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ABSTRACT. A material model for the simulationof anisotropicbehaviourdue to texture
development in polar ice is presented. Emphasis is laid on the strain-induced texture devel-
opment and its relaxationdue to rotation recrystallization and grainboundary migration in
the low-velocity regime. The model is based on two scales (mesoscopic approach). Kine-
matics, balance equations andconstitutive assumptions are defined with respect to the grain
level (mesoscale). Slip-system behaviour is assumed to be Newtonian. Recrystallization and
grain boundary migration are taken into account via a diffusion-type evolution of the crys-
tallites orientation. Due to the inextensibility of the ice crystallites along their c axes, the
Sachs^Reuss assumption is adopted.Volume averaging yields associated macroscopic rela-
tions, where the internal structure is represented by a second-order structure tensor. The
proposed approach is illustrated by applying it to initially isotropic material under homo-
geneous deformation, giving results qualitatively in agreement with experimental evidence.
Finally, it is shown that the proposed model is, under some simplifying conditions, directly
related to phenomenological internal variable models (e.g. Morland and Staroszczyk,1998).

1. INTRODUCTION

The flow of polar ice masses plays an essential part in climate
simulations, i.e. past climate history, at least to some extent
stored in ice particles, is expected to be reconstructable by
analyzing ice cores (e.g. Thorsteinsson and others,1997). The
impact of the actual orientation distribution of c axes (tex-
ture) on thermomechanical (flow) properties is evident from
laboratoryand fielddata (e.g. Bouchez and Duval,1982;Budd
and Jacka, 1989). Ice crystals possess hexagonal symmetry
with three glide planes (basal, prismatic and pyramidal)
where creep deformation occurs mainly along the basal
plane, represented by its c axis (Bouchez and Duval, 1982).
Several authors have developed constitutive models for
(strain-)induced anisotropy capable of taking texture
changes into account (e.g. Van der Veen and Whillans, 1994;
Castelnau and others, 1996). The common idea is: based on
knowledge of the behaviour of crystallites (mesoscale), the
macro-scale behaviour is derived via homogenization. How-
ever, since the model is to be used for large-scale flow simula-
tions the numerical effort should be as small as possible.

This problemwasrecently addressed when fabric evolution
was considered using tensor-valued internal variables (e.g.
Morland and Staroszczyk,1998). In contrast to this approach,
where the number of fields is increased, GagliardiniandMeys-
sonnier (1999) and Go« dert and Hutter (2000) increased the
number of field quantities. To this end, the classical space,
IRn

x, is extended to V ˆ IRn
x £ Sd, where n ˆ 2, 3 and d ˆ 1,

2. d denotes the dimension of the unit sphere Sd.This implies
that the position of a grain as well as its size and shape are
considered unimportant. Consequently, there remains the
orientation of a grain, here expressed by n : Sd. x indicates
the macroscopic position of a material point. Direct

numerical analysis with respect to the mesoscopic space, V,
would require too much effort, so the meso-approach
implies the statistical concept of orientation distribution
function (ODF), where the ODF, f…n;x;t† 2 L2

…Sd†, may be
interpreted as a probability density fulfilling

Z

…Sd†

f…n;x;t† dSd ˆ 1 : …1†

Equation (1) already suggests the rule yielding macroscopic
quantities, ¥…x;t†, from those defined on the mesoscopic
scale, ~¥…n;x;t†,

Z

…Sd†

~¥…n;x;t†f…n;x;t† dS2 ˆ ¥…x;t† ˆ
«

~¥…n;x;t†
¬

: …2†

The above considerations canbe derived more descriptively
if one assumes a volume of influence, v, around each material
point x of the continuum. Considering that the deformation
is incompressible, macroscopic entities can be obtained sim-
ply by volume averaging.Then f is given as the volume frac-
tion of vn and v, where vn represents the volume of equally
oriented crystallites within v, so that vf ˆ vn. Note that all
quantities associated with the grain level are denoted by the
subindex …†n, whereas, if it seems necessary to prevent mis-
understandings, the macroscopic or polycrystal level is indi-
cated by …†a (see Appendix C for further explanation of the
underlying notation). Applying Equation (2) to the meso-
scopic structure, one obtains the associated macroscopic
structure tensors as

hki
A ˆ

hki
hNi : …3†
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2. KINEMATICS

Ice single crystallites are treated as `̀ rigidly elastic’’ viscous
material. In general, for hexagonal crystals the contribution
of pyramidal slip can be neglected. Furthermore, reorienta-
tion of the c axes is then governed solely by basal slip, so
that, since we are interested in the evolution of the c axes,
for the sake of conciseness we may restrict the following to
basal slip only. Then decomposition of the deformation
gradient into an `̀elastic’’ rotation, Rn, and an inelastic de-
formation, FI

n ˆ I ‡ ®e® « n, leads to

Fn ˆ RnFI
n and _FnF¡1

n ˆ Ln ˆ Dn ‡ Wn ; …4†
the mesoscopic deformation and its associated velocity gradi-
ent, respectively. Here, the overdot indicates time differentia-
tion, and ® and e® denote the amount of basal slip and its
direction, respectively. Here, Dn ˆ sym…Ln† denotes the
stretching, and Wn ˆ skw…Ln† the spin. Further additive
decomposition of the total grain spin Wn into its elastic and
inelastic contributions,

Wn ˆ WE
n ‡ WI

n ; …5†
may be obtained by straightforward calculation, whereas
stretching is completely inelastic, Dn ˆ DI

n. Due to the
inextensibility of c axes, their evolution is given via the `̀elas-
tic’’ spin, WEn ˆ _n (e.g. Dafalias,1984), yielding

_n ˆ …Wn ¡ WI
n† ¢ n ; …6†

where the inelastic spin, WI
n, can be expressed in terms of

the inelastic mesoscale stretching, Dn ,

WI
n ˆ DnN ¡ NDn : …7†

3. BALANCE EQUATIONS

Let z ˆ x ‡ n describe a point of ~« ˆ «x © «n, an open
domain of the extended space V, where x : «x » IRn

x and
n : «n » Sd, with n ¶ d, n 2 {2, 3} and d 2 {1, 2}. If ª
denotes the density of a physical quantity, it globally
changes its value through production and external supply,
ºª, as well as by flux, qª. Straightforward generalization
of Reynolds’ transport theorem gives

d

dt

Z

~«

ª dv ˆ
Z

~«

@ª

@t
‡ rz ¢ …vzª†

µ ¶
dv ; …8†

where the gradient, rz ˆ rx ‡ rn, as well as velocity,
vz ˆ vx ‡ vn, and flux, qª ˆ qªx

‡ qªn
, can be decom-

posed, leading to the generalized balance
@ª

@t
‡ rx ¢ …vxª ¡ qªx

† ‡ rn ¢ …vnª ¡ qªn
† ˆ ºª : …9†

Without considering the details, the (pure mechanical)
problem will be reduced to a set of balance equations consist-
ing of the macroscopic balances of mass, momentum and
angular momentum supplemented by the mesoscopic balance
of orientation (Equation (10)). From Equation (9), the mass
balance is obtained if the mesoscopic mass density
ª ˆ vn ˆ vf is substituted. Independency of f and v then
requires the macroscopic mass balance, @tv ‡ rx ¢ …vxv† ˆ
0, as well as the mesoscopic mass balance,

@tf ‡ vx ¢ rxf ‡ rn ¢ …vnf ‡ qvn
† ˆ 0 ; …10†

which describes the evolution of the orientation distribu-
tion. Supplemented by an appropriate initial condition,
Equation (10) can be solved for f if vn and qvn

are given.

4. CONSTITUTIVE ASSUMPTIONS

The constitutive equations are formulated in two steps. First
the behaviourof an isolated crystallite is described as a func-
tion of the set of macroscopic variables, S ˆ fX; Ag, where
X ˆ XT represents a generalized external driving force. In
a second step, the interaction of the single crystallites within
their polycrystalline environment is taken into account. Let
~ªn and ªn denote an additive quantity of an isolated and an
embedded crystallite, respectively, then a consistent de-
scription is defined by

ªn ˆ ¬ªªa ‡ …1 ¡ ¬ª† ~ªn ; …11†
where ¬ª represents a function of macroscopic variables only
(e.g. Go« dert, 1999). The limit cases of a random and a com-
pletely aligned c-axes distribution are governed by ¬ª ! 0
and ¬ª ! 1, respectively. Note that, due to ªa ˆ h~ªni, con-
sistency is fulfilledby construction, i.e. the macroscopicbeha-
viour of the material is invariant with respect to the ¬ª

modification.That is, a material quantity is properly defined
by ¬ª and ~ªn.

The set of mesoscopic variables to be determined via
constitutive assumptions then comprises the total spin ~Wn,
the stretching ~Dn as well as the Cauchy stress ~Tn, the orien-
tation flux vector ~qvn

and in the second step the correspond-
ing weighting coefficients ¬W , ¬D, ¬T and ¬q, respectively.

4.1. Isolated single crystal

Intracrystalline slip
Due to the lack of five independent slip systems the Sachs^
Reuss or static assumption is adopted. Furthermore the
Voigt^Taylor assumption is applied for the spin, yielding

~Tn ˆ T and ~Wn ˆ W : …12†
According to related work, slip is assumed to be well approxi-
mated by Newtonian creep. Anisotropy of the single crystal is
determined by its c axis, yielding a transversely isotropic
material behaviour compactly written as

~Dn ˆ ·

2
Cn ¢ ¢ T ; …13†

where Cn ˆ 2…1 ¡ ­ †Pn ‡ ­ Idev‰ Š. Pn ˆ I sym ¢ N ¢ ¢ I sym

¡ N , and · denotes the basal fluidity.This form is equivalent
to the expression proposed by Gagliardini and Meyssonnier
(1999), but in practice the grain anisotropy parameter ­ ½1.

Rotation recrystallization (polygonization)
Rotation recrystallization or polygonization is generally
associated with the formation of (sub)grain boundaries due
to heterogeneous loading. This fragmentation process
mainly affects grains that are not well oriented for disloca-
tion glide, so-called `̀ hard grains’’. Since fragmentation is
accompanied by specific reorientation of certain lattice por-
tions, the resulting subgrains tend to be softer than their
parent grains (e.g. Poirier,1985). From a mathematical point
of view, orientation moves from hard to soft configurations.
There is a similarity between heat flux and what we call
orientation flux. Analogous to heat-flux problems, rotation
recrystallization can be considered as a diffusive flux of
orientation described via Fick’s law with respect to the hard-
ness, qvn

ˆ ¡¶nrn…Hn†. On the other hand, considering
that, for each orientation, only a certain fraction of grains
polygonizes, fragmentation may also be understood in the
sense of Brownian motion. Hardness, ¶HHn 40, represents
then an external loading and can therefore be expected as a
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general function of N and X, where ¶H ¶ 0 is assumed to
depend on macroscopic quantities only.Yet experience tells
us that direct (normal) loading with respect to the basal
plane is most important, so the set of independent variables
canbe reduced to the invariants INXi ˆ …N; Xi† (i ˆ1, 2, 3).
Furthermore, restricting non-linearity of Hn to quadratic
order, it is supposed to be appropriately represented by

~Hn ˆ
X

…iˆ1;2†
hiI

3¡i
NXi ; …14†

where the coefficients hi are isotropic functions of the set S.

Grain boundary migration
If grain growth takes place, nearest neighbours are always
involved.Therefore, grain growth is in general `̀ intra-orien-
tational’’, not describable by diffusion-type evolutionary
terms (but rather by an appropriate production term).
Montagnat and Duval (2000) developed a model for the dis-
location balance at the low-velocity regime of grain bound-
ary migration, which is essentially based on the hypothesis
that grain boundary migration and polygonizationare con-
current processes (Montagnat and Duval, 2000). Subgrains
created by polygonization are supposed to merge again, so
that the (mean) orientation of the grain remains the same
during this circular process. However, neither the orienta-
tion of subgrains nor that of neighbouring grains was expli-
citly taken into account. It seems to be a reasonable working
hypothesis that a grain grows at the expense of its neighbours,
whatever its orientation. Grain boundary migration, at least
in the low-velocity regime, can then be modelled by an evolu-
tionary term similar to that derived for rotation
recrystallization, but acting in the `̀opposite direction’’.

4.2. Embedded single crystal

Considering Equations (12), the coefficients ¬W and ¬T are
already defined. ¬D can be motivated by alternative (second-
order) kinematically compatible deformation mechanisms
like dislocation climb and rotation recrystallization, yielding

Dn ˆ ¬DD ‡ …1 ¡ ¬D† ~Dn ; …15†

where ¬D is a monotonic function of the degree of alignment,
¬P , defined below. Recalling that ¬D ! 1 for completely
aligned c axes, a distinction between meso- and macro-scale
becomes obsolete, leading to the consistent result Dn ˆ D.
Furthermore, the physically obligatory energy-consistency
condition T ¢ ¢ D ˆ hTn ¢ ¢ Dni is fulfilled. The hardness of
an embedded grain is formally given by Hn ˆ ¬HHa

‡ …1 ¡ ¬H† ~Hn, where ¬H again denotes a function of the
degree of c-axes alignment. However, considering that
instead of the hardness its gradient, rn

~Hn , represents the
constitutive quantity, the term Ha becomes meaningless.
Then the orientation flux is given by

qvn
ˆ ¡¶nrn

~Hn …16†

(¶n comprises …1 ¡ ¬H†). In order to describe the intensity
of the orientation flux, we suggest that the misorientation
angle between polygonized grains depends linearly on the
number of dislocations suggesting ¶n º nd¶a . Assuming
further the same dislocation density »d for all equal orien-
tated grains, one may conclude from nd ˆ »dvn º f the
relocation

¶n ˆ f¶a : …17†

Rotation recrystallization (as well as grain boundary migra-
tion) then becomes describable via

qvn
ˆ ¡¶nrn

~Hn : …18†

4.3. Homogenization

Macroscopic quantities are obtained by applying Equation
(2), yielding identities for the stress and the spin. Recalling
the invariance of the ¬ modification with respect to the
macroscopic behaviour, the strain-rate tensor is given as

D ˆ ·

2
Ca ¢ ¢ T; Ca ˆ hCni : …19†

Hence, Equation (19) is completely determined if the tempor-
al evolution of the fourth-order structure tensor A is known.
Referring to related work, the following considerations will
be restricted to orthotropic material behaviour, i.e. to the
evolution of the second-order tensor. Taking the mesoscopic
mass balance (Equation (10)) into account, the local change
of the structure is given as

@tA ˆ 2 sym h _n « ni… † ¡ f¡1rn ¢ qvn
N

« ¬
: …20†

Applying Equations (6), (7) and (15) and considering
2Pn ¢ ¢ Pn ˆ Pn; the Jaumann rate

¯
A ˆ @tA ¡ 2 sym…WA†

takes the form
¯
A ˆ ¡Pa ¢ ¢ 2¬DD ‡ ·…1 ¡ ¬D†

2
T

³ ´
‡ f¡1rn ¢ qvn

N
« ¬

:

…21†
Making use of Equations (19), (17) and (18) with rn

~Hn ˆ
hi…3 ¡ i† I2¡i

NXirnINXi , qvn
¢ n ˆ0 and application of Gauss

theorem (on the unit sphere (e.g. Appendices A and B)), the
co-rotational evolution of A (Equation (21)) takes the form

¯
A ˆ ¡ …1 ¡ ¬D†Pa ¢ ¢ C¡1

a ‡ 2¬DPa

£ ¤
¢ ¢ D

¡ ¶a

X

…i†

«
Pn ¢ ¢ Xi…3 ¡ i†hiI

2¡i
NX

¬
: …22†

4.4. Closure approximation

The mean projection operator, Pa, contains the fourth-order
structure tensor, so the second-order evolution equation (21)
is not closed. The same argument holds for the fourth-order
evolution equation; here the sixth-order structure tensor is
needed. Generally the evolution of the 2nth moment necessi-
tates the 2(n+1)th moment, resulting in an infinite hierarchy
of equations. Since we restricted considerations to orthotropic
material behaviour, it suffices to describe the evolution of the
second-order structure tensor. Hence, an appropriate expres-
sion for A is needed. To this end, Gagliardini and Meysson-
nier (1999) and Go« dert and Hutter (2000) restricted the ODF
by certain symmetry conditions (to orthotropy), so that ex-
plicit computation of A becomes feasible under plane flow
conditions. In contrast to those restrictions, we use a closure
approximation, so the model is not restricted to plane flow.
Recalling that c-axes rearrangement takes place monotoni-
cally, in the sense that fabric develops continuously from ran-
domly distributed c axes at the top of an ice sheet to more-or-
less completely aligned c axes at its bottom, an appropriate
approximation of the fourth-order terms must bridge the
gap between the two extremal distributions. In accordance
with Advani and Tucker (1987), this is achieved by approxi-
mating Pa by the so-called hybrid closure

Pa ˆ …1 ¡ ¬P †Pajrandom‡¬P Pajaligned ; …23†

25
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where

Pajaligned ˆ I sym ¢A ¢ ¢ Isym ¡ A « A
¡ ¢

;

Pajrandom ˆ 1

5
I dev ;

and

2¬P ˆ …3IA2 ¡ 1† …24†
denotes the degree of alignment for the case n ˆ 3 and d ˆ 2.

5. APPLICATION

To carry out a completely coupled analysis, Equation (22) is
to be substituted into

_A ˆ @tA ‡ vx ¢ rxA : …25†
Alternatively, with a view to efficient numerical considera-
tions, the local time derivative can be split into a material
and a spatial part, @t…† ˆ @½1

…† ‡ @½2
…†, yielding

_A ˆ @½1 A ; 0 ˆ @½2A ‡ vx ¢ rxA : …26†
Accordingly, the evolution of A is decoupled into a pure
material and spatial part (e.g. Equations (26)a and (26)b).
The constitutive model is then completely givenbyEquations
(19), (22) and (26) or (25). It will be shown that besides the
non-diffusive, i.e. qvn

ˆ 0, static models of Gagliardini and
Meyssonnier (1999), i.e. ¬D ˆ 0, and Go« dert (1999), i.e. ­ ˆ
0, the diffusive model of Staroszczyk and Morland (2001)
can also to some extent be treated as a special case within
the presented approach.

In the following, several special cases will be taken into
account for the material part of Equation (26). First, uni-
axial, compressive loading is considered. Here a single-
maximum fabric develops along the loading axis, which at
the same time represents the direction of maximum hard-
ness. Hn may therefore be qualitatively identified with the
ODF. Applying qvn

ˆ ¡¶Arn…f†, with ¶A ˆ const:, the
second righthand term of Equation (21) takes the form

hf¡1rn ¢ qvn
Ni ˆ ¶A…I ¡ 3A† : …27†

The local evolution of the structure tensor is then given as
¯
A ˆ ¡ …1 ¡ ¬D†Pa ¢ ¢ C¡1

a ‡ 2¬DPa

£ ¤
¢ ¢ D ‡ ¶A…I ¡ 3A† :

…28†
In general, ¶A is a function of the ODF (e.g. Equation (17)), so
the resulting relaxation (Equation (27)) is more likely related
to dynamic recrystallization (rapid grain boundary) than to
the deletion of preferably orientated subgrain boundaries.

General loading

For the sake of simplicity, we assume ­ ˆ 0 for the evolution
equation. Furthermore, the diffusive term is restricted to
depend linearly on the loading, but remains invariant under
a change in loading direction.These requirements are met if
i ˆ 2 and h ˆ h…IA2 †I¡0:5

D2 , yielding

2 sym…hf¡1qvn
« ni† ˆ 4¶BPa ¢ ¢ D ; …29†

where, with D ˆ D2=
��������������
D ¢ ¢ D

p
and ¶B ˆ const:, the co-rota-

tional evolution can be written as
¯
A ˆ ¡ 2¬DPa ‡ …1 ¡ ¬D†Idev‰ Š ¢ ¢ D ¡ ¶BPa ¢ ¢ D : …30†

Non-diffusive, coaxial loading

First, we consider pure mechanical texture evolution, i.e.

¶A ˆ 0. Then due to coaxial loading, i.e. W ˆ 0, Equation
(26)a reduces to

¯
A ˆ ¡D …31†

if the above model is restricted to basal glide only, that is
¬D ˆ 0 as well as ­ ˆ 0. Integration of Equation (31),
A ˆ A0 ‡

R ¯
A dt, carried out via exponential mapping of

the actual deformation gradient, Fk ˆ exp…Lk¯t†Fk¡1,
reveals that the second-order structure tensor A can be
replaced by the Cauchy^Green tensor B recursively defined
by Bk ˆ exp…Lk¯t†Bk¡1 exp…LT

k ¯t†; so that, if B0 ˆ I, one
obtains the relation

B…t† ˆ exp

Z t

t0

L dt

0

@

1

A exp

Z t

t0

LT dt

0

@

1

A ˆ exp 2

Z t

t0

D dt

0

@

1

A :

…32†

Starting from a random c-axes distribution, A0 ˆ 1
3 I, the

actual structure tensor is given by

A ˆ 1

3
I ‡ ln

���������
B¡1

p
ˆ 1

3
I ¡ H ; …33†

where H represents the Hencky strain tensor. Although this
holds true only for path-independent problems, one might be
in favourof taking H or equivalently B as the general macro-
scopic structural variable. With this in mind and in order to
accomplish the evolution equation, the spatial part (Equa-
tion (26)b) can be written in terms of the deformation gradi-
ent, F, so that further mesoscopic considerations become
obsolete:

@tF ‡ vx ¢ rx…F† ˆ 0 : …34†

In principle, this is what Morland and Staroszczyk (1998)
proposed ad hoc, when they assumed the deviatoric stress
to be an isotropic function of the eigenvectors and eigen-
values of B. Staroszczyk and Morland (2001) extended their
model to migration recrystallization by adding a term pro-
portional to …I ¡ 3B†, which also agrees with our percep-
tions, if A is replaced by B in Equation (27). This shows
that, with respect to the evolution of the internal structure,
their model is closely related to the proposed static, single-
slip model (i.e. basal glide only), with ¬D ˆ 0, ­ ˆ 0.

Simple shear

In order to assess the capabilities of the model, a simple shear
deformation, D ˆ _µ sym…e1 « e2†, is taken into account.
Two parameter variations of the evolution equation are con-
sidered, whereas the stress^strain-rate relation for both cases
isbasedon ­ ˆ 0.25 and ¬ ˆ1.2, where the interactionparam-
eter ¬, defined via

¬D ˆ ¬¬P ; …35†

is determined from comparison with field data (e.g. Go« dert,
1999).The grain anisotropy parameter ­ ˆ 0.25 is taken from
Gagliardini and Meyssonnier (1999) as a reasonable choice in
view of the resulting c-axes distribution. First, diffusive as well
as grain interaction processes are neglected completely, i.e.
Hn ˆ const: and ¬ ˆ 0, respectively. Hence, (double slip)
model A coincides with the constitutive equations of
Gagliardini and Meyssonnier (1999). Model B (single slip),
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the second variation, is chosen in accordance with Go« dert
(1999), i.e. ¬ ˆ1.2.

Model A (Fig. 1a): ¬ ˆ 0:0; ­ ˆ 0:25;
¯
A ˆ ¡2 ­ Pa

¡1 ‡ 2…1 ¡ ­ †Idev

£ ¤¡1¢ ¢ D …36†

Model B (Fig. 1b): ¬ ˆ 1:2; ­ ˆ 0:0;
¯
A ˆ ¡ 2¬DPa ‡ …1 ¡ ¬D†Idev‰ Š ¢ ¢ D …37†

Diffusive effects, representing the wide range of possible
material responses, are principally reflected in Figure 2
denoting the fluidities if rearrangement of the orientations
occurs due to rotation recrystallization. In accordance with
the above considerations, diffusion is implemented via
Equations (27) and (30), in the following called ¶A- and ¶B-
type diffusion, respectively. As one wouldexpect, ¶A ˆ const:
can be used to adjust the value of the maximum alignment
(not plotted here). In contrast, ¶B-type diffusion leads to
an oscillation of the fluidities (e.g. Fig.2a). In order to obtain
an oscillating behaviour also for ¶A-type diffusion, ¶A is to
be controlled by the degree of alignment, ¬P . That is, start-
ing with ¶A ˆ 0, then if ¬P exceeds a threshold value, the
setting ¶A 6ˆ 0 leads to a weakening of the actual alignment
until ¬P falls below a certain value affecting ¶A ˆ 0, so that
the process may start again (e.g. Fig. 2b).

6. SUMMARY

The pure mechanical part of the model is essentially con-
trolled by two parameters, ¬ and ­ . Correspondingly, three
variations of the evolution equation are considered: (A) ¬ ˆ
0, ­ ˆ0 (single slip); (B) ¬ 6ˆ 0, ­ ˆ0 (grain interaction); (C)

¬ ˆ 0, ­ 6ˆ 0 (double slip). For model A it can be shown that
under simple shear deformation the ODF develops a single
maximum along the maximum eigenvalue of D. As a result,
the material reflects hardening behaviour in contradiction to
experimental evidence. On the other hand, assuming deform-
ationpath independency, it was shownthat the structure tensor
may be identified with the Cauchy^Green tensor B. This cor-
responds to the ideas published by Morland and Staroszczyk
(1998) and Staroszczyk and Morland (2001). As was shown in
earlier work, the interaction parameter ¬ (model B) is active
solely for the strain field within a grain, i.e. it vanishes via
homogenization.Consequently, the stress relations formodels
A and B are macroscopically identical. Figures 1 and 2 show
that the model is capable of reproducing essential features at
least qualitatively. That is, one may observe an increasing
shear fluidity due to an increasing c-axes alignment perpen-
dicular to the shear direction. However, comparison with
experiments (BuddandJacka,1989; Jackaand Li,2000) reveals
that softening induced solely by the texture development does
not meet quantitative requirements, so an additional softening
(enhancement factor) must be considered.

Originally motivated by the need for a numerically
more efficient theory, especially if one is concerned with
fully three-dimensional problems, the proposed constitutive
equations represent a combination of a classical approach
based essentially on representation theorems and an ODF-
based mesoscopic theory. The implementation of the pro-
posed structure tensor-based model into a fully coupled
finite-element scheme will be discussed elsewhere.
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APPENDIX A
Z

Sd

rn ¯ © dSd ˆ d

Z

Sd

n ¯ © dSd ;

Z

Sd

f…¢†rn « n dSd ˆ I ¡ A

…A1†

Here, ¯ 2 f¢; £; «g is used as a general product operator.

APPENDIX B

hf¡1rn ¢ qvn
Ni ˆ ¡2 sym…hf¡1qvn

« ni†
rnINXi « n ˆ Xi ¢ ¢ …N « rn† « n

ˆ Xi ¢ ¢
‰n « …n « rn† « n ‡ n « …n « rn† « nŠ

ˆ 2‰XiN ¡ …N ¢ ¢ Xi†NŠ

rnINXi « n ‡ n « rnINXi ˆ 2‰NXi ‡ XiN ¡ 2N ¢ ¢XiŠ
2 sym…qvn

« n† ˆ ¡4f…n; x; t†¶aPn

¢ ¢
X

…i†
Xi…3 ¡ i†hiI

2¡i
NXi :

APPENDIX C

First-order tensors (vectors) are denoted by small letters, t,
and second-order tensors by capital letters T. Tensors of arbi-
trary order are giventhrough

hni
T ˆ Ti1;i2;...;in

ei1
« ei2 « . . . ein

,
where

hki
A «

hli
B Ai1;i2;...;ik

Bj1;j2;...;jl
ei1

« ei2 « . . . ejl
represents

the tensor product. Transposition is given through
hni
T

T

ˆ
Tin;in¡1;...;i1ei1

« ei2
« . . . ein . The inner product of tensors

of equal order is defined via contraction hki
A ¢::¢|{z}

k

hki
B

T
ˆ

Ai1;i2 ;...;in
Bi1;i2 ;...;in

, so an inner product of two second-order
tensors is given by their two-fold contraction …A; B† ˆ
A ¢ ¢ BT , also compactly written as the first invariant IAB

of the tensor A ¢ B. Second-order tensors may be uniquely
decomposed into a symmetric, sym‰AŠ ˆ 1

2
…A ‡ AT † and

an asymmetric part, skw‰AŠ ˆ 1
2
…A ¡ AT †. Anticipating

further the need for generalized higher-order orientation
tensors, the recursive formula for the mesoscopic structure
tensors,

hki
N ˆ

hk¡1i
N «

h1i
N ; where

h1i
N ˆ n, is to be established,

where n ˆ sin £ cos ’e1 ‡ sin £ sin ’e2 ‡ cos £e3. Alter-
native notation of fourth-order tensors is given as N ˆ

h4i
N,

Isym ˆ 1
2
…¯ik¯jl ‡ ¯il¯jk† and Idev ˆ Isym ¡ I « I, representing

the fourth-order structure tensor, the identities on the space of
symmetric and symmetric deviatoric tensors, respectively.
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