Random Numbers

Random numbers (RNs) are important for scientific simulations. We will see that they
are used in many different applications, including the following:

To simulate random events in experimental data (e.g., radioactive decay)

To simulate thermal fluctuations (e. g., Brownian motion)

e To incorporate a lack of detailed knowledge (e.g., traffic or stock market simula-
tions)

To test the stability of a system with respect to perturbations

To perform random sampling

1.1 Definition of Random Numbers
I

Random numbers are a sequence of numbers in random order. The probability that a
given number occurs next in such a sequence is always the same. Physical systems can
produce random events, for example, in electronic circuits (electronic flicker noise) and
in systems where quantum effects play an important role (e. g., radioactive decay or
photon emissions in semiconductors). However, physical random numbers are usually
bad in the sense that they are often correlated and not reproducible.

Generating random numbers with algorithms is also a bit problematic because
computers are completely deterministic, while randomness should be nondetermin-
istic. We therefore must content ourselves with generating so-called pseudo-random
numbers, which are computed with deterministic algorithms based on strongly non-
linear functions. These numbers should follow a well-defined distribution and should
have long periods. Furthermore, we should be able to compute them quickly and in a
reproducible way.

A very important function for generating pseudo-random numbers is the modulo
operator mod (% in C++). It determines the remainder of a division of one integer
number by another one.

Given two numbers a (dividend) and »n (divisor), we write a modulo n or a mod rn,
which represents the remainder of dividing a by n. For the mathematical definition of
the modulo operator, we consider the integers a, ¢, and r. We then express a as

a=nqg+r, (1.1)

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

4 Random Numbers

where r (0 < r < |n|) is the remainder (i.e., the result of @ mod n). One useful property
of the mod operator for generating RN is that it is a strongly nonlinear function.

We distinguish between two classes of pseudo-random number generators (RNGs):
multiplicative and additive RNGs.

e Multiplicative RNGs are simpler and faster to program and are based on integers.
e Additive RNGs are more difficult to implement and are based on binary variables.

In the following sections, we describe these RNGs in detail and outline different
methods that allow us to examine the quality of random sequences.

1.2 Congruential RNG (Multiplicative)
e

The simplest form of a congruential RNG [2, 3] was proposed by Lehmer (see
Figure 1.1). It is based on the mod operator.

Congruential RNG

To define the congruential RNG, we choose two integer numbers, ¢ and p, and a seed value x, such that
¢, p, Xo € Z.We then generate the sequence x; € Z, i € N iteratively according to

Xx; = (cx;_)mod p . (1.2)

This iteration generates random numbers in the interval [0, p — 1]'. To transform a
random number x; € [0, p— 1] into a normalized random number z; € [0, 1), we simply
divide x; by p and obtain

0<z==<1, (1.3)
p
where z; is a rational number (i.e., z; € Q). The random numbers z; are homogeneously
distributed, which means that every number between 0 and 1 is equally probable.

Figure 1.1 Derrick H. Lehmer Since all integers are smaller than p, the sequence must repeat after maximally (p—1)
(1905-1991) was an American iterations. Thus, the maximal period of the RNG defined by eq. (1.2) is (p — 1). If we
mathematician who worked onnumber pick the seed value xo = 0, the sequence remains at this value. Therefore, xo = 0 cannot
theory and theory of computation. be used as a seed of the described congruential RNG.

In 1910, the American mathematician Robert D. Carmichael [4] proved that the
maximal period of a congruential RNG can be obtained if p is a Mersenne prime
number and if it is the smallest integer number that satisfies

" 'modp =1. (1.4)

' Throughout the book, we adopt the notation that closed square brackets [] in intervals are equivalent

to “<” and “>" and parentheses () correspond to “<” and “>,” respectively. Thus, the interval [0, 1]
correspondsto0 < x <1, xe Rand (0,1) means0 < x < 1, x € R.

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

1.2 Congruential RNG (Multiplicative) 5

A Mersenne number is defined as M, = 2" — 1 with n € N. If the number M is prime,
it is referred to as Mersenne prime. As of May 2021, only 51 Mersenne primes were
known. The largest has 24,862,048 digits and was discovered by Patrick Laroche in
December 2018 within the Great Internet Mersenne Prime Search (GIMPS) [5]. In
1988, Park and Miller [6] proposed the following numbers to generate the maximal
period of congruential RNGs, here, in pseudo-code:

(I8} I;
[

gz

0.4
0.2

LA}

const int p=2147483647,

const int ¢c=16807;)
Figure 1.2 Cube test: plot of consecutive

int rnd=42: // seed random numbers x;, x;.1, X+ With 15
’ clearly visible planes (“RANDU” algorithm

; _ _ 931 _
rnd:(c*rnd)%p; WIthC—65539,p—2 ,x0—1).

print rnd;

The number p = 2147483648 is a Mersenne prime and corresponds to the maximal
integer of 32 bits: 23! — 1.

To assess the homogeneity of numbers generated by an RNG, we can either plot two
consecutive pseudo-random numbers (x;, x;+1) (the so-called square test) or employ
a “cube test” for three consecutive numbers (x;, X;;1, Xi+2). In Figure 1.2, we show
an example of an RNG that clearly fails the cube test. All numbers that are gen-
erated by this particular RNG lie on just 15 parallel planes, indicating correlation
effects that may lead to undesired effects in simulations of stochastic processes. In
1968, George Marsaglia (see Figure 1.3) showed that all congruential RNGs as
defined in eq. (1.2) produce pseudo-random numbers that lie on equally spaced hyper-
planes [8]. The distance between these planes decreases with the length of the period.
For the interested reader, we briefly summarize the corresponding theorem on the
following page.

Figure 1.3 George Marsaglia
(1924-2011) made many contributions
to improving and testing RNGs [7].

Let{z;} = {x;/p} (i € N)denote normalized numbers of an RNG sequence, and letr; = (z1, ..., 2,),
7 = 22y Zns1), 3 = (23, -5 2ns2), - - . bethe points in the unit 72-cube formed by 7 succes-
sive numbers z;. Marsaglia showed that all points 77y, 715, . . . lie on parallel hyperplanes [8]. Formally, if
ai, a,...,a, € Zisany choice of integers such that

ay + axc + azc* + -+ a,c”' = Omod p,
then all the points 7y, 75, . . . will lie in the set of parallel hyperplanes defined by the equations

apy1+ay, +--+a,y, =0, 21, £2,..., y,eR, 1 <i<n.

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

6 Random Numbers

There are at most
lai| + laa| + - - + |ay|
of these hyperplanes that intersect the unit 7-cube. Note that there is always a choice of @y, . . . , a,, such

that all of the points fall in fewer than (2! p)/" hyperplanes. The theorem can be proven in four steps:
Step 1: If

a + arc + asc* + -+ + a,c”' = Omod p,

one can prove that
a1Z; + QZiv + 000 Qi
is an integer for every i.
Step 2: The point 7t; = (2, Zit15 - - - » Zizn—1) Must lie in one of the hyperplanes
apyy+ay, +--+a,y,=0,£1,£2,..., y;eR 1 <i<n.
Step 3: The number of hyperplanes of the above type, which intersect the unit r2-cube, is at most
lai| + laz + - - - + la| -

Step 4: For every multiplier ¢ and modulus p, there is a set of integers ay, . . . , a,, (not all zero) such that

n—1

a + axc + azct + - + a,¢ = (Omod p

and
lai] + laol + -+ + la,| < (n!p)'"".

This is of course only the outline of the proof. The exact details are described in Marsaglia (1968) [8]. In a
similar way, it is possible to show that for congruential RNGs the distance between the planes must be larger

than \/%

Task 1
Write a program that generates random numbers using a congruential random number generator. First, use
small values for ¢ (< 50) and p (< 50), for example, c = 3and p = 31.

o (heck for correlations using the square test. That is, create a plot of two consecutive random numbers
(x7, X;11). (What is the maximum number of random numbers that have to be created until you can see
all possible lines/planes for this specific random number generator?)

o (reate a corresponding 3D plot for the cube test.

o Do the same for other random number generators (at least one!), for example, by changing ¢ and p. You
may also compare your results to those obtained with C++ built-in generators, such as rand () and
drand48().

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

1.3 Lagged Fibonacci RNG (Additive) 7

Task 2
Generate a homogeneous distribution of random points inside a circle. How should the coordinates 7 and ¢
be chosen using uniformly distributed random numbers?

Task 3
Test your RNG for different c and p using the y? test:

o Divide the range of random numbers into & bins. That is, divide the range into discrete intervals of the same
size, so that the probability of a random number lying in interval i is p; = 1/k.

o Using each RNG, generate at least one sequence of 2 numbers. For each sequence, determine NV, the
number of random numbers in interval i (choose 72 such thatall np; > 5).

o Compute the x> value for one specific sequence s of random numbers

k 2
> 0 (Ni—npy)
/\/s - ; np; .

Use the table from Knuth [9] to check if the random numbers are uniformly distributed and compare the
quality of different RNGs.

o (alculate y for different sequences (i.e., different seeds of the RNG). You can then plot the cumulative
probability for the x> in comparison to the theoretically expected values (values again from the table of
Ref. [9]).

1.3 Lagged Fibonacci RNG (Additive)

A slightly more complicated RNG is the lagged Fibonacci algorithm proposed by
Robert C. Tausworthe (see Figure 1.4) in 1965 [10]. Lagged Fibonacci-type generators
can achieve extremely long periods and allow us to make some predictions about their
underlying correlation effects.

To define lagged Fibonacci RNGs, we start with a sequence of binary numbers
x; €{0, 1} (1 < i < b). The next bit in our sequence x,,; is

Xpi1 = (be+1—j)m0d2, (1.5)

jeg

where J C [1,...,b]. The sum } jcq xp11-; includes only a subset of all the other
bits, so the new bit could, for instance, simply be based on the first and third bits, Figure1.4 Robert C. Tausworthe s a

Xps1 = (x1 + x3)mod2 (or any other subset). We now focus on the properties of retired senior research engineer at the Jet
RNGs that are defined by eq. (1.5) and consider a two-element lagged Fibonacci Propulsion Laboratory, California Institute
generator. of Technology.

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

8 Random Numbers

Two-Element Lagged Fibonacci RNG

Lletc,d € {1,...,b}withd < c.TheRNGsequence elements x| are recursively generated according to

Xpr1 = (Xps1—c + Xpy1—g) MOd 2.

We immediately see that we need some initial sequence of at least ¢ bits to start from
(a so-called seed sequence). Except for all bits equal to zero, any other seed configu-
ration can be used. One possibility is to use a seed sequence that was generated by a
congruential RNG.

The maximum period of sequences that are generated by the outlined two-element
lagged Fibonacci RNG is 2¢—1. As for congruential RNGs, there are conditions for the
choice of the parameters ¢ and d to obtain the maximum period. For lagged Fibonacci
generators, ¢ and d must satisfy the Zierler—Trinomial condition, which states that the
trinomial

Tea@) =1+2+27, (1.6)
where z is a binary number, cannot be factorized into subpolynomials (i.e., is prim-
itive). A possible choice of numbers that satisfy the Zierler condition is (c,d) =
(250, 103). The generator is named after Kirkpatrick (see Figure 9.10) and Stoll, who

proposed these numbers in 1981 [11].
Some examples of known pairs (c, d) follow:

(c;d)
(250,103) Kirkpatrick—Stoll (1981) [11]
(132049, 54454) J. R. Heringa et al. (1992) [12]
(6972593,3037958) R.P. Brent et al.(2003) [13].

(1.7)

We may use one of the following methods to convert the obtained binary sequences to
natural numbers (e. g., 32 bit unsigned integers):

e Running 32 lagged Fibonacci generators in parallel (this can be done very effi-
ciently): The problem with this method is the initialization, because all 32 initial
sequences have to be uncorrelated. The quality of the initial sequences has a major
impact on the quality of the produced random numbers.

e Extracting a 32-bit-long part from the sequence: This method is relatively slow
because for each random number we have to generate 32 new elements in the binary
sequence.

1.4 Available Libraries
. |

In general, we should always make sure that we use a high-quality RNG. For some
purposes it might be sufficient to use drand48 (in C/C++). If your compiler supports

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

1.5 How Good is an RNG? 9

the C++11 standard (or above), there are different implementations already avail-
able in the “random” library. For example, linear congruential RNGs are available
by calling minstd_rand from the linear_congruential_engine class. A useful general-
purpose RNG is the so-called Mersenne twister [14], which was developed in 1997 by
Makoto Matsumoto and Takuji Nishimura. The Mersenne twister has some struc-
tural similarities to lagged Fibonacci RNGs and belongs to the class of generalized
feedback shift register algorithms. The name “Mersenne twister” was chosen because
its period length is a Mersenne prime. In C++, we can use the Mersenne twister to
generate uniformly distributed random numbers as follows:

#include <iostream>

#include <random>

using namespace std;

int main()

{
random_device rd;
mt19937 mt_rng(rd());
uniform_real_distribution <double> u(0.0, 1.0);
double rnd = u(mt_rng);
cout << rnd << endl;
return 0;

}

In the above code listing, we use the random_device as seed for the mt19937 generator.
This generator has a very long period of 2'°%37 — 1. For the sake of reproducibility of
numerical results, it is recommended to store all seeds in a file. In PYTHON, no further
efforts are required to use the Mersenne twister because the mt19937 is the core RNG
in all PYTHON distributions.

1.5 How Good is an RNG?

There are many possibilities to test how “random” a certain RNG sequence is. Possible
tests for a given sequence {s;}, i € N include the following:

1. Square test (see Section 1.2 for details)
2. Cube test (see Section 1.2 for details)

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

10 Random Numbers

3. Average value: the arithmetic mean of all numbers in the sequence {s;} should cor-
respond to the analytical mean value. Let us assume here that the numbers s; are
rescaled to lie in the interval s; € [0, 1). The arithmetic mean should then be

1 1
s:}\%lm—Zs;:E. (1.8)

The more numbers that are averaged, the better % will be approximated.

4. Fluctuation of the mean value (y? test): the distribution around the mean value
should behave like a Gaussian distribution.

5. Spectral analysis (Fourier analysis): Let {s;} denote values of a function. It is possi-
ble to perform a Fourier transform of such a function by means of the fast Fourier
transform (FFT; see details in Section 15.2.1). If the frequency distribution corre-
sponds to white noise (uniform distribution), the randomness is good; otherwise,
peaks will show up (resonances).

6. Correlation test: Analysis of correlations such as

(siSiva) = (s7), (1.9)
for different values of d.

Of course, this list is not complete. Many other tests can be used to check the quality
of RNG sequences.

Probably the most famous set of RNG tests is the Marsaglia’s “Diehard” set. These
Diehard tests are a battery of statistical tests for measuring the quality of a set of
random numbers. They were developed over many years and published for the first
time by Marsaglia on a CD-ROM with random numbers in 1995 [15]. Marsaglia’s
tests were inspired by different applications, and each can measure different types of
correlations.

e Birthday spacings: If random points are chosen in a large interval, the spacings between points should be
asymptotically Poisson distributed. The name stems from the birthday paradox.’

o Overlapping permutations: When analyzing five consecutive random numbers, the 120 possible orderings
should occur with equal probability.

o Ranks of matrices: A number of bits of some number of random numbers is formed into a matrix over {0, 1}.
The rank of this matrix is then determined, and the ranks are counted.

o Monkey test: Sequences of some number of bits are taken as words, and the number of overlapping words
in a stream is counted. The number of words not appearing should follow a known distribution. The name
is based on the infinite monkey theorem.?

o Parking lot test: Randomly place unit circlesina 100 x 100 square. If the circle overlaps an existing one,
try again. After 12,000 tries, the number of successfully “parked” circles should follow a certain normal
distribution.

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

1.6 Nonuniform Distributions

o Minimum distance test: Find the minimum distance of 8,000 uniformly randomly placed points in a
10,000 x 10,000 square. The square of this distance should be exponentially distributed with a certain
mean.

o Random spheres test: Put 4,000 randomly chosen points in a cube of side length 1,000. Now a sphere is
placed on every point with a radius corresponding to the minimum distance to another point. The smallest
sphere’s volume should then be exponentially distributed.

e Squeeze test: 23! is multiplied by random floats in [0, 1) until 1is reached. After 100,000 repetitions, the
number of floats needed to reach 1should follow a certain distribution.

o (verlapping sums test: Sequences of 100 consecutive floats are summed up in a very long sequence of
random floats in [0, 1). The sums should be normally distributed.

o Runs test: Ascending and descending runs in a long sequence of random floats in [0, 1) are counted. The
counts should follow a certain distribution.

o (raps test: 200,000 games of craps® are played. The number of wins and the number of throws per game
should follow a certain distribution.

The birthday paradox states that the probability of two randomly chosen persons having the same birthday in a group of 23 (or more) people
ismore than 50 percent. For 57 or more people, the probability is already larger than 99 percent. Finally, for at least 366 people, the probability
is exactly 100 percent. This is not paradoxical in a logical sense; it is called a paradox nevertheless since intuition would suggest probabilities
much lower than 50 percent.

The infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost
surely (i.e., with probability 1) write a certain text, such as the complete works of William Shakespeare.

3 Adice game.

n

1.6 Nonuniform Distributions
|

Thus far, we have only considered uniform distributions of pseudo-random numbers.
The congruential and lagged Fibonacci RNGs produce numbers that can easily be
mapped to the interval [0, 1) or any other interval by simple shifts and multiplications.
However, if we want to generate random numbers that are distributed according to
a certain distribution (e.g., a Gaussian distribution), the algorithms presented so far
are not able to do so. However, we may employ techniques that permit us to trans-
form uniform pseudo-random numbers to other distributions. There are essentially
two different ways to perform this transformation:

e We can apply transformation methods if the target distribution is known analytically,
is integrable, and the resulting expression is invertible.

e However, if the target distribution is not known analytically or if it cannot be
analytically integrated and inverted, we have to use the so-called rejection method.

These methods are explained in the following sections.

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

n

https://doi.org/10.1017/9781108882316.002

12 Random Numbers

1.6.1 Transformation Method

For a certain class of distributions, we can generate pseudo-random numbers from
uniformly distributed random numbers by applying a mathematical transformation.
The transformation method works particularly nicely for the most common distri-
butions (exponential and normal distributions). While the transformation is rather
straightforward, it is not always feasible —depending on the analytical form of the
distribution.

For a positive continuous random variable z and probability density function (PDF)
f(2), the probability that z lies between z and z+dz is f(z) dz. Thus, the probability that
z takes on values between a and b is

b
Pr(aSsz)=ff(z)dz. (1.10)

The corresponding cumulative distribution function (CDF) is

F(Z)=fzf(z’)dz’. (1.11)
0

The idea behind the transformation method is to find the equivalence between the
CDFs of a uniform distribution f; and the distribution of interest. The PDF of the
uniform distribution with support [0,1] is

fﬁF{L fore <1011, (1.12)

0, otherwise.

Now we want to obtain random numbers that are distributed according to a second
PDF f(y). If we compare the areas of integration (i.e., CDFs), we find

ziﬂmmw=£ﬂww, (1.13)

where z is a uniformly distributed random variable and y a random variable distributed
according to the desired distribution f(y). The first equality in eq. (1.13) follows from
the definition of the uniform distribution in eq. (1.12) and we impose the second equal-
ity to find a suitable change of variables such that the CDFs of f, and f are the same.
Inverting F(y) leads to

y=F(2). (1.14)

This shows that a transformation between the two distributions can be found if and
only if

1. the integral F(y) = ny f(O’)dy’ can be solved analytically in a closed form (i.e., f(y)
must be integrable),

2. there exists a closed-form analytical expression of the inverse of z = F(y) such that
y = F7!(z) (i.e., F(y) must be invertible).

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

1.6 Nonuniform Distributions 13

Of course, these conditions can be overcome to a certain extent by precomputing/tabu-
lating and inverting F(y) numerically if the integral is well behaved (i.e., nonsingular).
Then, it is possible to transform the uniform numbers numerically.

We are now going to demonstrate this method for the two most commonly used
distributions: the exponential distribution and the Gaussian distribution. We will see
that already in the case of a Gaussian distribution, quite some work is required to
perform such a transformation.

The Exponential Distribution

The exponential distribution is
fO) = ke™*. (1.15)

By applying the area equality of eq. (1.13), we find

y
7= f ke™kdy’, (1.16)
0
and thus Figure 1.5 George E. P. Box (1919-2013)
i=— e—y'k% —]k (1.17) wasasta.tisti.ciar? wor!(ing at[diffe.rent
research institutions, including Princeton
Solving for y yields University and the University of
1 Wisconsin—Madison.
y=—zlﬂ(1—z), (1.18)

so that for each homogeneously distributed random number z we get an exponentially
distributed random number y through eq. (1.18).

The Gaussian Distribution

Methods for generating normally distributed random numbers are very useful because
there are many applications and examples where such numbers are needed.

The Gaussian or normal distribution is

1 2

e 272,

V2no?
where o represents the standard deviation of the distribution. Unfortunately, we can
only solve its integral between —co and oo analytically:

fO) =

(1.19)

1 © 2 Figure 1.6 Mervin E. Muller (1928-2018)
ot I L wdyt=1. (1.20) was a computer scientist working at the
Ohio State University. Photograph
However, Box and Muller [16] (see Figures 1.5 and 1.6) have introduced the following courtesy The Ohio State University.

elegant trick to circumvent this restriction. We take two (uncorrelated) uniform ran-
dom variables z; and z;. We apply the area equality of eq. (1.13) again, but this time
we write it as a product of the two random variables

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

14 Random Numbers

V1 1 V2 V2 1 V2

e 2w dy] - e 2 dy;
—00 V2102 ' Jee V2r0? g (1.21)

JT
V2 Vi l _‘/2“/2
- j—\oo Ioo 27r0'2 7 dyidy;

We now solve the integral by transforming the variables y| and y) into polar

122 =

coordinates
=yl +y3, (1.22)
tang = 2 (1.23)
y2 '
with
dy\dy, = r'dr'd¢’ . (1.24)

We apply these coordinate transformations to eq. (1.21) to obtain

21" = 2710'2f fe 2rrrdrd¢ (1.25)

2 — e @ dr (1.26)
o 0
_ ¢ 2 -5
_2 2-0— 1—e 27|, (127)
o
giving
1 Vi _i3
= Earctan W 1—e 27 |. (1.28)
=21 =22

By separating these two terms (and associating them to z; and z;, respectively), we can
invert this function and find

Y +y; =207 In(1 - z5), (1.29)
in(2
M tan(rzy) = S0Gr2) (1.30)
V2 cos(2mzy)

One solution of these two coupled equations is

V1 = \/—20‘2 11‘1(1 —Zz) sin(27rzl), (131)
y2 = V=202 1In(1 — z3) cos(2mzy). (1.32)

Thus, by using two uniformly distributed random numbers z; and z;, we obtain
(through Egs. (1.31) and (1.32)) two normally distributed random numbers y; and y;.

1.6.2 Random Points on a Sphere

Another application of the transformation method is to generate points that are dis-
tributed uniformly at random over the surface of a sphere with radius R. We denote
the coordinates of the points by coordinates (¢,) where ¢ € [0,2r) and 6 € [0,].

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

1.6 Nonuniform Distributions 15

top view side view

An overly simplified attempt would be to generate two uniformly distributed ran-
dom numbers u,v € [0, 1] and then set ¢ = 27u and 6 = vr. We show the resulting
distribution of points in the top panel of Figure 1.7. It is evident that there is a larger
concentration of points in the pole regions when compared to the remaining parts of
the sphere. The reason is that we are not properly accounting for the surface element
dA = R?sin(6)d¢do.

To obtain points that are distributed uniformly at random over a sphere surface, we
have to apply the transformation method to the distribution of 6:

incarrect

carrect

0
V= % fo sin(@") d¢’ . (1.33)
Figure 1.7 Distribution of random points
The prefactor 1/2 guarantees that the cumulative distribution function is normalized onasphere.
to unity for 6 = . Based on eq. (1.33), we find § = arccos(2v — 1) and as in the first
attempt we use ¢ = 2nu. The points are now uniformly distributed over the sphere’s
surface as we show in the bottom panel of Figure 1.7.

1.6.3 The Rejection Method

We have seen in Section 1.6.1 that there are two conditions that a function has to
satisfy to apply the transformation method: integrability and invertability. If either of
these conditions is not satisfied, there exists no analytical method to obtain random
numbers for such a distribution. It is important to note that this is particularly relevant
for experimentally obtained data, where no analytical description is available. In such
a case, we have to resort to a numerical method (rejection method) to obtain arbitrarily
distributed random numbers.

Let f(y) be the distribution from which we would like to obtain random numbers. A
necessary condition for the rejection method to work is that f(y) is bounded and only
exists over a finite domain. That is, f(y) < A for y € [0, B], withA,B € R and A, B < co.
We then define a box with edge lengths B and A (see Figure 1.8).

(B, A)
=
'

Y

llustration of the rejection method. Sample points are placed within the box and rejected if they lie above the curve
(i.e, inside the blue-shaded area), and accepted otherwise.

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

16 Random Numbers

We now generate two pseudo-random variables z; and z, with z1,z; € [0, 1). If we
consider the point with coordinates (Bz;,Az), we see that it surely lies within the
defined box. If this point lies above the curve describing the distribution f(y) (i.e.,
Azp > f(Bz1)), the point is rejected (hence the name of the method). Otherwise y = Bz;
is retained as a random number that is distributed according to f(y).

In principle, the method works quite well. It can be improved considering the
following points:

e It is desirable to have a good guess for the upper bound. Obviously, the better the
guess, the less points are rejected. In the above description of the algorithm, we have
assumed a rectangular box. This is, however, not a necessary condition. In principle,
one can take any domain on which homogeneously distributed random numbers are
easily generated.

e There is a method to make the rejection method faster (but also more complicated).
We may use N boxes to cover f(y) and define the individual box with side length A;
and b; = B;;; — B; for [< i < N. Then, the approximation of f(y) is much better (this
is related to the definition of the Riemann integral).

https://doi.org/10.1017/9781108882316.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108882316.002

