log a1 Ay + logasAs) | ay,as > 0}
c(ay) s(ay)
c(ag) s(ag)
= 14—2 ay,az >0
s(ag) c(az)
s(ay) clar)

with c¢(a) = (a + a™1)/2 and s(a) = (a — a=')/2. Define linear forms ej,es on a by e;(a; A +
asAs) = a;(i = 1,2) and set g, = {X € g | [H,X]| = a(H)X, YH € a}. Then the restricted root
system A = A(g,a) is given by A = {+e;, +ey, te; + ea} and we fix a positive system AT as
AT ={ey,eq,e1 +ea}. Then each root space go(a € AT) is given as

q—2 q—2
Je; = @RXz, Jey = @R}/@, Je1—es — RZl, Pei+es = RZ%
i=1 i=1

with root vectors

Xi=FE1i20+ Eijo1 — Eiyogi2 + Eypoito,
Yi=FEsiro+ Eiyoo — Eiysgr1 + Egpiiy2,
Zy = (=E12 = E1g+1+ B2 — Ea g2 — Egr1 + Eg1,g+2 — Egi2.2 — Egr2,4+1)/2,
Zy = (—Er2+ Erg41 + E21 — Eagyo + Eq1,1 — Eqig42 — Egi22 + Eqi2,441)/2.
For a € A\A™, the elements X _; = 'X;, Y, =, Z_| =2y, Z 5 = 'Z, are generators of g,.

If we put n = > A+ Ja, We have the Iwasawa decomposition g = n® a® £ Further put m = Z¢(a),
the centralizer of a in €. Then we have

1o
m= M M eso(g—2)p,
1o

and g=m®a® ) a 0o We take an R-basis of m by
Kij = Eit2j+2 — Ejrip2 (1<1<j<q—2)
Set N = exp(n) and M = exp(m).

3. Definition of Siegel-Whittaker functions

3.1 Class one principal series representations of G

We recall the definition of the class one principal series representations of G. Let Py = MAN be
the Langlands decomposition of a minimal parabolic subgroup of G. For v = (v1,10) € af, let Hy,
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be the space of smooth functions ¢ on G such that

¢(mang) = a” " ¢(g),

forme M,a€ A, neNandgeG. Here p=1% _a+(dimgs)a = (¢/2,q/2 —1). G acts on Hy,
by right translation:

m(9)0(x) = ¢(zg)
for z,9g € G and ¢ € H;,. We call the induced representation m, the class one principal series
representation and denote by Hy, x the subspace of K-finite vectors in H,. Define an element ¢

in Hﬂ'u,K by
Polg) = a(g)"™*

with the Iwasawa decomposition g = n(g)a(g)k(g) of g € G (n(g) € N, a(g) € A and k(g) € K).
Then ¢o(g) is a K-fixed vector in Hy, .

3.2 Definition of Siegel-Whittaker functions

In this section we introduce a kind of spherical function, which we call a Siegel-Whittaker function.
This type of spherical function was introduced by Yamashita [Yam88] in a more general setting, and
studied by Miyazaki [Miy00], by the author [Ish02] for Sp(2,R) and by Gon [Gon02] for SU (2, 2).

The Siegel parabolic subgroup P of G is a maximal parabolic subgroup corresponding to the
short root with abelian unipotent radical. Its Levi decomposition is given by Ps = Ls X N, where

a b
a b
Ls = 90 < > € SOO(L 1)7 go € SOO(l7q - 1)
c d
c d
and
Ns = exp(ga; D ar+az D Bay—as)
q—2
=4 ns(x) = exp <(9€1 —xq)Z1 + (21 + 34) 2> + Z$i+1Xi>
i=1
l4+xz9| x —x
= x| 1| —'= z=(z1,...,24) € RY
i) T |1-— i)
with 2o = (=2 + >0, 2?) and & = (—z1, 22, ..., 7).

Fix a unitary character & of Ny defined by
q
E(ns(x)) = exp <27T\/ -1 Z fi%’)
i=1

with real numbers &. We assume that 5% — 322 52-2 #0.

Consider the action of Ly on N by conjugation, and also the induced action of Ls on the

character group N;. The identity component of the stabilizer subgroup of the character £ is denoted
by SO(£). Then

SO(§) = Stabr, (£)°
1
= 90 (51,---,&1)90:(51,---,&1)7 gOESOO(lvq_l)
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Hence we can verify that
50(q—1) if & — 37567 >0,
S06(1,q—2) if & — 37 ,& <0.
We say that ¢ is definite if £ — 7, €2 > 0 and indefinite if £ — 7, €2 <0.

Remark 3.1. Let &y be the standard definite character of Ny with §; = 1,6 =--- = §; = 0. We can
easily check that

S0(6) = {

19

S0 (&) = 90 go € SO(q —1)
1

From now on we only treat the case of definite £. (We may assume £ = &, without loss of
generality.) Now we take an irreducible representation (x, V) of SO(§) = SO(q — 1) and define the
subgroup R of L by

R =150(&) x Ns.

Then we can construct a well-defined representation n = y - £ of R and consider the C*°-induced
representation from R to G,

C®IndG(n) = {f: G — V,,C™ | f(rg) = n(r)f(g), ¥(r.g) € R x G}.
This is a special case of the reduced generalized Gel’fand—Graev representation studied in [Yam88].

DEFINITION 3.2. Let (7, H;) be an irreducible admissible representation of G and H i the subspace
of K-finite vectors in H. The space of intertwining operators

Hom(g, ) (Hr, 1, C* Ind5 (1))
of (g, K)-modules is called the space of Siegel-Whittaker functionals for .

Before we discuss our spherical functions, we recall some facts on universal enveloping algebras.
Let U(gc) and U(ac) be the universal enveloping algebras of gc and ac, the complexification of g
and a respectively. Then the decomposition

U(gc) = U(ac) ® (nU(gc) + Ulgc)t)

holds [HC58]. Let p : U(ge) — Ul(ac) be the projection corresponding to the above decomposition
and y the automorphism of U (ac) which takes H € ac to H+p(H) € ac. We denote by W = W (g, a)
the Weyl group of g relative to a and U(ac)" the W-invariant elements in U (ac). Note that U (ac)
can be identified with the symmetric algebra S(ac) and U(ac)" = S(ac)" is isomorphic to the
polynomial ring of two variables over C in our case. Set

U(ge)™ = {X € U(ge) | Ad(k)X = X, Vk € K}.
Then we have the following theorem.

THEOREM 3.3 (Harish-Chandra [HC58]). The following sequence is exact:

0 —— Ulge)* NU(gc)t —— Ulge)® —% U(ag)V —— 0.

If we denote by D(G/K) the algebra of G-invariant differential operators on G/K, then
D(G/K) = S(ac)" = U(ac)™ /U(gc)" NU(gc)t

by Theorem 3.3.
For v € ag, define an algebra homomorphism ¢, : U (gc)® — C by

e (2) = v(vop(2)),
832
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for z € U(gc)®. Then Theorem 3.3 implies that ¢, is trivial on U(gc)®™ N U(gc)€. Moreover the
restriction of ¢, to the center Z(gc) of U(gc) coincides with the infinitesimal character of the class
one principal series representation .

Now we define spherical functions for m,. Let vg be the unique (up to constant multiple) K-fixed
vector in Hy, ¢ (§ 3.1). Then, for ® € Hom g gy (Hr, x, C™ Ind%(n)), the V,-valued function ®(vg)
on G is contained in the space

Cr(R\G/K) :={f: G — V,C®| f(rgk) =n(r)f(g), V(r,g.k) € Rx G x K}.
Moreover it satisfies
2®(vg) = ¢,(2)®(vg), Vze Ulge)X.
We call ®(vg) a Siegel-Whittaker function of type (m,;x,&) and define
SW(my;m) = SW(my; X, €) = {®(vo) | ® € Homg ge) (Hr, 10, C* Ind3 (1))}
Then we have
SW(min) = {f € CRP(R\G/K) | 2f = c(2)f, V2 € Ulgc)"}

and

Hom(g ) (Hr, i, C* Indf (1)) 2= SW(my; 7).

We consider the system of differential equations

zf =c,(2)f, Vze U(gC)K.

Since f is right K-invariant and ¢, is trivial on U(gc)t, the system is equivalent to

2f = (2)f, VzeU(ac)"/U(gc)™ NU(gc)t.

Because of the isomorphism U(ac)V = C[A? + A%, A2A3] and Theorem 3.3, we can identify
U(ge)® /U (gc)® NU(gc)t with C[Cy, C4). Here Cy and Cy are generators of Z(gc) with degrees two
and four, respectively. Thus we have

SW(my;n) = {f € CF(R\G/K) | 2f = cu(2)f, Vz € C[Cy, C4}.

Note that Nakajima [Nak82] obtained an explicit formula for the system of generators of D(G/K).

4. Invariant differential operators

In this section we give explicit forms of Cy and Cy. We recall the method of calculating a system of
generators of Z(gc) which is classically known (cf. [Bou75]). Let S(gc) be the symmetric algebra over
gcand I(ge) = {P € S(gc) | adX(P) =0, VX € gc}. Then the symmetrizer map A : I(gc) — Z(gc)
defined by A\(X1--- Xy) = (1/n!) > cs, Xo@1) - Xo(n) gives an isomorphism as C-vector spaces.

The generators of I(gc) are given as follows. Let M = (M;;)1<; j<3 be the matrix of size ¢ + 2
with

Mot — 0 (Zl_ZQ+Z_1+Z_2)/2
W2+ 2071 —Z5))2 0 ’

M2y = (Ki j)1<i,j<q—2:
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. < 0 (Z1y— Zo— 21 + Z_2)/2>

(~Zy+ Zo+ 2oy — Z29)/2 0 7
M3 ="Mz = <(_Zl o _Af_l e (=21 — 2> —Aé—l - Z—2)/2> ’
= = (50 Qe iy,
== (ST 1 )

Then the set {Tr(M?) (1 < i < (g + 1)/2)} (respectively {Tr(M?) (1 < i < ¢/2), det(M)}) is a
system of generators of I(gc) for odd (respectively even) ¢. For our purpose we only compute the
explicit form of Tr(M?) and Tr(M*):

Te(M?) = A3+ A3+ ) (XX + ViVoi) + 22121 + ZoZ o) — Y K
7 1<J
and
Tr(M*) = 2(A] + A3) + 8(A2 + A3 (2121 + Z2Z_5)
+8A1A9(Z1Z 1 — ZoZ o) + A Z3 2% + Z372,) + 247,727 17 o
+ 4Z(A%XiX—i + A3Y;Y;) — 4Z(A1 + D) ()Y X+ Z 1 XY _y)

K3 7

- 42(141 — Ao)(Zo X Y_i + Z_ 2 X;Y5)

F2) (XX i+ ViV 4+ (NGX 4 XX+ ViV + YY)
7

1<j

— A (~Z12oX2, — Z Do X] + 21 D5 + ZoZ 1Y)

7

+4Y (2121 + Z2Z5) (XX i + YiYy)

7
+2) K44 Y KLEG 44 Y KKy KimKjm
i<j i< 1#,] i<j,l<m
—4) (X + XX+ YiYo + YY) KT
1<j
—4 > (XX + XX+ VY + YY) KKy
i<g,l#1,5
+4Y {AXGX = XX ) + Ao(YiYoj = YY) K
1<j
—AY (DY X j+ ZoX Yo+ Za XY j+ Z 2 XiY)) K ).
i#]
Here indices run from 1 to ¢ — 2. Let us define the elements of Z(gc) by
Cy = A(Tr(M?)), Cy= A3Tr(M?)* — Tr(M?)),
which are degrees two and four, respectively. Then we obtain the following proposition.
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PROPOSITION 4.1. Cy and Cy are of the form
Co=A2 4+ A2 —qA| — (¢ —2) Ay + 22121 + Z2Z_5)

+ Y (GX L+ YY) - Y K?
7

i<j
and
Cy = 4A2A% —8A1 Ay (2171 — ZoZ o) + A Z3 2%, + Z37%,) — 821227 175
=) (XX HYEYD) 42> (XXX X+ VY YY)

i#] i<y
—2) (Y Xi X YV XX ) +4) VY XX
i#] i#]

+ 42 AY  + AZXX ) + 42 Z0Z 1+ ZoZ 9)(XiX_i + YiY_,)
+ 42 122 X] + 2o X2 — Z1Z5Y] — 1 ZaY))

+ 42 (A1 — A)(Z2YiXi + ZoY i X )

+4) (AL + A)(Z Y Xi + 21X )

—4) (AT + ADKY; =8 (L1 Z 1+ 227 9)K},

1<J 1<J

- 4Z(A1XZX—_] + AQ}/;Y_j)Ki,j —4 Z (XlX_l + }/ZY—Z)KZ‘%]‘
i#j i<l

+4 Y (XX + XX+ VY + YY) K Ky
i< jli]

—AY (DY X+ DX Y j+ Za XY+ Z XYV K,
i#j

+4 Y (KK, + KRG+ K2 KG)
i<j<l<m

—8 > (KKK K + K Ko K n K+ K K K 1 K )
i<j<l<m

—4(q — 2)AT Ay — 4qA1 A5 — A(q - ) A 21 Z 4
— 4((] — 1)A1222_2 — 4(q — 5)A2212_1 — 4((] + 1)AQZQZ_2

—2 q—l ZAIX'X—i_4 q— ZA1Y;;Y_7;—4(Q—3)ZA2X7;X_Z'

ZAzyy_z +4qZA1K +4(q—2))  AK}

1<J 1<J
+D {200 = 5) (XX + YiY-j) +2(q = 3)(X; X i + YY) } K
1<j
+2(q—3) Z(ZlYX_i + ZoY i X i — Z Y i Xi — Z_5Y; X))
+4 Z Kngzl l+K2]szij+Klez mKlm+Kj,le,ij,l)

i<j<l<m
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1 1
—(q* —49¢ +96)A? — —(q
3(q q + 96) 54
2
—30=D@-12)(Z1 21 + %7 2) + 5
1( — 37¢ + 108) ZXX —1( -
3 q q —i 3 q
1 1
+ 3(q — 37¢° + 156¢ — 168) A; + Sla—

P?"OOf. By using X_ZXZ = XZX_Z — 2A1, Y_ZY; = }/ZY_Z —

Z 97y =
First we can check that %Tr(M 2)2
for Tr(M?) and Tr(M*?):

Ty = 4A2A3 — 8A\ Ay (21 Z 1 — ZoZ o) + A Z3 7%, + Z37%,)
Iy = — Z(XEZXJQ +YZY?),

i
Ty =2 (XiX;X X+ V;Y;V,Y ),

1<j
Ty=-2) (VY X;X_j+YiYV_;X;X_;),

i

T5=4) VY X;X_;,

i

Ty =4) (AYiY.; + A3X;X ),

Ty =4 (Z1Z-1+ Z2Z9)(XiX_i + ViY_y),

2 4 11q — 36)A% 4+ 4(q — 2)% A, Ay

1
S(* —25q+192) Y K7

1<J
-9)) VY,
2)(q — 4)(g — 9)As.

2A2, Z 17y = Z1Z_1 — A + Ay and

ZoZ _9—A1—As, we have the formula for Cy. As for Cy4, we need a more tedious calculation.
— Tr(M*) is the sum of the following 15 terms by the formulas

— 82175717,

Ty =4 (Z1Z9X} + 21 Z:X%, — Z1Z5Y] — Z 1 Z5Y?),

Ty = 42{(141 — ) (Z2YiXi + ZoY_ ;X ;) +

Tio = —42 A? + AHK?

i<j 1<j
Ty=—4 > (XX +YY K},
i<l
Tip = —4 Z(Ale‘X—j + ALY Y ) K, j,
i#j
Tis=4 Y (XX j+ XX i +YY ;+Y;V
i<l

Ty =—4Y (21X i+ ZoX Y j+ Z XY i+ Z 5 X;Y))

i =8> (Z1Z1+ Z2Z)

(A1 + A)(Z Y Xs + 21Y X)),

K2

Z]’

W) Ki 1 K,

Ki,j)

B+ K j K i K 1 Ko ).

i#j
Tis =4 Z KKl + KL K, + K2 KD),
1<j<l<m
Tig=—-8 ) KK Kjm + K K K
1<j<l<m
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We write down the image of the symmetrizer map of each term:

)\(Tl) =17 — 8A1A% — 4A1(le_1 + ZQZ_Q) + 12A2(le_1 — ZQZ_Q)
2 10 20 4
— gAf + §A§ + (D2 + 222 0) + Ay,

NT) =Ty - 4> (X;X_j+ VY j)K;j+24) K]
i i<j
10
(9-3) D (XX +YiYoi) = (g = 2)(q = 3)(Ar + Ao),

ANT3) = Ts = 2(q = 3) Y (AL Xi X + AYiY)
23 (XX YY) K+ g(q —3) S (X + YY)
i#j i
+(q—2)(g —3)(AT + 43) — 4> K} q—2)(q— 3)(A1 + A),

1<J

_|_

[V

NTy) =Ty —2(q—3)Y (Z\YiX_ i+ ZoY_ i X i — Z 1Y i X; — Z 5V X))

i

+2(q—2)(q = 3)(Z1Z_1 + ZoZ_5) q— ZXX_Z

§<q— 2)(q - 3)As.

q— ZYY—z— q—2)(q—)A1+3

AT5) =T5 —4(g = 3) Y (A1YiYoi + A2 X X ) +4(q — 2)(q — 3) A1 Ag,

NTs) = Ts — 4(qg — 2) AT Ay — 4(q — 2) A1 A3,
NTy) =Ty = 4(q = 2)(A1 + Ao)(Z1Z1 + Z2Z9) — 4 ) Al(Xi X + YiYoy)

2 8
— X; X, +Y.Y ) —=(qg—2)(Z1Z_ Lol
t3 zi:( + ) 3(q WZ1Z_1 + ZyZ_3)

9
+4(q — 2)A +4(q — 2)A1As +2(q — 2) A1 — 5(0=2)4

16 4
MNT) =Ty + 5 (a = 2)(Z1 2+ ZaZ ) — 5 > (XX + YY)

4
—4(q —2)A1 + g(q —2)A,,

8 4

NTy) =Ty + 50 = (D121 + ZoZ2) — 5 > (XX + YY)
32 16 4 4

+ g(q —2)A7 - g(q —2)A3 — g(q —2)A; + g(q —2)As,

ATwo) = Tio + 8> A1K7,
1<J

ATi1) =T +4(g—4)) (A1 + Ay)K,
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2 16
ATi2) =Tiza +8) (A1 + A) K72 + s(a—3) D (XX i+ YY)+ ZK 2.
i<j 7 1<j

— 2= 2)(a = 3)(AF + 43) — 24— Da -3 + Aa),

MNTi3) =Tz +2(qg —4) Z(XiX_j + XX i +YY +YY )K

1<j
— 503 - ) (XX YY) - Lla— DY K
1 1<j
+ 50 2)(a = 3)(g = (A1 + Aa),

ANT1a) = Tig — g(q —2)(q =321 Z 1+ Z2Z 3) + g(q —3) Z(XiX_Z- +YY.))

%

SR 40— 2)(a - 34— 5(g- 20— 3)As,
i<j

XNT5) = Tis,

1
AMT1e) =Tie + g(q —4)(¢—5) Z KZ;
1<j
+4 Y (KK K+ K Ko K + K K Ky + K Ko j K ).
i<j<l<m

Thus we have the explicit formula for Cy. ]

5. Irreducible representations of SO(§)

In this section we recall the irreducible representations of SO(§) = SO(q—1). As is well known, the
equivalent classes of the irreducible finite-dimensional representations of SO(q—1) are parametrized
by the set of dominant integral weights,
A=A, 0, An) €ZM [ A1 =2 > 2\, =0} ifg—1=2m+1,
D= An) €27 [ M 2 X0 > 3 Mgt 2 A} ifg—1=2m.
We denote by (xx, V) the irreducible finite-dimensional representation of SO(q — 1) with highest

weight A. To write down the infinitesimal actions of so(q — 1), we use the Gel'fand—Zetlin basis
[GZ50, VK92].

Let m; = (my,4,may,...,mig,) (2 < i < g—1) be vectors which satisfy the following conditions
of Gel’fand—Zetlin patterns:

i) m;; are all integers,

i)
i) mg—1 =
i) myop+1 = Mgk = Mookl = Mook = -+ = ME2k1 = M2k = —Mk 2%k+1,
iv) myor = miok—1 = Mook = Maok—1 = -+ = Mp_12k = Mk—12k—1 = M 2k]-
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For the above m;, we can define a Gel’fand—Zetlin pattern:

Mi,q—1 M2,g-1 --- M[(g—1)/2],q—1

m2q—2 ---

M = (mg—1,...,ma) = mis Mas
mi4 M2y

mi3

miz2

)

Then the set of diagrams
GZ(N\) :={M | m;(2 < i< q—1) satisfy the conditions i-iv}

parametrize a basis of x) and we call the basis {v(M) | M € GZ(\)} the Gel’fand—Zetlin basis.
The infinitesimal actions of the basis of so(¢ — 1) can be described as follows. For F; ; = E; ; — Ej;

dx(Fop2p+1)v Z A§ 2p k) Z A3 My, )o(My, 1),
dxx(Fop+1,2p4+2)v Z By, (M M)

Z B2p+1 2p+1 k) (M2_p+1,k) + \/__102P(M)U(M)-

By using commuting relations of F;;, we can find explicit formulas for general F; ;. Here M;r]

(respectively MZ_]) means m; ; is replaced by m; j + 1 (respectively m; j — 1) and the others remain
the same, and

1/2
Ak (M) 1 H 1((17“ 2p—1 — %)2 (lk’ 2p 1)2) f 1((lr,2p+1 - %)2 - (lk,2p + %)2)
o 2 Hr 1 r;ék’(l% 2p ll% 2p)(l1% 2p (lk,2p + 1)2) 7
1 1/2
B§ (M) = (lT :2p lk 2p+1) Hp+ (lr ,2p+2 ll%,2p+1)
1 - )
p+ l/%,2p+1(4l/%,2p+1 1) Hf:l,r;ék(lzﬂp-‘rl ll%,2p+1)(llz,2p+1 - (lr,2p+1 - 1)2)

2p — T7P 1)’
I— lropt1(lroper — 1)

with Iy 2p = my2p +p — K, I 2p41 = My 2p+1 +p — k + 1. The following lemma will be used later.

LEMMA 5.1. Under the above notation, put

Sy —dex Cao1)

Then S, acts on V) as scalar multiplication. More precisely

[(q—1)/2] [(a—2)/2]
Su(M) = (— Z {mﬁq_l +(q—2i—1)m;qg1}+ Z {m?’q_z + (¢ —2i— 2)mi7q_2}>v(M).

i=1 i=1
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Proof. We first notice that the action of F; ; € so(¢—1) and F; j € so(¢'—1) (¢’ < q) on so(¢g—1) is
compatible by construction of the Gel’fand-Zetlin basis. (For instance, the action of F} o is always
of the form dy(Fi2)v(M) = v/—1mj2v(M) independent of q.) Then we may regard an element
defined by I, = Y7~ F? 71 €U(s0(g—1)) (3 <p < q) as also an element in U(so(¢'—1)). With this
identification, we can write

(Sz34 -+ S)v(M) =dxx(Is + - + I)v(M).
Since I3 + - -+ 4 I, is a Casimir element of U(so(q — 1)), it acts on V) as scalar multiplication:

where A is the highest weight and p is the half sum of positive roots:

A= (M1g-1,-,Mg—1)/2],q—1)5
(m—1,m-—2,...,0) ifqg—1=2m,
P = 1
m — 5)

(m—1, ... ifg—1=2m+1.

)

Then if we write the scalar ¢,, we have

[(q=1)/2]
= (NN (N2) == S (m 4 (g2~ Dyl
i=1
Since Squ(M) = (¢q — cg—1)v(M), the claim follows. O

6. Radial parts of differential operators

6.1 Radial parts, compatibility conditions

Let f be an element in Cp°(R\G/K). Then f is determined by its restriction to A because of the
decomposition G = RAK. To regard f as a function on A, we recall the notion of radial part.

Let C7°(A, Vy) be the space of Vy-valued C*°-functions on A satisfying the condition
¢(a) =n(m)p(a), Ym e RN M. (6.1)

Here M = Zk(A), the centralizer of A in K (§ 2). Then we can see that the restriction map
res|q 1 C)°(R\G/K) — Cp°(A,Vy) is a linear injection. For any linear map D : Cp°(R\G/K) —
C°(R\G/K), there exists a linear map

R(D): C.°(A, Vy) — CF (A, Vy)

satisfying R(D)ores|4 = res|q4o0 D and R(D) is said to be the radial part of D. We also call res|4(f)
the radial part of f for each f € C;°(R\G/K) and denote it by f(a) = (res|a(f))(a) for short.
According to § 4, f(a) can be expressed as

flay=">_ fula

MeGZ()\)

By the following lemma, the compatibility condition (6.1) implies that almost all fj; but one vanish.
More precisely, we have the following lemma.

LEMMA 6.1. We assume & = £y and let x be the irreducible finite-dimensional representation of
§0(&) = SO(q — 1) with highest weight X\ = (A1,..., Ajg—1)/2])- If A = (A\1,0,...,0), then any
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non-zero element ¢ € Cp°(A,Vy,) is of the form

A1 0...0

qb(a) = quo (a)U(MO)a Mo =

Otherwise, Cp°(A,Vy, ) = {0}.
Proof. Since RN M = M = SO(q — 2) (cf. Remark 3.1), condition (6.1) implies that
dxx(Kij)v(M) =0
forall 1 <1< j<q—2. Firstly if ¢ =4,
dxx(K12)v(M) = v/~1mov(M) = 0
means m1 2 = 0. Secondly if ¢ = 5, the equalities

dxx(K12)v(M) = v/ ~1mq ov(M) = 0,

1
dxx(Ka3)v(M) = 5\/(772173 —my2)(mig+mi2+ 1)U(M14:2)
1 _
— 5\/(7711,3 —mi2+ 1)(m173 + ml,g)v(MLQ) =0

and the conditions for the Gel’fand—Zetlin patterns
mig = mi3 > |mogl, mig=mig > —mig, Mia > Moyl

imply mi 2 = mi 3 =mao4 = 0and m; 4 > 0. Since the action of dx)(K; ;) and the conditions for the
Gel'fand-Zetlin patterns are ‘the same’ for any ¢, we can prove m; ; = 0 except for the component
m1q—1 in Gel'fand-Zetlin pattern M by induction on ¢ for the general case. O

6.2 Radial parts of differential operators

To write down the differential equations which characterize Siegel-Whittaker functions, we calculate
the radial parts of Cy and Cy. For X € g and f € C*°(G), put

(XF)(g) = 5 (F(gexp(tX)

t=0

and we extend it to the action of U(gc) in the usual manner.

PROPOSITION 6.2. Let a = exp(logai Ay + logasAs) € A. If we use the symbol 0,, = a;(0/da;)
(i =1,2), then for ¢ € C°(A, Vy),

(R(Ai)p)(a) = On;d(a) (i =1,2),

(R(Xi)¢)(a) = 21V =1&1a1¢(a) (1 <i<q—2),
(R(Z1)$)(a) = mV=1(& — &g)aray " d(a),
(R(Z2)¢)(a) = mvV/=1(&1 + &g)arazg(a).
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Proof. We only prove the formula (R(Z1)¢)(a)

(R(Z)6)(a) = S olexpt(aZia™) - a)lmo
d

= Eqb(ns(%ala;ltv 0) s aov _%alaQ_It) ’ a)|t=0
d _
= oy exp(mv-laia & = E)t)li=0d(a)
=7mv—-1(& — fq)a1a2_1¢(a).
We can verify the others in the same way. O

PROPOSITION 6.3. We assume £ = &y for the unitary character of Ns. Then

CL CL2
(ROP)6)(0) = 2 (00, 0)(a) + 2

a3 — (a3 — 1)2
Here F; j = Eij2 42 — FEjioi42 (1 <i < j < q—1) are generators of so(&).

s (AX(FZ_1))o(a) (1<i<q—2).

Proof. We can easily find
Yi = —t(az2)Fig—1 + s(a2) " (Ad(a™ ") Fig-1),
with t(a) = 1+ c(a)/s(a) = 2a/(a — a='). Then
V2 = t(a)?F2,_, + s(a2) 2(Ad(a~)Fyg1)?
— s(a2) " t(az) {Fig-1(Ad(a™ ") Fig-1) + (Ad(a™) Fig-1)Fig-1}
= t(az) Az + s(az) *(Ad(a™")Fi4-1)* + t(as) qu 1—28(a2) "t(ag)(Ad(a™")Fig-1)Fig1.
By using

d d
(R(Ad(a™)Y)g)(a) = S 0(exp(tY)a)l—o = x(exp(tY))li—0¢(a) = dx(Y)¢(a)
for Y € s0(£) and Proposition 6.2, we have the assertion. O

Now we write down the radial parts of Cy and Cj.

PROPOSITION 6.4. We assume & = &y for the unitary character of Ng. Under the same notation as
in Proposition 6.2, the radial parts of Cy and Cy are given as follows:

a% +1 4a3

(R(C2)9)(a) = |0z, + 82, — 4y + (¢ — 2)m5 —2n%af(a3 + a3 %) + msq ¢(a)
L 2 2
and
a2 1
1
(R(C1)g)(a) = 4631822 +4(g-2) g 1621% 490,03, — 5(a = 1){adg, + (¢ - 12)93,}
2
+{osrat(d - %) - 100 - 925 Lo,
1
{ 4qr? al(a2+a2 ) — 8(q — 2)7? a1+3q 2(q 1)}8a1
+{ata -2 - %) - J- - 26- 195 o,
+ 47 al(a% ) + 3q(?q - 19)7r al(a2 +ay ) + 872 (g—2)(qg— 3)a%
4“2 2 2 2 e 1
+ W {48a1 —4¢0,, —4m*ai(a2 —ay )" — g(q —1)(g—12) ¢ Sy | p(a).
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Proof. By Proposition 4.1,
Cy = AT+ A3 — qA1 — (¢ — 2 A2+ 2{Z] = Z1(Z1 — Z1) + Z3 — Zo(Za — Z )}
+Y X7 - XX = X ) + Y2 = Yi(Y, - Yo) = Y K
i i<j
Since f € Cp°(R\G/K) is annihilated by U(gc)t and ge,U(gc) (because of the assumption on §

and Proposition 6.2), we have

Cy= A} + A} — qA1 — (¢ —2)As + ) Y2 +2(Z1 + Z3).

7

In the same way as above, we arrive at
Cy =4A3A3 — 8(Z3 — Z3) A Ay + A(Z1 + Z3 — 277 73) — 4(q — 2) AT Ay — 4g A A3
+4qZ2 A1+ 4(q — 2)Z3 Ay + 4qZ2 A1 — 12(q — 2)Z3 Ay + 8(q — 2)Z1 Zo( AL + As)
— 39(q = 1)AT — 3(¢ — 1)(q — 12)43 + 4(q — 2)g A1 42
— 2q(7q = 19)(Z} + Z3) — 8(qa — 2)(q — 3) 21 23
+2¢%(q — DAL+ 3(q — 1)(q — 2)(g — 12) 4
+ {447 — dqA + 427 +AZ5 — 82175 — 5(q¢ — 1)(q — 12)} ) Y7

By using Propositions 6.2 and 6.3, we obtain the formulas. U

6.3 Eigenvalues of C2 and Cy

To find differential equations for Siegel-Whittaker functions, let us compute the eigenvalues of Cs
and Cy, that is, ¢, (C2) and ¢, (Cy), where ¢, is the infinitesimal character of the class one principal
series representation m, (§ 3.1). Since ¢, is trivial on nU(gc) and U(gc)¥, we have

¢ (Ca) = ¢y (A7 + A5 — gAy — (g — 2)As)
and
¢, (Cy) = ¢, (4AT A} — 4(q — 2)AT Ay — 4qA 1A% — Lq(q — 1) AT — 1(q — 1)(q — 12) A}
+4q(q — 2)A1As + 2% (¢ — 1) A1 + 2(q — 1)(g — 2)(g — 12)Ap)

by Proposition 4.1 and the calculation in the proof of Proposition 6.4. In view of ¢, (A1) = v1 + ¢/2
and ¢, (As) = vo + (¢ — 2)/2, we get our next lemma.

LEMMA 6.5.

2
q
Cy(02):’/%+’/22—5+q—1,

1 1
e (Cy) = 422 — g(4q2 —13¢+12) (V2 +12) + E(5q4 — 30> + 80¢2 — 100q + 48).

7. System of partial differential equations and explicit formulas
for Siegel-Whittaker functions

7.1 System of partial differential equations

Summing up the results of previous sections we obtain a system of differential equations for Siegel—
Whittaker functions.
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THEOREM 7.1. We assume § = &y and A = (A1,0,...,0) for the highest weight of x. Let f(a) =
>meczoy fm(@u(M) = fay(a)v(Mo) be the radial part of the Siegel-Whittaker function of

type (my;&o, X)) Further, we introduce new variables given by y = (y1,y2) = (7Ta1a2_1,7ra1a2).
Then far,(y) satisfies the following differential equations:

2X1 (A1 + ¢ — 3)y1y2 1 ¢
plo _ A = (22 -L g1 , 7.1
oY AT )= (s d - S B, ()
4N (A1 +q—3)y1y2 ~(q)
D(Q)_ 1 Dq
|: 2 (y1 — y2)2 s [ fuo(y)
—9 —9 —9 9
= (n+ 52 e+ F2) (-n+ 52) (e 152 ) ) (72)
Here
2 2
@ 20 5 0 ylyz<3 5) 2, 2
D\ =2 42 4 (-2 — = — ) = (P +2),
e Ry (a )yl_y2 9 9 (y1 +v3)
4 4 4 3
(q) 40 4 0 99 O < 2(q—2)y2> 30
D =yt 4yt 22y + (44 222 )8
2 Yoyl ~ oyl T2 0y20y3 yi—ya ) Oy}
2(q — 2 P 20q—2 o3 2(q—2 o3
+<4_ (g )y1> 39 (g )yly%yQ T (¢ —2)y> 2 2
Y1 — Y2 0y Y1 — Y2 0y 0y2 Y1 — Yo 0y10y3
82
22— ) —qlqg—3) — 2(g — 2)(q — 3)—2 }2—
{ (yi —y2) —alg—3) —2(q — 2)(q )yl_y2 Yi gy
+{2(11%—?;5)—Q(q—3)+2(q—2)(q—3) & }yéa—i
y1—y2) 7 0y;
B
# {2 200 - 203 - 20— 2 p -
Y1
0
+ {—2(q —2)y —4y3 —2(q — Z)ylyz}yza—
Y2
+ (Wi —3)* +ala—3) (i +v3) + 2(¢ — 2)(q — 3)y1y2,
and
DY = B2 —qBy — (n — ) +q - 1,
with

b0
vy T Py

Proof. We get differential equations for fr,(a) by using Proposition 6.4, Lemma 6.5 and S,v(My) =

—A1(A14+¢—3)v(Mp) (see Lemma 5.1). We remark that (7.2) can be deduced from R(C})f = ¢,(C)) f

with Cf = 2Cs + £q(q — 1)Co. O

The validity of our calculations is supported by [0S95]. If we denote by D; and Do the differential
operators of the left-hand side of (7.1) and (7.2) respectively, we can find that D; and Dy are
commutative as differential operators. On the other hand, [OS95] implies that Dy can be uniquely
determined (up to Dy, D%) by the commutativity D;- Dy = Dy - Dy and the invariance of the action
of the Weyl group on (y1,y2).

If we put ¢ = 3 in the above system, it agrees with the differential equations satisfied by class
one principal series Siegel-Whittaker functions on Sp(2,R) (see [Niw91, Ish02]).

We can show the following in the same way as in [Ish02].
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1) The singular divisors of the system are y; = 0, y2 = 0 and y; —y2 = 0. Since they are not normal
crossing, we blow up C2 at the origin (y1,y2) = (0,0). If we consider the formal power series
solutions and compute the characteristic indices, it turns out that the system in Theorem 7.1
is holonomic of rank 8.

2) If we assume vy, and v £ v, are not integers, so that m, is irreducible, then there exists a
four-dimensional space of holomorphic solutions along the singular divisor y; — iy = 0, that is,

dim(c HOIH(97K)(7TV7K, c Indg(n)) <4

More precisely, let f(y) = >_,, >0 CmntyT T (ya/y1 — 1) (co # 0) be the formal power
series solution along y; — y2 = 0. Then the characteristic indices are

(t1,72) = (Fv5 + q/2, M), (Vi + q/2, = A1 — ¢ + 3).

3) If we write the holomorphic solutions along y; — y2 = 0 corresponding to 70 = A\ as f(y) =
> om0 Pn(y1)(y2/y1 — DMF™ (o(y1) # 0), the boundary value @g(y1) satisfies the fourth-order
differential equation:

—4y7(0 — M —q+3)(0 =M\ —q+2)+ H <9+Vz‘— g) <9—I/z‘— —>]900(y1) = 0.
i=1,2
Here 6 = y1(d/dy1). The basis of the space of solution is constructed by Meijer’s G-functions
(see [Erd53, 5.4]). Further, up to a constant multiple, there exists a unique solution which
decreases rapidly as y; — oo, which is of the form

M+qg—1 A +gq
2 ’ 2
1
’ g Y2 q Vi g 3
4 it 24 i 274 274 2
We remark that Niwa [Niw91] found an explicit integral representation for the solution mentioned
in item 3 in the case of ¢ = 3.

7.2 Reductions of the system of differential equations
As a result of the following, we can reduce the problem to the case ¢ = 3 (cf. [Ish03, Theorem 3.2]).

PROPOSITION 7.2. Under the same assumptions as in Theorem 7.1, if we put

(g=3)/2
_ Y1y2
Fun) = () ),

then g(y) satisfies the following:

oy - B =T (0 40— 2ot (7:3)
[ D@ — (2A1(Jyrlq_—y§;zy1y2 Dé?’)} a(v) < + % (,,2 + ) <_yl + %) <_y2 + %) g(y), (7.4)
and
[E;l —6E; + {—Q(yl —y2)® = (i +13) + 277 E,

+{2(y1 )+3(V1+V2)—_}Ey+(yl ya)* + <V12+V22_g>(yl_y2)2

T <u1 + g) <u2 + g) (—yl + g) <—V2 + g) a2 (831 + %)Tg(g) —0.  (75)
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Proof. 1If we write the multiplier A = (y1y2/(y1 — yQ))(q_3)/2, then

A—1<i>kA: <i_ ¢—3 Y2 >k
oy oy 2 yilyr—y2)/)

_ o \* 0 q—3 Y1 k
o) ()
0yo 0y 2 ya(y1 — y2)

By using these formulas we get (7.3) and (7.4). Equation (7.5) can be deduced from (7.3) and (7.4)

by eliminating the terms (2A\; + ¢ — 3)%y1y2/2(y1 — y2)?. Note that Di(;’) and 12/ (y1 — y2)? are
commutative as differential operators. ]

We notice that Equation (7.5), which does not appear in the previous paper [Ish02], is useful to
examine the space of solutions.

Now we introduce new variables © = (21, 22) = (y1 — y2, %1 + y2) and put g(y) = (2?2 — 22)h(x),
after [Niw91]. Then the system in Proposition 7.2 is rewritten as follows:

9?2 H? H? 0 0 222 9
[(x%+m%)< + >+4$1$2 +4< 7"‘1’2—)"‘332 g

8 2 8 2 81‘181‘2 8 1 81‘2 sl 81‘1
2M +q—3)% 22 — 22 1
~ e+ PN ST 2y 4 S =0 (7:6)
4 xy 2
84 a4 84 84
2.2 2 2
— 4+ — 2
[%%(8;3% + 83:%) + 2z122(27 +x2)<8$§’83}2 T 83:1896§’>
4 2.2 4 84 2 83 73
—+ (le —+ 41’11’2 + $2)W + .’1}'1(1’1 + 73:2)8 3 + 81’2(2.’1}'1 + .’1}'2)83:%8:1;2
67 + 172223 + x5 03 5 o O? 9 5 02
* T 8m18x% + 222(327 + m2)8x§ 2(m1m2 le 5m2)8z%
21‘2 82 82
_ x_l( 1 +x 1,’,132 12$1 21’%)m 2(1’%1’2 3[,171 41‘3)8;13%

4 2,..2 2
.’1}'1 +7‘T1$2 — 22:1 — 21’2 a 2 2 8
- 9 91,3 9L
1 8 ™ 1’2( Xy +3§'2 )8;];

2
1 1 1 1
2 2\ _ L 1Y\ LY\ +
+ (z3a3 — 227 — 4a3) <1/1 + 2> <V2 + 2)( v+ 2>< vy + 2>

+(2)\1+q—3) 3 —
4 acl

(E2 + F, — xl)] h(z) =0, (7.7)

[(Ez +2) —6(E, +2)3 + {—zxf — (i) + 2—27}(Ez + 2)?

27 3 3 3 3
+ {295% + 32 +1d) — 7}(@ +2) + <u1 + 5) (,,2 + 5) <—u1 + 5) (—1/2 - 5)

2

0 0 1
— (] —a3)? 02 T 4(a? %)3328—3:2 +ai+ (V% + 13— 5)1’% — 21’%} h(z) = 0. (7.8)
2
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Here we use the notation

0
E,=x1— —_—
T 961(%1 + T2 o7s

7.3 Explicit formulas for Siegel-Whittaker functions

We have reduced the problem to the case ¢ = 3. However, Niwa’s explicit formula does not work in
the case of even ¢ because \; 4+ (¢ — 3)/2 must be integer to apply his formula. Therefore we take
another approach to find explicit formulas.

Let us consider the formal solution around x1 = y; — y2 = 0 and put
h(z) = pn(z2)a]™ (o #0).
n>0
Then we get 7 = £(A\1+(¢—3)/2) and the following difference-differential equations for ¢, = ¢, (x2)
from the differential equations for h(x):
(n+2)(n+ 27 + 2)23¢0n42 + [250) +4(n + T + 1)32¢0),
{25 +n?+2(r+)n+2r(t+1) — (Vi +v3) + 51en] + (Pn_2 — pn-2) =0, (7.9)
(n+2)(n+27+2)250 +n+7+2)(0 +n+ 7 + 3)Pni2
+ [23{—2(n+ 74+ 1)0 — 2n? — (47 +5)n — (1 + 1)(7 + 4)}
+O@+n+1)@+n+7+1){2n+7+1)0+n+7(1+1)}
= (4 )2+ ) (v + 3) (2 + 3)len
+ @2+ {-20>-2(n+7)0 —n—7(7+ 1)}

+ 25200 - 1)@ +n+7—-1)O0+n+7—2)]pn2=0, (7.10)
5 5
{—x§(9+1)(6+2)+ 11 <«9+n+7'+§+1/i> <9+n+7‘—|—§—1/i>}90n+2
i=1,2

+ {—4(n+7’+1)9—2n2 — (4T+6)n—27-2 —6T+(1/12—|—1/22) — g}¢n

+ (Pn—2 — Ph_2) = 0. (7.11)
Here we use the notation 0 = xo(d/dzs).

As in [Niw91] and [Ish02], let us examine the holomorphic solutions corresponding to 7 =
A1 + (g — 3)/2. We firstly obtain a fourth-order differential equation for ¢g(z2) by substituting
n = —2into (7.11):

—25(0+1)0+2)+ [] <9+>\1+%—1+1/i> <9+)\1+%—1—Vi>]cpo(x2) = 0.
i=1,2

The space of solutions is constructed by using Meijer’s G-functions. In particular, there exists a
unique (up to a constant) solution which decreases rapidly as x9 — oo:

1
2 -0
po(za) = Ga | 2 2
= —)\1+1/1+1_g —)\1+V2+1_g —)\1—V1+1_g—)\1—1/2+1_g
2 4’ 2 4’ 2 4 2 4

From now on we deduce an explicit formula of ¢, (x2) (n > 1) corresponding to the above yg(x2).
By applying (7.9) we can find ¢,, inductively. However, we have to check that such a solution satisfies
(7.10) to state the multiplicity-one property of Siegel-Whittaker functions. It is immediately seen
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that ¢, = 0 for odd n. For even n we consider Mellin transformation of ¢, (z2). If we put

Mn(s):/o gpn(ajg)ajg_l dxs,

then we can easily get the following recurrence relations from (7.9), (7.10) and (7.11):
(n+2)(n+ 27+ 2)Mpi2(s +2) — My(s+ 2)
+{? = n+47+3)s+n? +2(7+ Dn+27(1 + 1) — (] + v3) + L1 M, (s)
— Mp_o(s)+ (s —2)(s — 1) M,,_2(s — 2) =0, (7.12)
n+2)n+27+2)(—s+n+7)(—s+n+7+1)Myi2(s+2)
+{2(n+71+1)s—2n% - 47+ )n —7(1 + 1)} M, (s + 2)
+[(=s+n+7)(-s+n+7+1){2n+7+1)s+n+7(r+1)}
= (14 3) (2 + 3) (=11 + 3)(—v2 + 3)|Mn(s)
+ My_o(s+2) + {25 +2(n+7)s —n — 7(7 + 1)} My,_o(s)

+(s=2)(s—1)(=s+n+7+1)(—s+n+717)M,_2(s—2) =0, (7.13)
—(s+ 1)sM,12(s+2)

5 5
+l_1[2 <—8+n+7+§+yi> <—3+n+7'+§—1/i> My yo(s)
=1,

+ {4(71 + 74+ 1)s —2n? — (47 + 6)n — 27% — 67 + (v} + 13) — g} M, (s)
(7.14)

By solving the difference equations (7.12), (7.13) and (7.14), we obtain the following proposition.
PROPOSITION 7.3. The Mellin transformation M, (s) of p,(x3) is given by

MQk(S) = Pk(S)Qk(S), M2k+1(8) = 0.

+ My_2(s) — (s —2)(s = 1) Mp_2(s — 2) = 0.

Here
-1 s s
o2k s, >\1+qT H §_k+ai7§_k+bi
Pi(s) = —=T T ,
VTk! g—1] 4 f_ks+1_k
k+)\1+T i=1,2 5 —
K, g—k+ai, %—k+bi
Qr(s) = QL()Qi(s), Qi(s) = sF s st 1 L,
- —k —k
2 9
with
T 1_|_Vi —)\1+I/Z'+1 q b T 1 V; _)\I_Vi+1 q
a, = —— — — _—_—— — — = —— — = — = —-— — —,
‘ 2 4 2 2 4 4 2 2 4
Here we use the notation
n m
ai, . y Ap
el = e /Tl
=1 =1
and
a, az, ag a1 +n, ag+n, az+n, by, by | 2"
3F2< b1, bs Z> - Z}F[ at, as, as, b1 +n, bo+n nl’
n—=

the generalized hypergeometric function.
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Proof. We use induction on k. By using the formula

o0 al, ag
/ Gg"g (az ’ 2 ldr =T
0 b

b17 b27 b3) b4

b1+ s, bo+s, by +s, by+s

a+3S8, ax+ s

we have

S
4+ as, =+ by, §—|—b2

Then the claim for n = 0 is obvious from T'(s) = 2517~ 1/2T(s/2)T'((s + 1)/2).

Since Moy (s) is uniquely determined by (7.12), we have to check that P (s)Qx(s) satisfies (7.12)
and (7.13) to prove the proposition. First we prepare two sublemmas on the generalized hypergeo-
metric functions. We notice that every 3F5(1) in our calculation is a finite sum of fractional gamma
functions.

LEMMA 7.4. Let k be a positive integer. Then

3F2 <—k‘, ai, ag 1) —3F2 <—(k‘ - 1), ai, ag

bla b2 bl, b2 b1b2 b1+1, b2+1

1) _ _a1a23F2 <—(k‘— 1), ai —I—l, ag—l—l‘ 1> ‘

LEMMA 7.5. Let k be a positive integer and Q' (s) be as in Proposition 7.3. Then

s(s+1)Q%(s +2) — 4k(k +7)QL_,(s) — (s — 2k)(s — 2k + 1)Q%.(s) =

The proof of Lemma 7.4 is immediate from the definition and the proof of Lemma 7.5 can be
obtained by induction on k and Lemma 7.4.

Now we return to the proof of Proposition 7.3. We begin with (7.12). If we substitute n = 2k
and Moy (s) = Pi(s)Qk(s) into the left-hand side of (7.12), it is equal to P(s) times

e+ )+ 7+ ) I g (opy) - HEED go)

+{—3(3+1) 4k(k + 1) + Z (s — 2k + 2a;) (s—2k+2bi)}Qk(s)
=12

+(8—1)(8—2)%Qk 1(s —2) — B (1())Qk 1(s)
1 o(s — 2k 4+ 2a;)(s — 2k + 2b;
= s(s+1) [Qk+1(s +2) — Quls) — HZ—“((S — 2k)2+(3 —)2(k: - 1)2+ ) k(s + 2)}
o o(s — 2k 4+ 2a;)(s — 2k + 2b;
+ 4k(k +7) [Qk—l(s —2) — Qi(s) — Hz_u((s ~ %)2—:8 —)Q(k n 1)2+ ) k—l(S)}

+ 3" (s — 2k + 2a;) (s — 2k + 2b;) Qi (s).
i=1,2

849

https://doi.org/10.1112/50010437X04000314 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04000314

T. IsHII

Now we apply Lemma 7.4 to the last terms of the first and second lines. Then the above is equal to

s(s + DQk(5)(Qk11(s +2) — Qi(5)) + QF(8)(Qhyr (s +2) — Qi(5))]
+4k(k + 7)[Qk(s)(Q7_1(s — 2) — QF(s)) + QR(s)(Qk—1 (5 — 2) — Qi(s))]
+ ) (s — 2k + 2a;)(s — 2k + 2b;) QL (s) Q3 (5)
i=1,2

= QL(S)s(s + 1)@ (5 +2) — Q2(s) + 4k(k + 7 (@21 (5 — 2) — Q(s))
+ (5 = 2k + 2a2)(s — 2k + 2b2) Qi (5)] + QR ()[5(5 + 1) (Qp1 (5 +2) = Qi(s)
+4k(k +7)(Qr_1(s — 2) — Qi(8)) + (s — 2k + 2a1) (s — 2k + 2b1) Q. (5)].

Substituting @} (s +2) — Q}.(s) and Q},_, (s — 2) — Qj,(s) into the right-hand side of Lemma 7.4:

- - (s — 2k + 2a;)(s — 2k + 2b;)
7 2) — O - _
Qk+1(3+ ) Qk(s) (s—?k‘)(s—?k‘—l—l)
s — 2k + 2a;)(s — 2k + 2b;)
( 2L Qi 1(9)

(s —2k)(s —2k+1)
We can verify that the above is equal to zero from Lemma 7.5. Thus we have proved that the
recurrence relation (7.12) implies that Mg (s) = c¢P(s)Q(s) with some constant c.

Next we check the compatibility, that is, Mok (s) = Pi(s)Qr(s) satisfies (7.13) and (7.14). If we
compute the difference of (7.12) and (7.14), we get

{4k + D)k + 7+ 1) — s(s + 1)} Mg (s +2)

5 5
+ -1_1[2 <—3+2k+7’+ 5 —|-I/Z'> (—s+2k+7+§ —ui> Mojio(s)

— May(s+2) + {s(s + 1) — 4k® — 4(7 + 2)k — 4(1 + 1)} Mo, (s) = 0. (7.15)
Then we check (7.15) to prove (7.14). In the same way as in (7.12), the left-hand side of (7.15) is
Py(s) times

—s%(s 2
<4(/€ + 1)((/;;17) Ty Hee 1)> Qry1(s+2) +
+ {s(s 4+ 1) = 40k + Dk +7 + D}Qu(s)
8(8 + 1) Hi: ) (S — 2k + 2@2-)(3 — 2%k + Qbi)
B (81—22k)2(s — 2k 4 1)2 Qr(s+2).

We rewrite the last term as —s(s+1)(Q} 1 (s4+2) — Qi () (Q7,4 (s+2)—Q7(s)) by using Lemma 7.4.
Then the above expression becomes

—s2(s 2
<4(k R 1)((1;;17) ot s(s+ 1)> Qri1(s+2)Q7 1 (s +2)

S — —1)2 S — —92)2
( 4(215 T 11))(k§ = 0 2 k()@ (s) = 4lk + 1)k + 7+ DQLQE)

+ 5(s + 1)(QL()Qhy1(s +2) + Qi (s)Qh 11 (5 +2))

T T |6 % U - 2= 2P0k (@)

— T {s(s + DQiy1(s +2) — 4k + 1)(k + 7+ 1)Q}(5)} |-

i=1,2

Qh(s+2),

Qi—1(s —2) = Qi(s) =

(s — 2k — 1)%(s — 2k — 2)?
4k+1)(k+7+1)

Qr+1(s)

This is equal to zero by means of Lemma 7.5.
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Finally (7.13) follows from (7.12) and (7.14). Because, if we denote the left-hand sides of (7.12),
(7.13) and (7.14) by Ri(s), R2(s) and R} (s) respectively, then we have

R} _o(s)+ R} o(s)+ R2(s) — (k+7 —s)(k+7 — s+ 1)RiL(s) = 0.

Thus we complete the proof of Proposition 7.3. O

By virtue of Proposition 7.3, we give an integral representation of the Siegel-Whittaker function.
We first apply the formula

T (—k‘, 1, €2

_ d17 d2
d17 d2 1> =1 |:Cl7027d1 - Cl7d2 —C

1 p1
x / / e (1 — 810 (1 — ) (1 — ) d*t du,
0J0

for Re(d;) > Re(¢;) > 0 (1 = 1,2) (see [Sla66, p. 108]). Here

dt
d't = .
11—t
Then we have
-1
() = 2o s ht g
MQk S) = I -1 1 1
ﬁk' k+)\1+q—, —ap, —ag, —bl-l-—, —b2+—
2 2 2
1 rl
% H <// tf/2—k+aiu:/2—k+bi(1 _ti)—ai(l o ui)—bi+l/2(1 o tiui)k d*ti d*u1>
0J0

i=1,2

By the Mellin inversion formula and

1 y+v—Too T —s To
<7> ['(s)ds = exp <—7>
21/ =1 )y e titaurug t1taurug
for Re(s) > 0, we have

-1
- N
2
oor(T2) = WP 1 1

q—1
k+)‘l+?7 —ap, —a, _b1+§7 _b2+§

S (e o i)
0Jo Jo Jo t1touiug t1touius
< T Euli @ =) (1 = wy) 02 At d )

i=1,2

for —\1 —q/2 < Re(v;) < A1+ (¢ —2)/2 (i = 1,2). Thus we obtain

hz) =Y pon(wp)ayt T2
k>0

2>\1+(q—3)/2r A+

B 1
VT —a1, —az, —b1+5, —ba+ 5

https://doi.org/10.1112/50010437X04000314 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04000314

T. IsHII

where
1,1 plopl
I(z) :/0/0/0/0 Ii+(-3)/2 xl\/(l tzlt?ztlg)zflluz = P <_\/%>
» H (;;1/2 1/4 uz/z 1/4( t)(Al—ui—l)/2+q/4(1_ui)()\1+ui)/2+Q/4
i=1,2
X (1 = tyuy) M2 gy, d*uz‘)-
Here

B 0 (z/2)2n+u
L(z) _nzzg)n!r(u—i—n—l—l)’

the modified Bessel function of the first kind. To perform more integration, we make the change of
variables t; — (1 — u;)t; + w;, u; — u;/((1 — u;)t; +w;) for ¢ = 1,2. Then we have

I(z) = /Ol/ol/ol/olhﬁ(q—?,)/z (l’l\/<1 - u%) <1 - u%))) P <_\/212—U2>

(=A1+v4)/2—q/4
H (M +vi)/2+q/4 NO—vi—1)/2+q/4 [ 4. Ui
Xz 12|: ( tZ) <tl+1_ui>

1—u vi/2+1/4

Uj

After the integrations with respect to t; and to by means of the formula

1
Vi1 o\ A koA v, p v, —A _1
/0 (1 —a)(x+a)" d*z =a'T [V‘HJ o Fy <V+,u‘ a>
for Re(v) > 0, Re() > 0 and |arg 1/a| < 7 (see [GROO, p. 315, 3.197(8)]), we obtain

AM+vio g )\1—%‘—1_1_(]

x/l y, oIV (o ) e (-2
0 Jo MR o uy Us P Vurug

A+ vy q M-V q

A1/2+(g+1)/4 = + =
L—u \™ ’ 1
XH ( u> ) 2 4 _% 41__' &g
i=1,2 A1+ qT e

for =A\1 —q/2 <Re(v;) <M+ (¢—2)/2 (i =1,2).
Remark 7.6. This condition for the parameter of class one principal series covers the unitary case,
that is, Re(v1) = Re(12) = 0.

8. Main result

We summarize the results of the previous sections and state the main theorem. Let
SW(my; x, )™ = {f € SW(m,;x,&) | f(a) decreases rapidly as ajag,a;/az — oo}.
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Moreover, let C*° Indg(n)rap be the subspace of C*° Ind%(n) with the same property as above.
Then we can see that C™ Ind% (7)™ is a (g, K )-submodule of C* Ind% () (cf. Proposition 6.2) and
Hom g sy (Hr,,, i, C* Ind(1)™) 2= SW (m,; x, £)™P.

Thus we arrive at our main theorem in this paper.

THEOREM 8.1. We assume vy, vo, V1 £ are not integers for the class one principal representation m,
and & = & for the unitary character of Ng. Let x be the irreducible finite-dimensional representation
of SO(§)(= SO(q — 1)) with highest weight A = (A1,..., A(g—1)/2))-

1) If X is not of the form (\1,0,...,0), then
dimc Homg oy (0,10, C™ Indg(n)) = dim¢c SW (7,5 xx, &) = 0.
2) If A\ = (A1,0,...,0), then
dim¢ Homg oy (0,50, C™ Indg(n)rap) = dimc SW (7,5 xa, &0)™F = 1,
and let f(a) = fu,(a)va, be the radial part of f € SW(m,; xx,&0)™. Then f(a) is of the form
f(a) = (Q+1)/2( —1 ag)(3 q)/2

// Iy i) <m1( —ag)\/<1_uil> <1_ui2>>exp<_wa1ijj:_u+2a2)>

AL+ A — v

A1 /2+(q+1) /4 SR S Ik 1 du

< 7] < > JF 2 L2 a0, L i
i=1,2 )\]_+ q;l Uj U'L(]._Ul)

for —A\1 — q/2 < Re(v;) < A\ + (¢ —2)/2 (i = 1,2) with some constant c.
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