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It is known that the disintegration of vertical liquid curtains (sheets) is affected crucially
by the amplification of free edge holes forming inside the curtain. This paper aims to
investigate the influence of the hole expansion dynamics, driven by the so-called rim
retraction, on the breakup of a liquid curtain, in both supercritical (Weber number We > 1)
and subcritical (We < 1) conditions. The analysis is based on three-dimensional direct
numerical simulations. For a selected supercritical configuration, the steady flow topology
is first analysed. The investigation reveals the classic triangular shape regime of the steady
curtain, due to the surface-tension-induced borders retraction towards its centre plane.
The unsteady dynamics is then investigated as the curtain response to a hole perturbation
introduced artificially in the steady flow configuration. The hole evolution determines
a rim retraction phenomenon inside the curtain, which is influenced by both capillary
and gravity forces. In supercritical conditions, the hole does not influence the curtain
flow dynamics in the long-time limit. By reducing the Weber number slightly under the
critical threshold (We = 1), the initial amplification rate of the hole area increases, due
to the stronger retraction effect of surface tension acting on the hole rims. The free hole
expansion in fully subcritical conditions (We < 1) is investigated finally by simulating
an edge-free curtain flow. As We decreases progressively, the hole expands while it is
convected downstream by gravity acceleration. In the range 0.4 < We < 1, the subcritical
curtain returns to the intact unperturbed configuration after the hole expulsion at the
downstream outflow. For We < 0.4, the surface tension force becomes strong enough to
reverse the gravitational motion of the hole top point, which retracts upstream towards the
sheet inlet section while expanding along the lateral directions. This last phenomenon
causes finally the breakup of the curtain, which results in a columnar regime strictly
resembling similar experimental findings of the literature.

Key words: thin films, capillary flows, coating

+ Email address for correspondence: matteo.chiatto @unina.it

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,

distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original

article is properly cited. 968 A20-1

L))

Check for
updates


mailto:matteo.chiatto@unina.it
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.543&domain=pdf
https://doi.org/10.1017/jfm.2023.543

https://doi.org/10.1017/jfm.2023.543 Published online by Cambridge University Press

M.R. Acquaviva, A. Della Pia, M. Chiatto and L. de Luca

1. Introduction

The study of gravitational liquid curtain (sheet) flows issuing into an initially quiescent
gaseous environment is particularly relevant for both technological and scientific aspects.
On the one hand, working with steady liquid sheets falling under the influence of gravity
is fundamental in several industrial applications, such as coating (Weinstein & Ruschak
2004) and paper making (Soderberg & Alfredsson 1998) processes. On the other hand,
the unsteady dynamics of curtain flow configurations is a matter of both historical (Brown
1961; Lin 1981; Weinstein et al. 1997; de Luca 1999) and ongoing (Torsey et al. 2021;
Chiatto & Della Pia 2022; Colanera, Della Pia & Chiatto 2022) scientific studies. Among
the challenges that remain open nowadays, there is the lack of an assessed theory able to
predict the critical flow rate, namely the minimum value of the flow rate at which breakup
phenomena of the curtain start to occur. The key dimensionless parameter involved in the
problem is the Weber number We, representing the relative importance between inertia and
capillary effects. The pioneering experimental investigation carried out by Brown (1961)
revealed that a necessary condition for the stability of the curtain is We > 1. He found the
minimum liquid flow rate to guarantee the sheet stability by noticing that equilibrium
must be maintained at a free edge between the inertia and surface tension forces. In
particular, when a free edge appears because of the formation of a hole, such a hole
does not grow if the sheet is in supercritical conditions (We > 1), while it may produce
the curtain disintegration in the subcritical regime (We < 1). In the latter case, the liquid
curtain exhibits an extremely rich variety of unstable behaviours, with several qualitatively
different flow regimes that can be observed experimentally (among others, see Pritchard
1986; de Luca & Meola 1995; Marston et al. 2014).

Therefore, it is evident that a topic of great importance in the analysis of liquid sheets
disintegration is the dynamics of free edge holes forming inside the curtain flow. Various
two-dimensional models have been proposed to face this problem from theoretical and
numerical points of view (Sunderhauf, Raszillier & Durst 2002; Savva & Bush 2009;
Deka & Pierson 2020; Agbaglah 2021a; Sanjay et al. 2022). However, these investigations
did not take into account the influence of gravity acceleration on the free-edge retraction
process. On the same research line, the early paper by Roche et al. (2006) and the recent
contributions by Karim, Suszynski & Pujari (2021) and Kyotoh, Sekine & Roknujjaman
(2022) have studied the problem experimentally. Roche et al. (2006) focused on the liquid
curtain response to localized perturbations of two different kinds, namely surface waves
or free edges behind a thin needle touching the curtain, with a special emphasis on what
happens near the breakup limit. The authors extracted and compared the shapes of two
kinds of wakes left behind the obstacle: the classic triangular wake of standing sinuous
waves, and a stationary hole involving two free edges pinned on the needle. It was found
that the two perturbations behave similarly for high enough We values, but very differently
when the Weber number reached the critical value We = 1 by decreasing the inlet flow
rate. In particular, the sinuous wake disappeared, whilst the hole-induced wake became
rounded, and below We = 1, the hole could stay stable, oscillate or expand and break
the curtain. The last scenario was retrieved experimentally by Kyotoh er al. (2022) for
relatively low Weber number values (0.2 < We < 0.6).

The present work draws its motivation from the discussions reported above, and it is
aimed at studying the hole-driven unsteady dynamics of a gravitational liquid curtain
flow, in both supercritical (We > 1) and subcritical (We < 1) conditions. The key point
of the investigation is the use of a three-dimensional model of the flow system, which is
fundamental to account for the effect of gravity on the hole rim propagation mechanisms
inside the curtain. By performing three-dimensional direct numerical simulations with the
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volume-of-fluid method, the flow field features are first identified in steady conditions, by
looking at the curtain interface shapes and the spatial distributions of velocity components.
Afterwards, the hole-driven dynamics of the flow is analysed as the curtain response
to a hole perturbation introduced artificially in the steady flow configuration, focusing
on the combined influence of capillary retraction and gravity acceleration on the hole
temporal evolution. The differences in the flow unsteady behaviour between supercritical
and subcritical regimes are finally outlined, shedding light on the physical mechanisms
leading to the curtain breakup in subcritical conditions. The influence of the curtain
aspect ratio AR, namely the ratio between the curtain initial width and thickness, is also
investigated, including the case of infinite AR (i.e. edge-free curtain).

The work is organized as follows. In § 2, the numerical simulation framework is
presented. Section 3 discusses the flow topology obtained in steady conditions, while § 4
presents results of the hole-driven curtain flow unsteady dynamics. Conclusions are drawn
in § 5, and further details of the numerical solutions are provided in Appendices A and B.

2. Methodology
2.1. Theoretical framework and numerical modelling

The one-fluid formulation of incompressible Navier—Stokes equations (Scardovelli &
Zaleski 1999) is employed to model the two-phase flow represented by the liquid curtain
interacting with the initially quiescent gaseous environment:

auf
L=o, (2.1a)
Bxi
dur |, dul ap* 9 qup 0wy
P tu; — | =——5+rgit+t—|nlt+=]|tFo (2.1D)
ar* J 8xj ox} 8xj 8xj ox}
aC  aCu*
o A @2.1¢)
or* 8x;‘

The vectors u* = (u*, v*, w*) and g = (g, 0, 0) represent the flow velocity and the gravity
acceleration, respectively, while p* is the pressure. The force per unit volume due to the
surface tension is denoted as F, = ok *n;85, where o is the surface tension coefficient, «*
is the mean gas-liquid interface curvature, and n = (ny, ny, n;) is the outward pointing
normal vector to the interface. The Dirac distribution function §g is equal to 1 at the
interface, and O elsewhere. Note that all the dimensional quantities, except the gravity
acceleration g and the fluid material properties (0;, P4, i, Mg, O), are denoted with the
superscript x. The density p and viscosity u fields are discontinuous across the interface
separating the two fluids, namely

P = pa+ (o1 — pa)C, (2.2a)
m= g+ (u; — pa)C, (2.2b)

where subscripts [ and a refer to liquid and ambient phases, respectively, and the volume
fraction field C is equal to either 1 or 0 in the liquid and gaseous regions.

The system (2.1a)—(2.1¢) is solved using the finite volume method in the open-source
code BASILISK (http://basilisk.fr), an improved version of Gerris (Popinet 2003)
that has been used extensively and validated for several liquid jet flow problems
(among others, see Della Pia, Chiatto & de Luca 2020; Schmidt & Oberleithner 2020;
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Figure 1. (a) Schematic representation of the computational domain, and () inflow velocity profile (2.3a).
The gravity g is directed along the streamwise direction x; y is the lateral coordinate, and z is the spanwise one.

Agbaglah 20215; Schmidt et al. 2021). The code employs the volume-of-fluid method by
Hirt & Nichols (1981) to track the interface on an octree structured grid, allowing for
adaptive mesh refinement based on a criterion of wavelet-estimated discretization error
(van Hooft et al. 2018), with no special treatment required in the presence of liquid phase
breakup. The calculation of the surface tension term is based on the balanced continuum
surface force technique (Francois et al. 2006), which is coupled with a height-function
curvature estimation to avoid the generation of spurious currents. For exhaustive details
about BASILISK, the reader is referred to Popinet (2003, 2009).

2.2. Geometrical layout and problem formulation

A schematic description of the computational domain is reported in figure 1(a), where
the gravity direction is denoted by x. The domain is a cubic region extending along the x
(streamwise), y (transverse) and z (spanwise) directions, where L* = 50H is the domain
side length. The spatial coordinates x, y and z have been scaled with respect to the inlet
(i.e. at the streamwise station x = 0) sheet thickness H (namely x = x*/H), while the
corresponding streamwise u, transverse v and spanwise w velocity components have been
made dimensionless with respect to the inlet mean liquid velocity U’ (u = u*/U?).

The curtain issues into an initially quiescent gaseous environment (blue region in
figure 1) from a rectangular slot of dimensions H} x W, representing the initial thickness
(along the transverse y coordinate) and width (along the spanwise z direction) of the sheet,
respectively. The origin of the reference frame coincides with the centre of the slot, and
the curtain shape is initialized as a parallelepiped with volume L* x H} x W7 (red region
in figure 1a), which is employed to start the computation. Dirichlet boundary conditions
are enforced at the inlet: following Kacem (2017), in the liquid region (—1/2 <y < 1/2,
—AR/2 < z < AR/2, where AR = W} /H? is the sheet aspect ratio), a fully developed
parabolic velocity profile with a proper error function modification is imposed to account
for viscous effects at the slot boundaries (y = +1/2, z = +AR/2), and the conditions read

u= 3 (1 — 4y2) erf (1ﬁ - z) erf (1ﬁ + Z) ; (2.3a)
2 2 2

v=w=0, (2.3D)

c=1. (2.3¢)
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Name Relation Value
Density ratio Tp = Pa/pI 0.01
Viscosity ratio Ty = Wa/ i 0.02
Slenderness ratio e=H!/L* 0.02
Aspect ratio AR = W} /H? 40
Reynolds number Re = pUrH} [ (2441) 420
Froude number Fr= Ul.*z/(gWi*) 0.41
Weber number We = p; Ui*zHi*/(ZU) 2.5
Ohnesorge number Oh = n/\/2H} pio 0.002

Table 1. Dimensionless governing parameters and their values for the reference case.

On the remaining part of the inlet plane, namely within the gaseous phase, a no-slip
condition is imposed; the inflow velocity profile u(x = 0, y, ) is represented in figure 1(b).
The four lateral boundary planes (y = £25, z = £25) are equipped with homogeneous
Neumann boundary conditions for all variables, and on the outlet plane (x = 50) a standard
outflow condition

du Jdv Iw aC

—=—=—=—=0, (2.4a)
0x 0x 0x 0x

p=0, (2.4b)

is considered. The same u( y, z) profile enforced as inlet boundary condition (2.3a) is also
employed as the initial velocity distribution throughout the entire sheet length. We note
here explicitly that a slight modification of the initial and boundary conditions presented
above is required to obtain the last results reported in §4.3. In particular, to simulate
an edge-free curtain flow, homogeneous Neumann boundary conditions are replaced by
periodic conditions on the lateral walls of the domain. Moreover, the parallelepiped curtain
shape employed as initial condition is extended all along the spanwise direction, thus
matching the whole domain side length.

The computational domain is discretized with an adaptive mesh up to a maximum
number of 2° grid points along each spatial dimension, corresponding to a minimum mesh
size A* ~ H? /11, and approximately 134 million cells if a uniform grid was used; the
mesh resolution effect on the results hereafter presented is reported in Appendix A. Note
that recently, a resolution A*/H? ~ 6 has been shown by Agbaglah (2021a) to be valuable
in capturing holes expansion and collision in a thin liquid sheet.

The n = 10 physical quantities involved in the problem (o, pa» i1, ia> & Uf, WS, HY,
L*, o) can be rearranged in m = n — 3 independent dimensionless numbers: a possible
choice is reported in table 1 (rp, ry, €, AR, Re, Fr, We), which also specifies a set of
numerical values corresponding to the reference configuration analysed in § 3. Following
Chubb er al. (1994), the Froude number is based on the curtain width W. Note that
a different arrangement of the dimensional parameters leads to the definition of the
Ohnesorge number Oh = u/,/2H? p;o, whose value is also reported in table 1.

3. Steady flow configuration

The curtain flow steady solution for the supercritical (We = 2.5) reference case specified
in table 1 is shown in figure 2 in terms of three-dimensional interface shape (figure 2a),
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Figure 2. (a) Three-dimensional view of the liquid sheet interface. (b) Map of spanwise velocity field w in
the xz plane. (c) Profiles of w(z) at different streamwise x stations for y = 0. Steady flow, We = 2.5, AR = 40.

contour representation of the spanwise velocity component w within the xz plane
(y = 0, figure 2b), and velocity profiles at different streamwise x stations in the same plane
(figure 2¢).

Starting from the parallelepiped shape initialization described previously in § 2.2, steady
flow conditions are achieved after a computational time approximately * = 1.0 L*/U;.
In the steady flow configuration, the curtain exhibits the characteristic triangular shape
(figure 2a) outlined by previous theoretical analyses and experimental investigations
(among others, Chubb et al. 1994; de Luca & Meola 1995; Kacem et al. 2017; Jaberi &
Tadjfar 2017). The triangular shape is determined by the edges retraction and convergence
towards the central axis (z = 0), which is an effect of the surface tension force acting on
the curtain lateral edges. By inspection of the three-dimensional interface, it is possible to
observe striped patterns indicating the presence of surface capillary waves, which manifest
as stationary ripples in the transition area between the lateral edges and the planar part
of the sheet, resulting from the competition between viscous and capillary forces. The
dimensionless parameter representing the relative importance between viscous and surface
tension effects is the Ohnesorge number, which in the present case is Oh = 0.002 < 1.
This leads to the formation of capillary waves near the edges, as predicted theoretically
and numerically by Sunderhauf ez al. (2002), Savva & Bush (2009), Pierson et al. (2020),
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Deka & Pierson (2020) and Karim et al. (2021), and observed experimentally by Kacem
et al. (2017).

The spatial evolution of ripples is quantified by showing the spanwise velocity
component w(x, z) contour (figure 2b) and the profiles w(z) at different x stations
(figure 2¢) in the xz plane (y = 0). At x =35 (black curve in figure 2c¢), the velocity
oscillates between negative and positive values near the lateral rims, and it drops down
steeply in the region between the edge and the inner part of the curtain; the same behaviour
was highlighted by Sunderhauf et al. (2002) in the study of the edge retraction of a planar
liquid sheet for low Oh values (see in particular figure 8 in Sunderhauf ez al. 2002). Moving
along the streamwise x direction, further crests appear, starting from the curtain edges,
which are displaced towards the central part of the sheet due to the rim retraction (as
depicted by the black, red and blue curves in figure 2¢). As a combined effect of gravity
acceleration and rims retraction, the waves coming from the edges interfere with each
other for x > 20, producing a criss-cross pattern, as also found experimentally by Kacem
et al. (2017).

The competition between gravity and surface tension determines a streamwise variation
of the spanwise velocity w at the edges, with values ranging from 0.5 to 0.9 for x € [5, 25].
The order of magnitude of w agrees with the theoretical prediction of the rim retraction
velocity given by the Taylor—Culick model (Taylor 1959; Culick 1960), hereafter made
dimensionless by means of U:

1 2
27— 063, 3.1

Ue = —
© U o

a reference value that accounts for neither the vertical gravity acceleration nor viscous

effects. Of course, We = 1/u3 = 2.5. From figures 2(b,c), we also note that the ripples
wavelength (made dimensionless with respect to HY), estimated as the distance between
two successive peak values of w in the central part of the sheet (blue curve in figure 2(c) for
—5 < z < 5)1is approximately A, = 1.85, in good agreement with the capillary length /. =
(1/H})«/o/pig = 1.81, representing a typical length scale in flows driven by capillary
effects. A similar value A, = 1.63 has been found recently in the study of an axisymmetric
filament retraction at low Oh and high aspect ratio values by Pierson et al. (2020) (see the
discussion on page 11 of Pierson et al. 2020), who scaled the wavelength with respect to
the filament diameter. Furthermore, it can be appreciated from figure 2(b) that the sheet
evolution perturbs the initially quiescent ambient phase, which manifests the phenomenon
of gas entrainment, that is, w < 0 (> 0) for z > 0 (< 0) outside the curtain.

The overall flow topology is elucidated further by observing the curtain interface shapes
in three cross-sections taken with planes parallel to the x = 0 plane, namely x = 5, 15 and
25 (figure 3a), together with the colour maps of spanwise w and transverse v velocity
components within the liquid phase at x = 15 (figures 3(b) and 3(c), respectively). As
the curtain width reduces along the streamwise direction, the rim thickness increases
(figure 3a) and the capillary ripples are displaced towards the curtain centre, thus
producing varicose patterns (i.e. symmetric with respect to the y = 0 axis) and associated
transverse v velocity distributions in yz planes.

The variation of the streamwise velocity component u(x, y) in the z = 0 plane within the
liquid phase is reported in figure 4(a), while the comparison between various estimates of
the centreline streamwise velocity is illustrated in figure 4(b). In particular, the latter figure
compares the u streamwise trend for y = 0 (red line) with the y-averaged velocity in the xy
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Figure 3. (a) Interface shape in yz planes located at different x stations. Maps of (b) spanwise w and
(c) transverse v liquid velocity components at x = 15. Steady flow, We = 2.5, AR = 40.

plane (black continuous line), defined as

1 H/2
) = —m————— / Cx, y) u(x, y) dy, (3-2)
—H/2 C(X, y) dy —H/2

where H = H*/H?. The free-fall Torricelli’s theoretical solution (black dashed line)

Urprr =/ 1 + — — (3.3)

is also reported for comparison, with Fr being the Froude number defined in table 1.

The analysis of figure 4 allows one to distinguish three different regions of the steady
flow field. In the first region, extending from x = 0 to approximately x = 20, the curtain
develops nearly two-dimensionally in the xy plane, namely the velocity field agrees with
that predicted by strictly two-dimensional simulations of the flow (see, for example,
figure 5 of Della Pia ef al. 2020). In particular, due to the gravity action, the sheet thickness
reduces and the streamwise velocity increases. Moreover, the initial parabolic velocity
profile (2.3a) relaxes towards a quite plug distribution, as shown by the convergence
between the axial value of the velocity u(x, y = 0) and the one-dimensional reduction
(u)(x), which agrees well with the theoretical value ug,. as x increases. The second
region is located in the range 20 < x < L., being in the present case L, = 32.19, the
rims convergence length, where the streamwise velocity displays an oscillating trend (see
the superposition of red and black continuous curves) as a result of the interference
between surface capillary waves coming from the right and left edges outlined previously
in figure 2(b). Finally, in the third region (x > L), the sheet is characterized by a tail with
increasing thickness in the xy plane, denoting an incipient axis switching effect (among
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Figure 4. (a) Map in the xy plane of the streamwise liquid velocity u. (b) The x-variation of the axial velocity
u(x, y = 0) and y-averaged trend (u) (x). The reference Torricelli’s velocity u7,, and the calculated convergence
length L, are also reported in (). Steady flow, We = 2.5, AR = 40.

others, see the recent experimental investigation by Jordan et al. 2022). Note that the
convergence length L. has been calculated as the x value corresponding to the maximum
of u(x, y = 0), i.e. minimum of the curtain thickness within the xy plane.

The present numerical estimate of L. agrees with the simplified theoretical prediction
by Chubb et al. (1994),

FrAR 3 We i
r e

=1+ = -1, 34
¢ 2 +2Fr 8 S

as shown in table 2. As a matter of fact, for AR = 40 and the range We € [1.5, 2.5], the
relative percentage spread €, = 100(L, — Li.h) /L. 18 less than 15 %. It is worth noticing
that numerical simulations at the different Weber number values have been performed by
decreasing the inlet velocity U7, thus determining a corresponding reduction of the Froude
number Fr, as highlighted in table 2. The variation of the convergence length L. with the
Weber number is also shown in figure 5, together with the theoretical prediction Lih.
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We Fr Lh Le €

2.5 0.41 27.96 32.19 13.14 %
2.25 0.37 26.76 29.94 10.62 %
2.0 0.33 25.46 28.18 9.65 %
1.75 0.29 24.10 26.32 8.43%
1.5 0.25 22.65 24.66 8.15%

Table 2. Comparison between theoretical (L’Ch, (3.4)) and numerical (L.) values of the convergence length by

varying Weber and Froude numbers. The relative percentage spread is defined as €, = 100 (L, — LL”) /L. Here,
AR = 40.

40 T T T T T T T T T

1 1 1 1

1
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

10 1 1 1 1

We

Figure 5. Convergence length L. variation with the Weber number We. The theoretical prediction th (3.4)is
also reported. Here, AR = 40.

4. Hole-driven unsteady dynamics

Since the experimental evidence of the curtain breakup can be linked to the formation
and amplification of a hole in its frontal plane (among others, see Roche et al. 2006;
Kyotoh et al. 2022), its unsteady dynamics is analysed in this section as the response to
the presence of a hole introduced artificially in the steady flow. In particular, a cylindrical
hole of diameter equal to Hl.* , centred at a certain streamwise station x;, and z; = 0, is
superimposed on the steady solution along the entire curtain thickness. The equation
describing the (dimensionless) initial hole region in the xz plane is

(—xp)’+22 <, (4.1)

which gives rise to a toroidal rim at the free end of the hole after few time steps (see also
Agbaglah 2021a). The streamwise location of the hole centre is first chosen equal to x;, =
10, to perform the analysis in both supercritical (We > 1) and supercritical-to-subcritical
(We < 1) transition conditions, respectively in §§4.1 and 4.2. The hole is then moved
upstream at x, = 2 to investigate the subcritical regime, where an edge-free curtain flow
is considered, as will be motivated and discussed in § 4.3.

4.1. Supercritical regime

The unsteady behaviour of the curtain shape in the xz plane influenced by the time
evolution of the hole is shown qualitatively in figure 6 and quantified in figure 7. The
temporal evolution of the curtain shape is depicted in figure 6 in terms of volume fraction
C contour maps. Following the approach by Karim et al. (2021), the trajectories of three
representative points of the hole are monitored in figure 7, namely the northernmost xy (7)
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(b) (©)
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z z z

Figure 6. Maps of volume fraction C in the xz plane at different time instants. The liquid phase is represented
in red, the gaseous phase in blue. Here, We = 1.1, AR = 40, with () t =0, (b))t =1, (c) t =2.2,(d) t = 3.3,
(@t=49,(Ht=67,(9t=74,(h)t=28.6,0)t=102.

(red), southernmost xg(#) (blue) and centre xc(¢) (green) points of the hole. The analysis
is performed for a relatively low supercritical Weber number value We = 1.1, for which
surface tension is expected to have a relatively strong influence on the hole-driven curtain
dynamics. The aspect ratio is AR = 40. Note that the temporal variable ¢ in figures 6 and
7 is scaled with respect to the reference time t:ef = H7 /uy, the hole being introduced at
t = 0 in the steady curtain configuration.

Following the sequence in figure 6, it can be noted that the initially circular hole is
advected downstream progressively while undergoing a continuous shape deformation,
until it closes and leaves the sheet intact. In the early stages of the evolution (¢ < 3.3), the
temporal variation of the curtain shape is influenced only by the competition between the
hole rim retraction, due to the surface tension acting on the hole perimeter, and the hole
fall motion, determined mainly by the streamwise-oriented gravity force. As for the xy(7)
motion, the surface tension counteracts gravity, the two forces having opposite directions
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Figure 7. (a) Hole initial shape in the xz plane. (b) Curtain shape around the hole region in the xy plane.
(c) Hole northernmost xy (¢) (red curve), southernmost xs(¢) (blue curve) and centre xc(f) (green curve) points
trajectories in the xz plane. In (a,b), the liquid phase is shaded in red, with the gaseous phase in blue. Here,
We = 1.1, AR = 40.

in the northernmost point of the hole, while they are both directed downstream in the
southernmost one (see figures 7a,b). This determines a progressive stretching of the hole
along the streamwise direction (figures 6a—c), with a falling velocity xy = 1.0 smaller than
Xxs = 3.6, as can be appreciated by the different initial slopes of the red and blue curves in
figure 7(c); the streamwise velocity of the hole centre assumes a value x¢c = 2.2 (slope of
the green curve in figure 7c¢). It is straightforward to verify that the orders of magnitude
of these velocities are consistent with each other. As a matter of fact, if one assumes that
the velocity of the hole centre point is essentially the falling velocity of the main liquid
stream, then the velocities of the northernmost and southernmost points of the hole can be
estimated by subtracting and adding, respectively, to the centre point velocity the ‘net’ rim
retraction velocity, whose order of magnitude is given by the Taylor—Culick model (which
is of unit order in dimensionless scale).

At intermediate stages (3.3 < ¢ < 8.6), the hole dynamics starts to be influenced by
the lateral edges of the curtain, namely the hole no longer expands freely. The curtain
edges slow down the overall expansion (figures 6d—g), determining a reduction of the
velocity xg from 3.6 to 0.9 (figure 7(c) at ¢t = 3.3). The hole thus assumes a triangular

968 A20-12


https://doi.org/10.1017/jfm.2023.543

https://doi.org/10.1017/jfm.2023.543 Published online by Cambridge University Press

Hole-driven dynamics of a three-dimensional liquid curtain

(a) 2 T T T T T T T T T T
| A1=0 A1=02 Ar1=0.8 At=16
1,_ Al
Yy 0 H
Zyr
1k 4
_2 1 1 L 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 1
At=0
At=0.6
A1=22
Ar1=37
_2 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11

Figure 8. Temporal evolution of the hole rim shape in the yz planes for the right hemi-curtain (i.e. z > 0) for
(a) x = 13, and (b) x = 19. The liquid phase is shaded in red, the gaseous phase in blue. The arrows denote the
hole tip. Here, We = 1.1, AR = 40.

shape, analogously to the underlying liquid sheet. Finally, during the last stages of the
evolution (¢ > 8.6), the hole expansion is counteracted not only by the curtain edges, but
also by the approaching vertical tail (figures 6A,i). Therefore, the streamwise stretching and
the overall expansion of the hole stop: the southernmost point velocity becomes negative
(xs = —2.3; see figure 7(c) at t = 9.0), thus leading to the closure of the hole before it
reaches the outlet section of the physical domain, i.e. the curtain length.

The hole dynamics in yz planes is shown qualitatively in figure 8 and quantified in
figure 9. Figures 8(a,b) depict the temporal evolution of the hole rim shape of the right
hemi-curtain (i.e. for z > 0) in two yz planes located at the streamwise stations x = 13
and x = 19, respectively. Note that the geometrical features of the shapes significantly
recall the elliptic, cigar-like and peanut-like shapes found in the pioneering combined
theoretical-experimental investigation by Chubb er al. (1993). The spanwise positions of
the hole rim tip z7 (leftmost point of the hole, denoted by the arrows in figure 8) and
the retraction velocity wr = zr at the same streamwise stations are shown in figures 9(a,b)
and 9(c,d), respectively, for x = 13 and x = 19, where the retraction velocity is scaled with
respect to the Taylor—Culick reference value, i.e. wr = w7}./u;:. Note that the time interval
considered in each panel is computed as At =t — t2 (x), where t?l (x) is the time instant
when the hole reaches the streamwise x location. Since the hole grows progressively,
moving along the streamwise direction for x € [0, 20], as shown in figures 6 and 7
discussed previously, the time interval At at x = 19 (figures 85 and 9c¢,d) is greater than
the corresponding interval at x = 13 (figures 8a and 9a,b).
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Figure 9. Spanwise position z7 and velocity wr of the hole rim tip in yz planes (right hemi-curtain for z > 0) as
a function of time, for (a,b) x = 13, and (c,d) x = 19. The dashed lines in (b,d) denote the values w}./uj; = %1.
Here, We = 1.1, AR = 40.

The time evolution of the sheet shape reported in figures 8(a,b) exhibits a fast retraction
of the rim at the early instants, at both x = 13 and x = 19, after its abrupt formation when
the hole reaches the two streamwise stations. This can be appreciated qualitatively by
looking at the large distance between the green and red curves at y = 0, and it is quantified
by the relatively higher slope of curves zr and wr at small Az values in figure 9. At later
stages, the rim motion slows down, and the tip position z7 reaches a maximum (for Ar =
1.2 and 2.1, at x = 13 and 19, respectively) and then decreases. This corresponds to an
inversion of the retraction process, due to the advection of the hole along the streamwise
direction (blue and black curves in figure 8), which finally leaves both the yz planes at
relatively large time instants (zz = 0 for Ar = 2.5 and 5.5, at x = 13 and 19, respectively).

The main difference between the hole curtain dynamics at the two streamwise stations
considered here is due to the increasing effect of the curtain edges as x increases. At the
upstream station, x = 13, the edges are relatively far from the hole, which expands freely
under the effect of surface tension. The hole-driven rim dynamics is thus characterized
by a monotonic decreasing trend of the retraction velocity wr, which eventually assumes
negative values when the hole progressively leaves the station. On the contrary, the
hole-induced rims are relatively close to the curtain edges at the downstream station,
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x = 19, causing a mutual interaction that produces an oscillatory behaviour of the velocity
wr in the range wr € [—1, 1], before the hole finally approaches the curtain tail.

To justify the relatively high values of the retraction velocity wr of the tip point,
one should consider that the hole is immersed in a flow field subjected to the gravity
acceleration. As a consequence, the ‘total’ retraction velocity of the left tip of the hole is
given by the substantial derivative

dzr dzr
wr = o +u o 4.2)
where the unsteady term dz7/0t represents the pure retraction contribution usually
modelled by the Taylor—Culick velocity, and the convective term u(dzr/dx) is the tip
displacement rate due to the local slope of the hole (in the xz plane) advected downstream
with velocity u. The convective term is indeed significant only when the hole tip at the
given station x corresponds to the maximum of the absolute value [dz7/dx| (i.e. the hole
tip in the yz plane coincides with the northernmost hole point in the xz plane). On the
contrary, the convective derivative is negligible when the hole tip coincides with the hole
leftmost point in the xz plane, so that the order of magnitude of wr coincides with the
Taylor—Culick velocity, namely wr = dz7/dt = O(1).

To sum up, the main result arising from the analysis performed in this section is that in
supercritical conditions, the hole perturbation introduced in the curtain does not influence
the dynamics of the flow at large times. Indeed, whilst the hole undergoes an initial
transient expansion, its interaction with the curtain borders determines first a slowdown
and then a reversal of the expansion process, thereby producing the hole closure upstream
of the sheet exit section (see also supplementary movie 1 available at https://doi.org/10.
1017/jfm.2023.543).

4.2. Transcritical regime

The unsteady dynamics of the curtain in transcritical conditions is studied by considering
two values of the Weber number close to the critical unit threshold, namely We = 1.1 (as
in §4.1) and We = 0.95.

The time evolution of the hole area A* with respect to its initial value A} is reported
in figure 10, respectively for We = 1.1 (black curves) and We = 0.95 (red curves). The
trend of both curves reported in figure 10(a) is the same: the hole area first increases
due to the hole expansion at the early stages of its evolution, reaches a maximum at the
peak time ¢ = 1,, and then decreases to zero due to the hole closure process. Although the
supercritical and subcritical behaviours are qualitatively analogous, two main differences
can be detected. First, both the peak time 7, and the corresponding area amplification
A;/Alf are greater for We = 1.1 (1, = 3.3, A[’;/A}' = 58) than for We = 0.95 (1, = 2.7,
A} /AT = 44). Moreover, the initial amplification rate is higher for We = 0.95 rather than
We = 1.1, as can be appreciated more clearly by looking at figure 10(b). The two curves
are characterized by an exponential growth at the early time instants, A*/A* = ¢*/, with the
hole expansion rate « increasing from o = 5/2 to o = 4 by reducing the Weber number
from supercritical to subcritical conditions. It is interesting to note that an exponential
growth of hole amplifications inside two-dimensional liquid sheets was also found in the
combined theoretical-numerical investigation by Savva & Bush (2009), who performed
simulations in the high viscous limit (O > 1) and did not consider the effect of gravity on
the hole dynamics. On the other hand, here Oh < 1 (see table 1 in § 2.2) and gravitational
effects are fully taken into account.
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Figure 10. (a) Time evolution of the hole area A* with respect to its initial value A} at the

supercritical-to-subcritical flow transition; (b) zoom around the first time instants. Black curves denote

We = 1.1, and red curves denote We = 0.95. The peak time #, and the corresponding area amplification are

also highlighted in (a) for the case We = 1.1. Here, AR = 40.
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Figure 11. Hole northernmost xy(#) and southernmost xs(#) points trajectories in supercritical-to-subcritical
flow transition conditions. Here, AR = 40.

Analogies and differences between the We > 1 and We < 1 cases can be explained
easily by recalling the discussion in §4.1 about the physical mechanisms involved
in the hole dynamics. At the early stages of the evolution, the hole expands freely
under the effect of the surface tension acting on its rims, which is clearly stronger in
the subcritical rather than supercritical regime, thus determining a faster expansion of
the area in the former case. On the other hand, as soon as the hole approaches the
central vertical region of the curtain, the surface tension acting on the curtain edges
counteracts the hole expansion, the effect being again stronger for We < 1 than for
We > 1, thus determining an earlier decay (and consequently a lower maximum of the
hole area) of the subcritical curve. The same considerations can be retrieved by looking
at figure 11, which reports the hole northernmost (xy (7)) and southernmost (xg(¢)) points
trajectories for We = 1.1 and We = 0.95 (black and red curves, respectively). Moreover,
the analysis of figure 11 reveals that in the transition from supercritical to subcritical flow
regimes, the hole northernmost point velocity (slope of xy(7) curves) decreases slightly.
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Scaled with respect to the Taylor—Culick reference value uj;, the velocity reads as Xy, /uy; =
1.0 for We = 1.1, and X}, /uy. = 0.8 for We = 0.95, respectively.

4.3. Edge-free subcritical regime

In the previous sections we observed that the dynamics of a hole introduced in the
falling liquid sheet is influenced crucially by the presence of the lateral free edges of the
curtain itself, determining a slowdown of the hole advected by the main stream, in both
supercritical and weakly subcritical regimes. In this respect, there is no discontinuity in
the sheet behaviour when traversing the critical Weber threshold. On the other hand, it
has also been found that for finite values of the aspect ratio AR, the steady curtain flow
configuration can no longer be achieved for lower We numbers (e.g. for We < 0.8), due to
the spontaneous appearance of various irregular holes interacting with each other inside
the sheet. This occurrence will be illustrated in Appendix B.

To address the analysis of the free dynamics of the hole, namely not influenced by the
lateral edges of the sheet, the configuration of infinite AR is investigated in the present
section, for various subcritical We numbers. This study has been performed by locating
the hole perturbation (4.1) at a station further upstream, namely x;, = 2. Moreover, by
employing periodic boundary conditions on the lateral walls of the domain (see the
discussion reported in § 2.2), the edge-free curtain flow has been simulated.

The time evolution of the curtain shape in the xz plane is reported in figure 12 for the
slightly subcritical Weber number value equal to We = 0.9. It can be seen that in the
absence of the curtain borders, the hole expands in a wide region (figures 12a—c) while it is
convected downstream by the gravitational acceleration (figures 12d—f). As time increases
further, the hole is expelled progressively at the outlet section (figures 12g,h), leaving the
liquid curtain in its original unperturbed configuration (figure 12i). It is also worth noticing
that by simulating the edge-free curtain flow in supercritical conditions (We = 1.1), we
retrieved the same overall behaviour outlined in figure 12. For the sake of brevity, edge-free
supercritical curtain flow simulations have not been reported herein.

For the same edge-free condition, the investigation has been extended to various lower
values of subcritical Weber number. The results are summarized in figure 13 in terms
of the hole northernmost point trajectory xy(#) as a function of We. Note that the initial
streamwise position of the point is xx(0) = 1.5 for all the cases considered, being the
hole perturbation located at x;, = 2. By inspection of figure 13, it can be seen that after
an initial transient period approximately equal to = 1.5, all curves assume a remarkably
linear trend. This time ¢t = 1.5 corresponds to 98 time steps of the temporal numerical
integration, and it represents approximately the time needed by the computation to fully
develop the toroidal interface curvature around the hole. Note also that due to the low
Ohnesorge number of the present case, Oh = 0.002, following Savva & Bush (2009) and
Pierson et al. (2020), one can admit that this time interval is sufficient for the rim retraction
velocity to reach the asymptotic value of the Taylor—Culick model.

The major result is that as We decreases, the velocity xy (slope of the dashed curves
in figure 13) decreases progressively until it changes sign, becoming negative for We <
0.4 (see also figure 14, where the velocity is scaled with respect to the Taylor—Culick
reference value u7:). Note that we verified the domain-size independency of results reported
in figure 14, focusing attention around the threshold value We = 0.4. We performed
simulations (not reported herein) for both smaller (L = 40) and larger (L = 60) domains
than the one considered in this work, and no appreciable variations of the trend xy(We)
in the range We € [0.3, 0.5] were detected. The validity of the results of figure 14 can
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Figure 12. Time evolution of the volume fraction C in the xz plane of an edge-free curtain in slightly subcritical
conditions (We = 0.9). Time ¢ increases from (a) to (i), as (a) t =0, (b) t =5.8, (¢) t =9.8, (d) t = 11.8,
(e)t=148,()t=17.8,(g) t =21.9, (h) t = 31.9, (i) t = 39.9. The liquid phase is represented in red, the
gaseous one in blue.

be verified by considering that the figure reports the velocity of the rim top point,
which is due to the gravitational velocity minus the Taylor—Culick one (in dimensionless
terms, this last being of unit order). As a consequence, for instance, for We; = 0.2 and
We, = 0.9, the gravitational velocities are, respectively, equal to u; = 0.5+ 1 = 1.5 and
up = —0.3 + 1 = 0.7. Since the Weber number scales with the square of the gravitational
velocity, equality must hold between Wey/We; = 4.5 and u% / u% = 4.59. Below the
threshold value We = 0.4, the surface tension force becomes strong enough to reverse
the falling motion of the hole, which retracts upstream towards the domain inlet while
expanding along the z (lateral) direction. This is shown clearly in supplementary movie 2,
which reports the entire hole expansion process for We = 0.2. The upward retraction of the
hole finally determines the breakup of the curtain, resulting in the columnar shape shown
in figure 15, which resembles the various classic experimental findings of the literature
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Figure 13. Hole northernmost point trajectory xx(¢) by decreasing the Weber number in subcritical edge-free
conditions (We < 1). For each We, the black dashed line represents the least squares linear fitting of the
corresponding numerical data for ¢ > 1.5.
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Figure 14. Hole northernmost point velocity (scaled with respect to the Taylor—Culick reference value u) as
a function of the Weber number in subcritical edge-free conditions (We < 1). The red dashed line denotes the
zero value.

(among others, see Pritchard 1986; de Luca & Meola 1995; Marston et al. 2014) and the
more recent contribution by Kyotoh et al. (2022). We also verified that the liquid columns
pattern shown in figure 15 is unaffected qualitatively by increasing the domain size up
to L = 60 (not reported). For example, the spanwise wavelength of the pattern, which is
approximatively A, ~ 10, does not change by increasing the domain size.

It is evident that the above discussion conceptually recovers the celebrated stability
criterion of Brown (1961), namely that the condition of inlet We > 1 prevents the sheet
rupture, although this criterion is very raw because it does not take into account the
local competition between surface tension, driving the rim retraction, and the incoming
momentum flux at the hole top point. Sunderhauf et al. (2002) extended the validity of
Brown’s criterion by studying in detail the hole retraction dynamics. In particular, they
found that the hole top point first moves downwards and reaches a maximum vertical
displacement at a certain instant; after this instant, the top margin of the hole starts to
move upwards and initiates the rupture. However, gravity effects were not included in
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Figure 15. Time evolution of the edge-free three-dimensional curtain shape (frontal view in the xz plane) in
breakup conditions (We = 0.2; see also supplementary movie 2). The liquid phase is represented in white, the
gaseous phase in blue. Time 7 increases from (a) to (d).

their analysis. Furthermore, Sunderhauf et al. (2002) stated that the rupture is avoided
when, before the ‘turning’ instant, the hole top point is swept out of the curtain flow
domain. This conclusion is precisely what we have found in this investigation. Moreover,
the gravity effects have been taken into account fully here, also including the influence
of the curtain aspect ratio up to the limit case of edge-free sheet flow. As a final
remark, we note that it will be interesting to investigate the effect of gravity on the
hole-induced rim transverse corrugations, similar to those leading to the formation of
liquid fingers (Agbaglah, Josserand & Zaleski 2013; Agbaglah & Deegan 2014). Such
transverse instabilities could indeed develop along the streamwise (gravity) direction with
a large enough computational domain.

5. Conclusions

The hole-driven dynamics of a gravitational liquid curtain (sheet) interacting with
an initially quiescent gaseous environment has been investigated by means of
three-dimensional volume-of-fluid simulations, in both supercritical (We > 1) and
subcritical (We < 1) conditions, for finite and infinite curtain aspect ratios AR. The goal
is investigating the influence of the hole expansion dynamics, driven by the so-called rim
retraction, on the liquid curtain breakup.

For a selected supercritical configuration (We = 2.5), the steady flow topology has
been analysed first in terms of spatial distributions of velocity components and interface
shapes. In the case of finite aspect ratio (AR = 40), the investigation has revealed the
classic triangular shape of the steady curtain in the xz plane defined by the vertical and
spanwise directions, which is due to the surface-tension-induced borders retraction. The
steady velocity field in the lateral xy plane is characterized by three different regions
along the streamwise (vertical) direction, where the flow features conditions going from
strictly two-dimensional (upstream region) to fully three-dimensional (downstream region)
characteristics, through the progressive excitation of varicose ripples (intermediate region)
in the yz plane. The so-called convergence length — that is, the height of the triangle apex —
agrees well with previous theoretical evaluations.

The unsteady dynamics has then been investigated, in both supercritical (We = 1.1)
and weakly subcritical regimes (We = 0.95), as the curtain response to a hole introduced
artificially in the steady flow configuration. The evolution of the hole determines rim
retraction phenomena within the curtain, which have been found to be influenced by both
capillary and gravity forces. In supercritical conditions, the hole perturbation does not
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influence the curtain flow dynamics in the long-time limit. Indeed, the hole undergoes an
initial transient growth, after which its interaction with the curtain borders causes first
a slowdown and then a reversal of the expansion process, thereby producing the hole
closure upstream of the sheet exit section, leaving the curtain intact. The hole dynamics is
substantially continuous when traversing the Weber critical threshold We = 1, the major
difference between the supercritical and subcritical regimes lying in the increase in the
hole area amplification rate for We = 0.95, due to the increasingly stronger retraction effect
of surface tension acting on the hole rims.

It has been also found that for finite values of the aspect ratio AR, the steady curtain flow
configuration can no longer be achieved for low We numbers (e.g. for We < 0.8), due to
the spontaneous appearance of various irregular holes interacting with each other inside
the sheet. To address the analysis of the free dynamics of the hole, namely not influenced
by the lateral edges of the sheet, the configuration of infinite AR has been investigated, for
various subcritical We numbers. In the case of infinite AR, periodic boundary conditions
on the lateral walls of the domain have been enforced.

For cases of an edge-free sheet, a major result is that as We decreases progressively,
the hole expands in an increasingly wider region, while it is convected downstream by
gravity acceleration. In the range 0.4 < We < 1, the subcritical curtain returns to its
original (unperturbed) configuration after the hole expulsion at the downstream outflow.
On the contrary, for We < 0.4, the surface tension force becomes strong enough to reverse
the falling motion of the hole top point, which retracts upstream towards the sheet inlet
section while expanding along the lateral directions. This last phenomenon finally causes
the breakup of the curtain, which results in a columnar regime strictly resembling similar
experimental findings of literature.

These results recover conceptually the celebrated stability criterion of Brown (1961) and
the more recent findings of Sunderhauf et al. (2002). In particular, the latter authors studied
in detail the hole dynamics with focus on the hole top point behaviour, and its influence
on the curtain rupture, by neglecting the gravitational effects. In this investigation, the
presence of gravity has been taken into account fully, also including the influence of the
curtain aspect ratio up to the limit case of edge-free sheet flow.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.543.
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Appendix A. Grid convergence analysis

The effect of mesh refinement on the numerical solutions presented in this work is
investigated here. Results obtained with three different values of the maximum grid
refinement level are compared to each other, namely N = 8,9 and 10, where 2V x 2V x 2V
is the total number of grid points of the corresponding uniform grids. The three levels
of refinement are characterized respectively by a minimum grid cell size A* ~ H?/6,

968 A20-21


https://doi.org/10.1017/jfm.2023.543
https://orcid.org/0000-0002-5819-8131
https://orcid.org/0000-0002-5819-8131
https://orcid.org/0000-0003-2989-4397
https://orcid.org/0000-0003-2989-4397
https://orcid.org/0000-0002-5080-7756
https://orcid.org/0000-0002-5080-7756
https://orcid.org/0000-0002-1638-0429
https://orcid.org/0000-0002-1638-0429
https://doi.org/10.1017/jfm.2023.543

https://doi.org/10.1017/jfm.2023.543 Published online by Cambridge University Press

M.R. Acquaviva, A. Della Pia, M. Chiatto and L. de Luca

(@) )
10 , :
1.0}
0.5} . .
15+
y 0Or
0.5} g =
20 -
~1.0}
-20 -10 0 10 20
x 25¢
()
1.0}
30
A 0.5
0
35+ Y
-0.5
- ~1.0t
40 : i :
-20 -10 0 10 20 -20 -10 0 10 20
z z

Figure 16. Supercritical steady solution of the liquid curtain interface in (a) the xz plane (y = 0), and
(b,c) two cross-sections parallel to the yz plane, x = 5 and x = 15, respectively, for different values of the
maximum grid refinement level N: N = 8 (black curves), N = 9 (red) and N = 10 (blue). Here, AR = 40.

HY/11 and H}/22. Results of the grid convergence analysis of the steady solution are
shown in figure 16, in terms of curtain interfaces in the xz plane (figure 16a) and in two
cross-sections parallel to the yz plane (figures 16b,c). The solution obtained on the coarse
level (N = 8, black curves) is affected by localized spurious holes due to the low grid
resolution, while no significant variations are detected between the medium (N = 9, red
curves) and fine (N = 10, blue curves) mesh levels. In light of this comparison, the N = 9
computational grid has been considered sufficient to provide reasonable and reliable
results of the curtain flow dynamics, and therefore adopted to perform the investigations
presented in this work.

Appendix B. Subcritical curtain flow for finite aspect ratio

The aim of this appendix is to show that for finite AR values and Weber numbers We <
0.8, the steady flow configuration can no longer be achieved, due to the appearance of
spontaneous irregular holes inside the liquid sheet. To this purpose, we report in figure 17
snapshots of the flow solutions obtained at AR = 40 by reducing We in the subcritical
regime. It is worth noticing explicitly that no hole perturbation is introduced artificially in
the curtain to perform this investigation.

The analysis of figure 17 reveals that a clean steady flow configuration can be obtained
only down to We = 0.8 (figures 17a,b). As a matter of fact, spontaneous holes arise within
the curtain for We < 0.8, thus polluting the steady solution. In particular, at We = 0.8 a
hole arises approximately at the streamwise station x = 7 next to the right (namely, located
at z > 0) curtain rim (figure 17¢). By reducing the Weber number down to We = 0.6,
the spontaneous hole expands, and secondary holes appear simultaneously, which travel
parallel to the right curtain rim towards the rims merging point (figure 17d). When the
Weber number is decreased further, down to We = 0.4, the hole nucleation and expansion
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Figure 17. Maps of volume fraction C within the xz plane at different subcritical Weber numbers:
(a) We=20.9, (b) We=0.8, (c) We=0.7, (d) We =0.6, (¢) We=0.5, (f) We=20.4, (g) We=20.3,
(h) We = 0.2, (i) We = 0.1. The liquid phase is represented in red, the gaseous phase in blue. Here, AR = 40.

mechanisms interest also the left (located at z < 0) region of the curtain (figures 17e,f).
This phenomenon constitutes the prelude to the curtain rupture at the lower We values,
characterized by a transition towards a columnar regime (figures 17g,h) reached fully at
We = 0.1 (figure 17i).
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