Admissibility for a Class of Quasiregular Representations

Bradley N. Currey

Abstract. Given a semidirect product $G=N\rtimes H$ where N is nilpotent, connected, simply connected and normal in G and where H is a vector group for which $\operatorname{ad}(\mathfrak{h})$ is completely reducible and \mathbf{R} -split, let τ denote the quasiregular representation of G in $L^2(N)$. An element $\psi\in L^2(N)$ is said to be admissible if the wavelet transform $f\mapsto \langle f,\tau(\cdot)\psi\rangle$ defines an isometry from $L^2(N)$ into $L^2(G)$. In this paper we give an explicit construction of admissible vectors in the case where G is not unimodular and the stabilizers in H of its action on \widehat{N} are almost everywhere trivial. In this situation we prove orthogonality relations and we construct an explicit decomposition of $L^2(G)$ into G-invariant, multiplicity-free subspaces each of which is the image of a wavelet transform . We also show that, with the assumption of (almost-everywhere) trivial stabilizers, non-unimodularity is necessary for the existence of admissible vectors.

Introduction

For the most general notion of continuous wavelet transform, we start with a separable, locally compact topological group G, and a unitary representation τ of G acting in the Hilbert space \mathcal{H}_{τ} . Given a vector $\psi \in \mathcal{H}_{\tau}$, we have a linear mapping W_{ψ} from \mathcal{H}_{τ} into the space of bounded continuous functions on G defined by $W_{\psi}(f) = \langle f, \tau(\cdot)\psi \rangle$. In the event that W_{ψ} actually defines an isometry of \mathcal{H}_{τ} into $L^2(G)$, then we say that W_{ψ} is a continuous wavelet transform, and that ψ is admissible for τ . When G has Type I reduced dual, the two extreme cases — where τ is irreducible or where τ is the regular representation — are well understood [8, 11]. Most closely related to discrete wavelets is the case where G is a semidirect product $G = N \times H$ with N normal and where τ is the quasiregular representation of G in $L^2(N)$. The simplest example of this case is the "ax + b" group $G = \mathbf{R} \times \mathbf{R}_+^*$, where the quasiregular representation of G in $L^2(\mathbf{R})$ certainly does have admissible vectors, since it is the direct sum of two (square-integrable) irreducible representations. General semidirect products of the form $G = \mathbb{R}^n \times H$, where H is a closed subgroup of $GL(n, \mathbb{R})$, are studied in [13, 22]. There H is said to be admissible if the corresponding quasiregular representation has an admissible vector, and an (almost) characterization of all admissible *H* is proved.

It is natural then to consider the continuous wavelet transform for the quasiregular representation of $G = N \rtimes H$ when \mathbb{R}^n is replaced by a locally compact, connected, unimodular group N. The paper [12] lays out the general theory under the assumption that both of the following conditions hold: (i) for a.e. λ belonging to the dual \widehat{N} , the stabilizer H_{λ} in H is compact, and (ii) \widehat{N} has a co-null subset consisting of

Received by the editors November 3, 2004; revised March 16, 2005.

AMS subject classification: 22E27, 22E30.

© Canadian Mathematical Society 2007.

finitely many open orbits. There are a number of important situations in which these assumptions hold (see for example [10]). Assumption (i) is certainly a natural one; in the case where $N = \mathbb{R}^n$, it is shown relatively easily in [13] that (i) is in fact a *necessary* condition for admissibility. The necessity of (i) in the case where N is not abelian remains an open question however, and seems to be quite difficult even in simple examples. On the other hand, easy examples and the general results of [13] show that (ii) is not necessary.

In this paper we consider the class of $G = N \rtimes H$ satisfying the following conditions:

- (i) *N* is any connected, simply connected nilpotent Lie group,
- (ii) H is a vector group acting on N in such a way that the Lie algebra ad(\mathfrak{h}) is completely reducible and \mathbf{R} -split.

The group G is exponential, meaning that the exponential map defined on its Lie algebra g is a bijection onto G. The orbit method applies both to N and G, and the relationship between coadjoint orbits in the linear dual n* of n, and coadjoint orbits of G in g^* is well understood. A great deal is also known about the spectral decomposition of the quasiregular representation in this context [14, 17]. In this paper we clarify the relationship between explicit orbital parametrizations in n* and g^* as well. In Section 1 we recall the method of stratification by which the collective orbit structure can be described, applying this method both to n* and to g*. With carefully chosen bases for \mathfrak{n} and \mathfrak{g} , this procedure yields subsets Λ° of \mathfrak{n}^{*} and Λ of \mathfrak{g}^{*} , which parametrize a.e. the duals \widehat{N} and \widehat{G} respectively, and such that if $p: \mathfrak{g}^* \to \mathfrak{n}^*$ is the restriction map, then $p(\Lambda)$ is explicitly described as a subset of Λ° . The action of H on \widehat{N} is realized a.e. as an action of H on Λ° , and the Fourier transform of a function in $L^2(N)$ has domain Λ° by means of Pukanzsky's explicit version of the Plancherel formula. Thus the issues surrounding conditions (i) and (ii) above — the "size" of the stabilizers in H and the collective structure of the H-orbits in \widehat{N} — can be addressed in concrete terms.

In Section 1 we show that there is a Zariski open subset Λ^1 of Λ° and a single vector subgroup H_0 of H such that $H_0 = H_\lambda$ holds for all $\lambda \in \Lambda^1$. Thus, in light of the preceding constructions, condition (i) is simplified: it just says that $H_0 = (1)$. Nevertheless, it is still an open question as to whether this is necessary for the existence of τ -admissible vectors. Therefore, for the purposes of this paper we make the assumption that condition (i) holds, and hence that $H_0 = (1)$. With this assumption in place, we describe the action of H on Λ^1 and obtain an explicit cross-section $\Sigma \subset \Lambda^1$ for the H-orbits in Λ^1 . It is shown that $p|_{\Lambda}$ is a bijection onto Σ . A decomposition of τ is described in terms of an explicit measure on Σ . The observation is made that if N is not abelian, then the irreducible decomposition of τ has infinite multiplicity. In fact we construct an explicit, direct-sum decomposition of $L^2(N)$ into τ -invariant subspaces $L^2(N)^\beta$ that are pairwise isomorphic and multiplicity-free. In the case where $N = \mathbb{R}^n$, one has $L^2(N)^\beta = L^2(N)$.

By virtue of the results [13, Theorem 1.8] and [11, Theorem 0.2], we expect the existence of admissible vectors to be tied to the non-unimodularity of G, and this is shown to be precisely the case. Note that in this context, both H and N are unimodular, so G is non-unimodular if and only if the H-action on N is non-unimodular. First

we prove a Caldéron condition for the admissibility with respect to the subrepresentations τ^{β} of τ acting in $L^2(N)^{\beta}$. The construction of τ^{β} -admissible vectors is now relatively easy when G is non-unimodular, and we use this construction, together with the relationship between Σ and Λ described above, to prove the following.

Theorem Let $G = N \times H$ where N is a connected, simply connected nilpotent Lie group and H is a vector group such that the Lie algebra $ad(\mathfrak{h})$ is \mathbf{R} -split and completely reducible. Assume furthermore that for a.e. $\lambda \in \widehat{N}$, the stabilizer H_{λ} is trivial. Let τ be the quasiregular representation of G in $L^2(N)$. Then τ has an admissible vector if and only if G is not unimodular.

Finally, in the case where admissible vectors exist, we generalize the methods of [18] to show that the wavelet transform yields an explicit direct-sum decomposition of the regular representation of G into pairwise isomorphic, multiplicity-free subrepresentations, each of which is isomorphic with τ^{β} .

1 Orbital Parameters in n^* and in g^*

We begin by setting some notation. Let \mathfrak{g} be a Lie algebra over \mathbf{R} of the form $\mathfrak{g}=\mathfrak{n}\oplus\mathfrak{h}$, where \mathfrak{n} is nilpotent, $\mathfrak{n}\supset [\mathfrak{g},\mathfrak{g}]$, and where \mathfrak{h} is an abelian subalgebra of \mathfrak{g} with ad(\mathfrak{h}) completely reducible and \mathbf{R} -split. Let $G=N\rtimes H$ be the connected, simply connected Lie group with Lie algebra \mathfrak{g} . Let \mathfrak{g}^* (resp., \mathfrak{n}^*) be the linear dual of \mathfrak{g} (resp., \mathfrak{n}), and let $p\colon \mathfrak{g}^*\to\mathfrak{n}^*$ be the restriction mapping. For a subalgebra \mathfrak{s} of \mathfrak{g} let $\mathfrak{s}^\perp=\{\ell\in\mathfrak{g}^*\mid \ell|_{\mathfrak{s}}=0\}$. We denote the coadjoint action of G on G on G multiplicatively, as well as the coadjoint action of G on G on

$$t^f = \{ Z \in \mathfrak{g} \mid f[Z, T] = 0 \text{ holds for every } T \in \mathfrak{t} \}.$$

If t is an ideal in g, then \mathfrak{t}^f is a subalgebra of g. Recall that for any $\ell \in \mathfrak{g}^*$, the Lie algebra $\mathfrak{g}(\ell)$ of its stabilizer $G(\ell)$ in G is \mathfrak{g}^ℓ , and similarly for $f \in \mathfrak{n}^*$, the Lie algebra of its stabilizer N(f) in N is $\mathfrak{n}(f) = \mathfrak{n}^f \cap \mathfrak{n}$.

Next we summarize some results concerning the classification and parametrization of coadjoint orbits [6, 7]. Let \mathfrak{g} be any completely solvable Lie algebra, and choose any Jordan–Hölder sequence $(0) = \mathfrak{g}_0 \subset \mathfrak{g}_1 \subset \cdots \subset \mathfrak{g}_n = \mathfrak{g}$, with ordered basis $\{Z_1, Z_2, \ldots, Z_n\}$ so that $Z_j \in \mathfrak{g}_j - \mathfrak{g}_{j-1}$. Let δ_j be the character of G such that $\mathrm{Ad}(s)Z_j = \delta_j(s)Z_j \mod \mathfrak{g}_{j-1}$, and let $\mathrm{d}\delta_j$ denote its differential.

(1) To each $\ell \in \mathfrak{g}^*$ there is associated an index set $\mathbf{e}(\ell) \subset \{1, 2, \ldots, n\}$, defined by $\mathbf{e}(\ell) = \{1 \leq j \leq n \mid \mathfrak{g}_j \not\subset \mathfrak{g}_{j-1} + \mathfrak{g}(\ell)\}$. For a subset \mathbf{e} of $\{1, 2, \ldots, n\}$, the set $\Omega_{\mathbf{e}} = \{\ell \in \mathfrak{g}^* \mid \mathbf{e}(\ell) = \mathbf{e}\}$ is G-invariant. The $\Omega_{\mathbf{e}}$ are determined by polynomials as follows: to each index set \mathbf{e} one associates the skew-symmetric matrix

$$M_{\mathbf{e}}(\ell) = \left[\ell[Z_i, Z_j]\right]_{i,j \in \mathbf{e}}.$$

Setting $Q_{\mathbf{e}}(\ell) = \det M_{\mathbf{e}}(\ell)$, one finds that there is a total ordering \prec on the set $\mathcal{E} = \{\mathbf{e} \mid \Omega_{\mathbf{e}} \neq \varnothing\}$ such that $\Omega_{\mathbf{e}} = \{\ell \in \mathfrak{g}^* \mid Q_{\mathbf{e}'}(\ell) = 0 \text{ for all } \mathbf{e}' \prec \mathbf{e}, \text{ and } Q_{\mathbf{e}}(\ell) \neq 0\}$. We refer to the collection of non-empty $\Omega_{\mathbf{e}}$ as the coarse stratification of \mathfrak{g}^* , and to its elements as coarse layers.

(2) Let $\mathbf{e} \in \mathcal{E}$; then $|\mathbf{e}|$ is even, and we set $d = |\mathbf{e}|/2$. To each $\ell \in \Omega_{\mathbf{e}}$ there is associated a "polarizing sequence" of subalgebras

$$\mathfrak{g} = \mathfrak{p}_0(\ell) \supset \mathfrak{p}_1(\ell) \supset \cdots \supset \mathfrak{p}_d(\ell) = \mathfrak{p}(\ell),$$

and an index *sequence pair* $\mathbf{i}(\ell) = \{i_1 < i_2 < \dots < i_d\}$ and $\mathbf{j}(\ell) = \{j_1, j_2, \dots, j_d\}$, having values in $\mathbf{e}(\ell)$, defined by the recursive equations:

$$\begin{split} i_k &= \min\{1 \leq j \leq n \mid \mathfrak{g}_j \cap \mathfrak{p}_{k-1}(\ell) \not\subset \mathfrak{p}_{k-1}(\ell)^\ell\}, \\ \mathfrak{p}_k(\ell) &= \left(\mathfrak{p}_{k-1}(\ell) \cap \mathfrak{g}_{i_k}\right)^\ell \cap \mathfrak{p}_{k-1}(\ell), j_k = \min\{1 \leq j \leq n \mid \mathfrak{g}_j \cap \mathfrak{p}_{k-1}(\ell) \not\subset \mathfrak{p}_k(\ell)\}. \end{split}$$

For each $k, i_k < j_k$, and $\mathbf{e}(\ell)$ is the disjoint union of the values of $\mathbf{i}(\ell)$ and $\mathbf{j}(\ell)$. Note that since $\mathbf{i}(\ell)$ must be increasing, it is determined by $\mathbf{e}(\ell)$ and $\mathbf{j}(\ell)$. For any splitting of \mathbf{e} into such a sequence pair (\mathbf{i}, \mathbf{j}) we set $\Omega_{\mathbf{e}, \mathbf{j}} = \{\ell \in \Omega_{\mathbf{e}} \mid \mathbf{j}(\ell) = \mathbf{j}\}$. These sets are also algebraic and G-invariant, and we refer to the collection of non-empty $\Omega_{\mathbf{e}, \mathbf{j}}$ as the fine stratification of \mathfrak{g}^* . For $1 \le k \le d$, if we set

$$M_{\mathbf{e},k}(\ell) = \left[\ell[Z_i, Z_j]\right]_{i,j \in \{i_1, j_1, i_2, j_2, \dots, i_k, j_k\}},$$

let $\mathbf{Pf}_{\mathbf{e},k}(\ell)$ denote the Pfaffian of $M_{\mathbf{e},k}(\ell)$, and let $\mathbf{Pe}_{\mathbf{e},\mathbf{j}}(\ell) = \mathbf{Pf}_{\mathbf{e},1}(\ell)\mathbf{Pf}_{\mathbf{e},2}(\ell)\cdots\mathbf{Pf}_{\mathbf{e},d}(\ell)$, then there is a total ordering $\prec\!\!\prec$ on the pairs \mathbf{e},\mathbf{j} such that

$$\Omega_{\mathbf{e},\mathbf{i}} = \{\ell \in \mathfrak{g}^* \mid \mathbf{P}_{\mathbf{e}',\mathbf{i}'}(\ell) = 0 \text{ for all } (\mathbf{e}',\mathbf{j}') \prec\!\!\prec (\mathbf{e},\mathbf{j}) \text{ and } \mathbf{P}_{\mathbf{e},\mathbf{i}}(\ell) \neq 0\}.$$

The following rational functions are naturally associated with the fine stratification. Fix $\ell \in \Omega$. Define $\rho_0(Z,\ell)=Z$; assume that $\rho_{k-1}(Z,\ell)$ is defined and set

$$\rho_{k}(Z,\ell) = \rho_{k-1}(Z,\ell) - \frac{\ell[\rho_{k-1}(Z,\ell),\rho_{k-1}(Z_{i_{k}},\ell)]}{\ell[\rho_{k-1}(Z_{j_{k}},\ell),\rho_{k-1}(Z_{i_{k}},\ell)]} \rho_{k-1}(Z_{j_{k}},\ell)$$
$$- \frac{\ell[\rho_{k-1}(Z,\ell),\rho_{k-1}(Z_{j_{k}},\ell)]}{\ell[\rho_{k-1}(Z_{i_{k}},\ell),\rho_{k-1}(Z_{j_{k}},\ell)]} \rho_{k-1}(Z_{i_{k}},\ell).$$

Set $Y_k(\ell) = \rho_{k-1}(Z_{i_k}, \ell)$, and $X_k(\ell) = \rho_{k-1}(Z_{j_k}, \ell)$, $1 \le k \le d$; then it can be shown [2, Lemma 1.5] that for each $1 \le k \le d$,

$$\mathbf{Pf}_{e,k}(\ell) = \ell[Y_1(\ell), X_1(\ell)] \ell[Y_2(\ell), X_2(\ell)] \cdots \ell[Y_k(\ell), X_k(\ell)].$$

If we set

$$\mathfrak{m}_k(\ell) = \operatorname{span}\{Y_1(\ell), Y_2(\ell), \dots, Y_k(\ell), X_1(\ell), X_2(\ell), \dots, X_k(\ell)\},\$$

then for each $\ell \in \Omega$, $\mathfrak{g} = \mathfrak{m}_k(\ell) \oplus \mathfrak{m}_k(\ell)^{\ell}$ and $\rho_k(Z, \ell)$ is the projection of Z into $\mathfrak{m}_k(\ell)^{\ell}$ parallel to $\mathfrak{m}_k(\ell)$. It follows that

$$\ell[\rho_k(Z,\ell),\rho_k(T,\ell)] = \ell[\rho_k(Z,\ell),T], \quad Z,T \in \mathfrak{g}, \ell \in \mathfrak{g}^*.$$

The functions $\rho_k(\,\cdot\,,\ell)$ have the additional properties:

- (i) $\rho_k(\mathfrak{g}_j,\ell) \subset \mathfrak{g}_j, 1 \leq j \leq n, 0 \leq k \leq d$,
- (ii) $\rho_k(\mathfrak{g},\ell) \cap \mathfrak{g}_{i_{k+1}-1} \subset \mathfrak{g}(\ell), 0 \leq k \leq d-1.$

Finally, if α is an automorphism of \mathfrak{g} such that $\alpha(\mathfrak{g}_j) = \mathfrak{g}_j$ holds for every j, then α^* leaves each fine layer invariant.

- (3) Now fix a layer $\Omega_{\mathbf{e},\mathbf{j}}$ in the fine stratification. For each $\ell \in \Omega_{\mathbf{e},\mathbf{j}}$, define the "dilation set" $\varphi(\ell) = \{j \in \mathbf{e} \mid \mathfrak{g}_{j-1}^{\ell} \cap \ker(\mathbf{d}\delta_j) = \mathfrak{g}_j^{\ell} \cap \ker(\mathbf{d}\delta_j)\}$. The index set $\varphi(\ell)$ identifies those directions in the orbit of ℓ where the coadjoint action of G "dilates" by the character δ_j^{-1} . The indices in $\varphi(\ell)$ are included in the values of the sequence \mathbf{i} and are defined by $\varphi(\ell) = \{i_k \mid \mathbf{d}\delta_{i_k}(X_k(\ell)) \neq 0\}$. There are examples where $\varphi(\ell)$ is not constant on the fine layer. For each subset φ of the values of \mathbf{i} , the set $\Omega_{\mathbf{e},\mathbf{j},\varphi} = \{\ell \in \Omega_{\mathbf{e},\mathbf{j}} \mid \varphi(\ell) = \varphi\}$ is an algebraic subset of $\Omega_{\mathbf{e},\mathbf{j}}$, and we refer to this further refinement of the fine stratification as the ultra-fine stratification of \mathfrak{g}^* . The ultra-fine stratification also has an ordering for which the minimal layer is a Zariski open subset of the minimal fine layer.
 - (4) Now fix an ultra-fine layer $\Omega = \Omega_{\mathbf{e},\mathbf{j},\varphi}$, and for $\ell \in \Omega$, $j = i_k \in \varphi$, set

$$q_j(\ell) = \frac{\mathbf{d}\delta_j(X_k(\ell))}{\ell[X_k(\ell), Z_i]}.$$

Let $V=V_{\mathbf{e},\varphi}=\{\ell\in\mathfrak{g}^*\mid \text{ if } j\in\mathbf{e}-\varphi, \text{ then } \ell(Z_j)=0\}.$ Then the set

$$\Lambda = \Lambda_{\mathbf{e}, \mathbf{j}, \varphi} = \left\{ \ell \in V \cap \Omega \mid \text{ for every } j \in \varphi, |q_j(\ell)| = 1 \right\}$$

is a topological cross-section for the orbits in Ω . If $\mathfrak g$ is nilpotent, then the ultra-fine stratification coincides with the fine stratification and $\Lambda=V\cap\Omega$.

We now return to the case where $g = n \oplus h$ as described above, and we apply the stratification procedure first to the nilpotent Lie algebra n. We fix once and for all an ordered basis $\{Z_1, Z_2, \dots, Z_n\}$ of n for which the following hold for all $1 \le j \le n$:

- (i) $n_i = \text{span}\{Z_1, Z_2, \dots, Z_i\}$ is an ideal in g,
- (ii) for each $A \in \mathfrak{h}$, Z_i is an eigenvector for ad A.

Having chosen the basis Z_1, Z_2, \ldots, Z_n for \mathfrak{n} , let Ω° be the minimal (and hence Zariski open) fine layer in \mathfrak{n}^* , with Λ° its cross-section. Denote the objects referred to in (1)–(3) above by \mathbf{e}° , \mathbf{i}° , \mathbf{j}° , and ρ_k° . For each $1 \leq j \leq n$, set $e_j = Z_j^* \in \mathfrak{n}^*$ and set $\gamma_j = -\mathbf{d}\delta_j$ so that $\mathrm{ad}^* A(e_j) = \gamma_j(A)e_j$, $A \in \mathfrak{h}$. For each $h \in H$, since $\mathrm{Ad}^*(h)(\Omega^{\circ}) = \Omega^{\circ}$ and the e_j are eigenvectors of $\mathrm{Ad}^*(h)$, we have that $\mathrm{Ad}^*(h)(\Lambda^{\circ}) = \Lambda^{\circ}$.

With this in mind, we choose a convenient basis for \mathfrak{h} . Set $c=n-2d^{\circ}$, write $\{1,\ldots,n\}-\mathbf{e}^{\circ}=\{u_1< u_2<\cdots< u_c\}$, and set $\lambda_a=\ell(Z_{u_a}), 1\leq a\leq c$. Then $\ell\to\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_c)$ identifies Λ° with a Zariski open subset of \mathbf{R}^{c} . We select a subset $\alpha_v, 1\leq v\leq r$ of $\gamma_{u_a}, 1\leq a\leq c$ as follows: $a_1=\min\{1\leq a\leq c\mid \gamma_{u_a}\neq 0\},$ $a_2=\min\{1\leq a\leq c\mid \gamma_{u_a}$ is not a multiple of $\gamma_{u_{a_1}}\}$, $a_3=\min\{1\leq a\leq c\mid \gamma_{u_a}\neq 0\}$, and so on, until for some r>0, every γ_j belongs to the span of $\{\gamma_{u_{a_v}}\mid 1\leq v\leq r\}$. Set $\alpha_v=\gamma_{u_{a_v}}, 1\leq v\leq r$. We shall refer to the set $\{\alpha_v\mid 1\leq v\leq r\}$ as the minimal spanning set of roots with respect to the orbital cross-section Λ° . We shall use the notation $\mathfrak{h}_v=\bigcap_{w=1}^v\ker\alpha_w, 1\leq v\leq r$. We now make an important observation: let $f\in\Lambda^{\circ}$; for each $f\in\mathbf{e}^{\circ}$, $f(Z_f)=0$, and if $f\in\mathbf{e}^{\circ}$, $f(Z_f)=0$, then $f\in\mathbf{e}^{\circ}$. It follows that $f\in\mathbf{e}^{\circ}$ or $f\in\mathbf{e}^{\circ}$.

Let $\{A_1,A_2,\ldots A_r\}\subset \mathfrak{h}$ be a basis of \mathfrak{h} mod \mathfrak{h}_r that is dual to the minimal spanning set of roots, so that $\alpha_v(A_w)=0$ or 1 according as $v\neq w$ or v=w. Choosing a basis $\{A_{r+1},\ldots,A_p\}$ for \mathfrak{h}_r , we fix from now on the ordered basis $\{A_1,A_2,\ldots,A_p\}$ for \mathfrak{h} . With the ordered Jordan–Hölder basis $\{Z_1,Z_2,\ldots,Z_n,A_p,A_{p-1},\ldots,A_1\}$ for \mathfrak{g} in place, we apply the stratification procedure to \mathfrak{g}^* as described above (of course, we could rename $Z_m=A_1,Z_{m-1}=A_2$, etc.). Let $\Omega=\Omega_{\mathbf{e},\mathbf{j}}$ be the minimal, Zariski open, fine layer in \mathfrak{g}^* . Write the defining index sequence pair as $\mathbf{i}=\{i_1< i_2<\cdots< i_d\}$, $\mathbf{j}=\{j_1,j_2,\ldots,j_d\}$, so that 2d is the dimension of the coadjoint orbits in Ω . Set

$$K^{\circ} = \{1 \le k \le d \mid j_k \le n\} = \{k_1 < k_2 < \dots < k_{d^{\circ}}\}.$$

Lemma 1.1 One has $p(\Omega) \subset \Omega^{\circ}$, and the index sequence pair for Ω° is

$$\mathbf{i}^{\circ} = \{i_{k_1} < i_{k_2} < \dots < i_{k_{d^{\circ}}}\}, \quad \mathbf{j}^{\circ} = \{j_{k_1}, j_{k_2}, \dots, j_{k_{d^{\circ}}}\}.$$

Proof By [1, Lemma2.2], $p(\Omega)$ is contained in the layer $\Omega^{\circ}_{\mathbf{e}^{\circ}, \mathbf{j}^{\circ}}$ of N-orbits in \mathfrak{n}^{*} whose index data is the above. At the same time we have that $p(\Omega)$ is open in \mathfrak{n}^{*} , and since Ω° is dense in \mathfrak{n}^{*} , it follows that $\Omega^{\circ} = \Omega^{\circ}_{\mathbf{e}^{\circ}, \mathbf{j}^{\circ}}$.

The next lemma is proved in [1, Lemma 4.2] and clarifies the relationship between the functions ρ_k , $0 \le k \le d$ and ρ_r° , $1 \le r \le d^{\circ}$.

Lemma 1.2 Fix $k = k_r \in K^{\circ}$, $\ell \in \Omega$, and set $f = p(\ell)$. Set

$$\mathcal{Y}_{k_r}(\ell) = \operatorname{span}\{Y_h(\ell) \mid 1 \le h \le k_r - 1, h \notin K^{\circ}\}.$$

We have each of the following.

- (i) $\mathcal{Y}_{k_r}(\ell) \subset \mathfrak{n}(f)$.
- (ii) For each $k_{r-1} < h < k_r$, $\rho_h(Z, \ell) = \rho_{r-1}^{\circ}(Z, f) \mod \mathcal{Y}_{k_r}(\ell)$ holds for all $Z \in \mathfrak{n}$.
- (iii) For any $Z \in \mathfrak{n}$, $\ell[Z, Y_{k_r}(\ell)] = f[Z, Y_r^{\circ}(f)]$ and $\ell[Z, X_{k_r}(\ell)] = f[Z, X_r^{\circ}(f)]$.
- (iv) $\rho_k(Z,\ell) = \rho_r^{\circ}(Z,f) \mod \mathcal{Y}_{k_r}(\ell)$ holds for all $Z \in \mathfrak{n}$.

We now focus on the special properties of the stratification procedure on $\mathfrak g$ when applied to the elements $\ell \in p^{-1}(\Lambda^\circ)$.

Lemma 1.3 Let $\ell \in \Omega$ such that $f = p(\ell) \in \Lambda^{\circ}$.

- (i) One has $\rho_k(\mathfrak{h}, \ell) \subset \mathfrak{h}$, $1 \le k \le d$.
- (ii) For each $j \in \mathbf{e}^{\circ}$, $A \in \mathfrak{h}$, one has $\ell[\rho_k(A,\ell), Z_j] = \ell[A, Z_j] = 0$, $1 \le k \le d$.

Proof We proceed by induction on k; if k = 0, then $\rho_0(\cdot, \ell)$ is the identity map and both statements (i) and (ii) are clear. Suppose that $k \ge 1$ and that (i) and (ii) hold for k - 1.

To prove (i) for k, let $A \in \mathfrak{h}$. The assumption that (i) holds for k-1 says that $\rho_{k-1}(A,\ell)$ belongs to \mathfrak{h} . Suppose first that $j_k > n$. Then the assumption that (i) and

(ii) hold for k-1 also gives $X_k(\ell) \in \mathfrak{h}$, and since \mathfrak{h} is abelian, $[A, X_k(\ell)] = 0$. Thus

$$\rho_{k}(A,\ell) = \rho_{k-1}(A,\ell) - \frac{\ell[A,Y_{k}(\ell)]}{\ell[X_{k}(\ell),Y_{k}(\ell)]} X_{k}(\ell) - \frac{\ell[A,X_{k}(\ell)]}{\ell[Y_{k}(\ell),X_{k}(\ell)]} Y_{k}(\ell)
= \rho_{k-1}(A,\ell) - \frac{\ell[A,Y_{k}(\ell)]}{\ell[X_{k}(\ell),Y_{k}(\ell)]} X_{k}(\ell)$$

belongs to \mathfrak{h} . On the other hand, if $j_k \leq n$, then the assumption that (ii) holds for k-1 says that $\ell[A, X_k(\ell)] = \ell[A, Y_k(\ell)] = 0$, hence $\rho_k(A, \ell) = \rho_{k-1}(A, \ell)$ belongs to h in this case. This completes the induction step for part (i).

As for (ii), let $i \in e^{\circ}$ and let $A \in \mathfrak{h}$; we need only show that $\ell[A, \rho_k(Z_i, \ell)] =$ $\ell[A, \rho_{k-1}(Z_j, \ell)]$. As before, we suppose first that $j_k > n$, so that we have $X_k(\ell) \in \mathfrak{h}$ and $\ell[A, X_k(\ell)] = 0$. The assumption that (ii) holds for k-1 now gives

$$\ell[Z_i, X_k(\ell)] = \ell[Z_i, \rho_{k-1}(Z_{i_k}, \ell)] = 0.$$

Hence

$$\ell[A, \rho_k(Z_j, \ell)] = \ell[A, \rho_{k-1}(Z_j, \ell)] - \frac{\ell[Z_j, Y_k(\ell)]\ell[A, X_k(\ell)]}{\ell[X_k(\ell), Y_k(\ell)]} - \frac{\ell[Z_j, X_k(\ell)]\ell[A, Y_k(\ell)]}{\ell[Y_k(\ell), X_k(\ell)]} = \ell[A, \rho_{k-1}(Z_j, \ell)].$$

For the case $j_k \leq n$, the assumption that (ii) holds for k-1 immediately gives $\ell[A, X_k(\ell)] = \ell[A, Y_k(\ell)] = 0$, whence $\ell[A, \rho_k(Z_j, \ell)] = \ell[A, \rho_{k-1}(Z_j, \ell)]$. This completes the proof.

Lemma 1.4 Let $\ell \in \Omega$ such that $f = p(\ell) \in \Lambda^{\circ}$. Assume that $\{1, 2, ..., d\} - K^{\circ}$ is non-empty, and write $\{1, 2, \dots, d\} - K^{\circ} = \{h_1 < h_2 < \dots\}$. Choose an index $h_{\nu} \in \{1, 2, \ldots, d\} - K^{\circ}.$

- (i) For $0 \le k < h_{\nu}$, one has $\rho_k(A_{\nu}, \ell) = A_{\nu}$.
- (ii) One has $v \le r$ and $\{i_{h_1} < i_{h_2} < \dots < i_{h_v}\} = \{u_{a_1} < u_{a_2} < \dots < u_{a_v}\}.$ (iii) One has $\{j_{h_1} = m, j_{h_2} = m 1, \dots, j_{h_v} = m v + 1\}.$

Proof Suppose that v = 1; we repeat the argument for Lemma 1.3(i) with the additional fact that the case $j_k > n$ cannot occur here, as $h_1 = \min\{1 \le k \le d \mid j_k > n\}$. It follows immediately that $\rho_k(A_1, \ell) = A_1, 1 \le k < h_1$.

Now set $u = u_{a_1}$, $i = i_{h_1}$ and $j = j_{h_1}$; we show that u = i. First we claim that $u \le i$. To see this, note that by definition of u, $\ell[\mathfrak{h}, \mathfrak{g}_{u-1}] = 0$. If u > i were true, then $\mathfrak{h} \subset \mathfrak{g}_i^{\ell}$ and $\mathfrak{g}_i \subset \mathfrak{h}^{\ell}$. The first of these inclusions implies that

$$\mathfrak{p}_{h_1-1}(\ell) = \mathfrak{p}_{h_1-1}(\ell) \cap \mathfrak{n} + \mathfrak{h}.$$

Since $i \notin \mathbf{i}^{\circ}$, $\mathfrak{g}_i \cap \mathfrak{p}_{h_1-1}(\ell) \subset (\mathfrak{p}_{h_1-1}(\ell) \cap \mathfrak{n})^{\ell}$. This together with the second inclusion above gives

$$\begin{split} \mathfrak{g}_i \cap \mathfrak{p}_{h_1 - 1}(\ell) &\subset (\mathfrak{p}_{h_1 - 1}(\ell) \cap \mathfrak{n})^{\ell} \cap \mathfrak{h}^{\ell} \\ &\subset (\mathfrak{p}_{h_1 - 1}(\ell) \cap \mathfrak{n} + \mathfrak{h})^{\ell} \\ &= (\mathfrak{p}_{h_1 - 1}(\ell))^{\ell}, \end{split}$$

contradicting the definition of $i = i_{h_1}$. Thus the claim is proved. In light of this and the fact that $(\mathbf{e} - \mathbf{e}^{\circ}) \cap \{1, 2, \dots, n\} = \mathbf{i} - \mathbf{i}^{\circ}$, it remains to show that $u \in \mathbf{e}$. Suppose then that $u \notin \mathbf{e}$; then for any $\ell \in \Omega$, we have $Z_u = T(\ell) + W(\ell)$ where $T(\ell) \in \mathfrak{g}(\ell)$ and $W(\ell) \in \mathfrak{g}_{u-1}$. But, again since $\ell[\mathfrak{h}, \mathfrak{g}_{u-1}] = 0$, it follows that

$$\ell(Z_u) = \gamma_u(A_1)\ell(Z_u) = \ell[A_1, Z_u] = \ell[A_1, T(\ell)] + \ell[A_1, W(\ell)] = 0$$

holds for all $\ell \in \Omega$, which is impossible since Ω is dense in \mathfrak{g}^* .

Next we show that j=m. Observe that $\mathfrak{g}_{m-1}=\mathfrak{n}+\mathfrak{h}_1$ and $\mathfrak{h}_1\subset\mathfrak{p}_{h_1}(\ell)\subset\mathfrak{p}_{h_1-1}(\ell)$. On the other hand, since $i\in\mathbf{i}-\mathbf{i}^\circ$, we have j>n and $\mathfrak{p}_{h_1-1}(\ell)\cap\mathfrak{n}\subset\mathfrak{p}_{h_1}(\ell)$. It follows that $\mathfrak{p}_{h_1-1}(\ell)\cap\mathfrak{g}_{m-1}=\mathfrak{p}_{h_1-1}(\ell)\cap\mathfrak{n}+\mathfrak{h}_1\subset\mathfrak{p}_{h_1}(\ell)$, which means that j=m.

Now suppose that v>1 and that the proposition holds for $1\leq w\leq v-1$. To prove part (i) for v, let $0\leq k< h_v$. We proceed by induction on k, the statement being clear when k=0. If $k\in K^\circ$, then by Lemma 1.3 we have $\ell[A_v,X_k(\ell)]=\ell[A_v,Y_k(\ell)]=0$, and hence $\rho_k(A_v,\ell)=\rho_{k-1}(A_v,\ell)$. If $k\notin K^\circ$, say $k=h_w$, then by our induction hypothesis, $i_k=u_{a_w},\ j_k=m-w+1$, and $X_k(\ell)=A_w$. Hence $\ell[A_v,X_k(\ell)]=\ell[A_v,A_w]=0$ and

$$\ell[A_{\nu}, Y_k(\ell)] = \ell[\rho_{k-1}(A_{\nu}, \ell), Z_{i_{\nu}}] = \ell[A_{\nu}, Z_{i_{\nu}}] = 0.$$

So $\rho_k(A_{\nu}, \ell) = \rho_{k-1}(A_{\nu}, \ell)$ in this case also. Now by induction on k, part (i) is true for ν .

As for part (ii), set $u = u_{a_v}$, $i = i_{h_v}$, and $j = j_{h_v}$. Then $[\mathfrak{h}_{v-1}, \mathfrak{g}_{u-1}] = (0)$. Imitating the argument above for the case v = 1, we see that the assumption that u > i leads to the inclusions $\mathfrak{h}_{v-1} \subset \mathfrak{g}_i^{\ell}$ and $\mathfrak{g}_i \subset \mathfrak{h}_{v-1}^{\ell}$. In the same way as when v = 1, we claim that $\mathfrak{p}_{h_v-1}(\ell) = \mathfrak{p}_{h_v-1}(\ell) \cap \mathfrak{n} + \mathfrak{h}_{v-1}$. To see this, note that $\mathfrak{h}_{v-1} \subset \mathfrak{p}_{h_v-1}(\ell)$, so obviously $\mathfrak{p}_{h_v-1}(\ell) \supset \mathfrak{p}_{h_v-1}(\ell) \cap \mathfrak{n} + \mathfrak{h}_{v-1}$. Counting dimensions gives equality:

$$\begin{aligned} \dim(\mathfrak{p}_{h_{\nu}-1}(\ell)) &= m - h_{\nu} + 1, \\ \dim(\mathfrak{p}_{h_{\nu}-1}(\ell) \cap \mathfrak{n}) &= n - |\{i_k \in \mathbf{i}^{\circ} \mid k \le h_{\nu} - 1\}| \\ &= n - \{h_{\nu} - 1 - (\nu - 1)\} \\ &= n - (h_{\nu} - \nu), \end{aligned}$$

so

$$\dim((\mathfrak{p}_{h_{\nu}-1}(\ell)\cap\mathfrak{n})+\mathfrak{h}_{\nu-1}) = n - (h_{\nu}-\nu) + p - \nu + 1 = m - h_{\nu} + 1$$
$$= \dim(\mathfrak{p}_{h_{\nu}-1}(\ell)).$$

Now we follow verbatim the same line of reasoning as in the case v=1 to arrive at a contradiction, thereby concluding that $u \le i$. Since by induction we already have $i_{h_w} = u_{a_w}, 1 \le w \le v-1$, we get $i_{h_w} < u$ for $1 \le w \le v-1$. Now, arguing as in the case v=1, we find that it remains to show that $u \in \mathbf{e}$. But again, the argument for this is identical to the case v=1: if $u \notin \mathbf{e}$, then we find that $\ell(Z_u) = \ell[A_v, Z_u] = 0$ holds for all $\ell \in \Omega$, etc.

Finally we show that $j=m-\nu+1$. As in the case $\nu=1$, $\mathfrak{g}_{m-\nu+1}=\mathfrak{n}+\mathfrak{h}_{\nu-1}$ and $\mathfrak{h}_{\nu}\subset\mathfrak{p}_{h_{\nu}}(\ell)\subset\mathfrak{p}_{h_{\nu}-1}(\ell)$. Also $i\in\mathbf{i}-\mathbf{i}^{\circ}$, so j>n and $\mathfrak{p}_{h_{\nu}-1}(\ell)\cap\mathfrak{n}\subset\mathfrak{p}_{h_{\nu}}(\ell)$. It follows that $\mathfrak{p}_{h_{\nu}-1}(\ell)\cap\mathfrak{g}_{m-\nu}=\mathfrak{p}_{h_{\nu}-1}(\ell)\cap\mathfrak{n}+\mathfrak{h}_{\nu}\subset\mathfrak{p}_{h_{\nu}}(\ell)$. Since we already have $j_{h_{\nu}}=m-\nu+1$ for $1\leq w\leq \nu-1$, $j=m-\nu+1$ follows. This completes the proof.

Lemma 1.5 Let $d - d^{\circ} < w \le p$. Then for each $\ell \in \Lambda^{\circ}$ and $0 \le k \le d$, one has $\rho_k(A_w, \ell) = A_w$.

Proof As usual we proceed by induction on k, the case k=0 being clear. Suppose that $k\geq 1$ and that the lemma holds for k-1. If $k\in K^\circ$, then Lemma 1.3 gives $\ell[A_w,X_k(\ell)]=\ell[A_w,Y_k(\ell)]=0$. If $k=h_v\in\{1,2,\ldots,d\}-K^\circ$, then Lemma 1.4 gives $X_k(\ell)=A_v$ and $Y_k(\ell)=\rho_{k-1}(Z_{u_{a_v}},\ell)$, so that in this case also $\ell[A_w,X_k(\ell)]=\ell[A_w,Y_k(\ell)]=0$. In either case then, we have $\rho_k(A_w,\ell)=\rho_{k-1}(A_w,\ell)$.

Proposition 1.6 Let \mathfrak{g} be a completely solvable Lie algebra of the form $\mathfrak{g}=\mathfrak{n}\oplus\mathfrak{h}$, where \mathfrak{n} is a nilpotent ideal and \mathfrak{h} is an abelian subalgebra such that $\mathrm{ad}(\mathfrak{h})$ is completely reducible. Let $\{Z_1, Z_2, \ldots, Z_n, A_p, A_{p-1}, \ldots, A_2, A_1\}$ be an ordered Jordan–Hölder basis of \mathfrak{g} with the following properties.

- (a) $\{Z_1, Z_2, \dots, Z_n\}$ is a basis of n with respect to which ad(h) is diagonalized.
- (b) $\{A_1, A_2, ..., A_r\}$ is dual to the minimal spanning set of roots and $\{A_{r+1}, ..., A_p\}$ is a basis for \mathfrak{h}_r where \mathfrak{h}_r is defined as above.

Let $\Omega = \Omega_{\mathbf{e},\mathbf{j}}$ be the minimal fine layer in \mathfrak{g}^* and $\Omega^\circ = \Omega_{\mathbf{e}^\circ,\mathbf{j}^\circ}$ the minimal fine layer in \mathfrak{n}^* , with respect to the bases chosen above. Write K° and $\{1,2,\ldots,d\}-K^\circ = \{h_1 < h_2 < \cdots < h_{d-d^\circ}\}$ as above. Let $\mathbf{Pf}_{\mathbf{e}^\circ,w}, 1 \le w \le d^\circ$ be the Pfaffian polynomials that define Ω° . Then one has the following.

- (i) $d d^{\circ} = r$, and the increasing sequence $\{i_{h_1} < i_{h_2} < \cdots < i_{h_r}\}$ is precisely the sequence $\{u_{a_1} < u_{a_2} < \cdots < u_{a_r}\}$ corresponding to the minimal spanning set of roots.
- (ii) $j_{h_v} = m v + 1, 1 \le v \le r$.
- (iii) Let $\ell \in \Omega \cap p^{-1}(\Lambda^{\circ})$ with $f = p(\ell)$. For each $1 \le k \le d$, let

$$u_0 = \max\{1 \le v \le r \mid h_v \le k\},$$

 $w_0 = \max\{1 \le w \le d^\circ \mid k_w \le k\}.$

Then

$$\mathbf{Pf}_{\mathbf{e},k}(\ell) = \prod_{\nu=1}^{\nu_0} \ell(Z_{i_{h_{\nu}}}) \, \mathbf{Pf}_{\mathbf{e}^{\circ},w_0}(f).$$

 $https://doi.org/10.4153/CJM-2007-039-0\ Published\ online\ by\ Cambridge\ University\ Press$

(iv) For every $\ell \in \Omega$, the dilation set $\varphi(\ell)$ is precisely the set $\{i_k \mid k \notin K^{\circ}\} = \{i_{h_{\nu}} \mid 1 \leq \nu \leq r\}$ and hence the minimal fine layer in \mathfrak{g}^* coincides with the minimal ultra-fine layer.

Proof It follows from Lemma 1.4 that the sequence $\{i_{h_1} < i_{h_2} < \cdots < i_{h_{d-d^o}}\}$ coincides with the first $d-d^\circ$ terms of the sequence $\{u_{a_1} < u_{a_2} < \cdots < u_{a_r}\}$. Now if $d-d^\circ < w \le r$, then Lemma 1.5 implies that $A_w \in \mathfrak{g}(\ell)$ holds for all $\ell \in p^{-1}(\Lambda^\circ)$. But this means that $f(Z_{u_{a_w}}) = f[A_w, Z_{u_{a_w}}] = 0$ holds for all $f \in \Lambda^\circ$. Since Λ° is a dense open subset of $V = \operatorname{span}\{e_{u_1}, e_{u_2}, \dots, e_{u_c}\}$, this is impossible. Thus part (i) is proved. Part (ii) now follows from Lemma 1.4.

For part (iii) we compute using Lemma 1.2, Lemma 1.4, and the properties of ρ_k :

$$\begin{split} \ell[Y_{1}(\ell), X_{1}(\ell)] \ell[Y_{2}(\ell), X_{2}(\ell)] & \cdots \ell[Y_{k}(\ell), X_{k}(\ell)] \\ &= \ell[Z_{i_{1}}, Z_{j_{1}}] \ell[Z_{i_{2}}, \rho_{1}(Z_{j_{2}}, \ell)] \cdots \ell[Z_{i_{k}}, \rho_{k-1}(Z_{j_{k}}, \ell)] \\ &= \prod_{\nu=1}^{\nu_{0}} \ell[Z_{i_{h_{\nu}}}, \rho_{h_{\nu}-1}(Z_{j_{h_{\nu}}}, \ell)] \prod_{w=1}^{w_{0}} \ell[Z_{i_{k_{w}}}, \rho_{k_{w}-1}(Z_{j_{k_{w}}}, \ell)] \\ &= \prod_{\nu=1}^{\nu_{0}} \ell[Z_{i_{h_{\nu}}}, A_{\nu}] \prod_{w=1}^{w_{0}} f[Z_{i_{k_{w}}}, \rho_{w-1}^{\circ}(Z_{j_{k_{w}}}, f)] \\ &= \left(\prod_{\nu=1}^{\nu_{0}} \ell(Z_{i_{h_{\nu}}})\right) \mathbf{Pf}_{\mathbf{e}^{\circ}, w_{0}}(f). \end{split}$$

Finally for part (iv), Lemma 1.4, part (i) shows that for $k = h_v \notin K^\circ$, we have $X_k(\ell) = A_v$, hence $\varphi(\ell) = \{i_k \in \mathbf{i} \mid \mathbf{d}\delta_{i_k}(X_k(\ell)) \neq 0\} = \{i_k \in \mathbf{i} \mid k \notin K^\circ\}$ holds for each $\ell \in \Omega$.

Corollary 1.7 Let $\ell \in \Omega \cap p^{-1}(\Lambda^{\circ})$ with $f = p(\ell)$. Then one has

$$\dim(\mathfrak{h}/\mathfrak{h}\cap\mathfrak{g}(\ell))=\frac{1}{2}\big(\dim(\mathfrak{g}/\mathfrak{g}(\ell))-\dim(\mathfrak{n}/\mathfrak{n}(f))\big)\,.$$

Proof This amounts to showing that $\mathfrak{h}_r = \bigcap_{\nu=1}^r \ker \alpha_\nu = \mathfrak{h} \cap \mathfrak{g}(\ell)$ holds for each $\ell \in \Omega \cap p^{-1}(\Lambda^\circ)$. It is already clear that for such ℓ , $\mathfrak{h}_r \subset \mathfrak{h} \cap \mathfrak{g}(\ell)$. On the other hand, if $A \in \mathfrak{h} \cap \mathfrak{g}(\ell)$, then for each $1 \leq \nu \leq r$, $\alpha_\nu(A)\ell(Z_{i_{h_\nu}}) = -\ell[A, Z_{i_{h_\nu}}] = 0$. From Proposition 1.6(iii), we have $\ell(Z_{i_{h_\nu}}) \neq 0$, hence $A \in \ker \alpha_\nu$, and the equation above is proved. Now

$$\dim \mathfrak{h}/\mathfrak{h} \cap \mathfrak{g}(\ell)) = r = d - d^{\circ} = \frac{1}{2} \left(\dim(\mathfrak{g}/\mathfrak{g}(\ell)) - \dim(\mathfrak{n}/\mathfrak{n}(f)) \right).$$

Corollary 1.8 With the hypothesis of Proposition 1.6, we have

$$p(\Omega) \cap \Lambda^{\circ} = \{ f \in \Lambda^{\circ} \mid f(Z_{i_{h_{\circ}}}) \neq 0, \text{ holds for all } 1 \leq \nu \leq r \}$$

and

$$p(\Lambda) = \{ f \in \Lambda^{\circ} \mid |f(Z_{i_h})| = 1, \text{ holds for all } 1 \leq v \leq r \}.$$

Proof Recall that $\Omega = \{\ell \in \mathfrak{g}^* \mid \mathbf{Pf_{e,i}}(\ell) \neq 0\}$, and that

$$\Omega^{\circ} = \{ f \in \mathfrak{n}^* \mid \mathbf{Pf}_{\mathbf{e}^{\circ}, \mathbf{j}^{\circ}}(f) \neq 0 \}.$$

By Proposition 1.6 part (iii), if $f = p(\ell) \in \Lambda^{\circ}$, then $\mathbf{Pf_{e,j}}(\ell) = R(f)\mathbf{Pf_{e^{\circ},j^{\circ}}}(f)$ where R(f) is a product of the factors $f(Z_{i_{h_{\nu}}}), 1 \leq \nu \leq r$. These observations mean that $f \in p(\Omega) \cap \Lambda^{\circ}$ if and only if $f \in \Lambda^{\circ}$ and $R(f) \neq 0$. The first equation above follows. As for the second, set

$$V = \{ \ell \in \mathfrak{g}^* \mid \ell(Z_j) = 0 \text{ for all } j \in \mathbf{e} - \varphi \},$$

$$V^{\circ} = \{ f \in \mathfrak{n}^* \mid f(Z_i) = 0 \text{ for all } j \in \mathbf{e}^{\circ} \}.$$

Observe that, by virtue of preceding results, we have $p(V) = V^{\circ}$ and $p(\Omega) \cap V^{\circ} = p(\Omega) \cap \Lambda^{\circ}$. Now from Proposition 1.6(iv) and the definition of the cross-section Λ , we have

$$\Lambda = \{ \ell \in V \cap \Omega \mid |q_{i_{h_{\nu}}}(\ell)| = 1, \text{ holds for all } 1 \le \nu \le r \}.$$

Let $f \in p(\Lambda)$, $f = p(\ell)$ for some $\ell \in \Lambda$. Then $f \in p(V) = V^{\circ}$, and $f \in p(\Omega) \subset \Omega^{\circ}$, so $f \in \Lambda^{\circ}$. But now an examination of the definition of q_j together with the observation that $X_{h_{\nu}}(\ell) = A_{\nu}$ gives $q_{i_{h_{\nu}}}(\ell)^{-1} = \ell(Z_{i_{h_{\nu}}})$. Hence f belongs to the right-hand side of the above equation.

On the other hand, let $f \in \Lambda^{\circ}$ with $|f(Z_{i_{h_{\nu}}})| = 1, 1 \leq \nu \leq r$. Let $\ell \in p^{-1}(f) \cap V$. By definition of Ω , we have $\ell \in \Omega \cap V$, and $|\ell(Z_{i_{h_{\nu}}})| = 1, 1 \leq \nu \leq r$. Hence $\ell \in \Lambda$ and $f \in p(\Lambda)$.

2 The Wavelet Transform

In this section, we apply the algebraic constructions of Section 1 in order to address the question of admissibility. Denote by $\operatorname{Irr}(N)$ the Borel space of irreducible unitary representations of N, and by \widehat{N} the Borel space of unitary equivalence classes in $\operatorname{Irr}(N)$. Let $\kappa^{\circ} \colon \mathfrak{n}^*/N \to \widehat{N}$ be the canonical Kirillov correspondence. With the constructions of Section 1 in place, we associate to each linear functional $f \in \mathfrak{n}^*$ a specific irreducible representation π_f whose equivalence class is $\kappa^{\circ}(Nf)$, as follows. First of all, the basis $\{Z_1, Z_2, \ldots, Z_n\}$ provides us with global coordinates on N via the exponential mapping, and Lebesgue measure becomes Haar measure on N: $d(\exp X) = dX, X \in \mathfrak{n}$. We denote this measure by dx. Next, we partition \mathfrak{n}^* by the fine stratification, and let $\Omega^{\circ} = \Omega_{\mathbf{e}^{\circ}, \mathbf{j}^{\circ}}$ be the fine layer containing f. Then $\mathfrak{p}(f) = \sum_j \mathfrak{n}_j^f \cap \mathfrak{n}_j = \mathfrak{p}_d(f)$ is a subalgebra of \mathfrak{n} with the property that $\mathfrak{p}(f)^f = \mathfrak{p}(f)$. Rearranging the sequence \mathbf{j}° in increasing order $\{j_1 < j_2 < \cdots < j_d\}$, we have that

$$(s_1, s_2, \ldots, s_d) \mapsto \exp(s_d Z_{j_d}) \exp(s_{d-1} Z_{j_{d-1}}) \cdots \exp(s_1 Z_{j_1}) P(f)$$

is a global chart for N/P(f), and Lebesgue measure on \mathbf{R}^d is thereby carried to an invariant measure on N/P(f). Let χ_f be the unitary character on $P(f) = \exp \mathfrak{p}(f)$ whose differential is if. Then the unitary representation π_f , induced from P(f) to N by χ_f , is irreducible. Denoting by $[\pi_f]$ its equivalence class in \widehat{N} , one has

 $\kappa^{\circ}(Nf) = [\pi_f]$. We denote the Hilbert space in which π_f acts by \mathcal{H}_f . Note that the map $J_f \colon \mathcal{H}_f \to L^2(\mathbf{R}^d)$ defined by

$$J_f\psi(s)=\psi(\exp(s_1Z_{j_1})\exp(s_2Z_{j_2})\cdots\exp(s_dZ_{j_d}))$$

is an isometric isomorphism.

An algorithm for determination of the Plancherel measure class and the Plancherel formula for nilpotent groups in terms of the orbit method is given in [20]. A similar result for the class of exponential solvable groups is proved in [4], and it is this version, specialized to the nilpotent case, that we use here.

The procedure is implemented as follows. Recall that we have a cross-section Λ° for the coadjoint orbits in Ω° and that $\Lambda^\circ = \Omega^\circ \cap V^\circ$ where $V^\circ = \{f \in \mathfrak{n}^* \mid f(Z_j) = 0 \text{ holds for all } j \in \mathbf{e}^\circ\}$. Let Ω be the minimal fine layer in \mathfrak{g}^* , and set $\Lambda^1 = \Lambda^\circ \cap p(\Omega)$. Recall that we have written $\{1,2,\ldots,n\} - \mathbf{e}^\circ = \{u_1 < u_2 < \cdots < u_c\}$, where c = n - 2d. Via the identification $f \to (f(Z_{u_1}), f(Z_{u_2}),\ldots,f(Z_{u_c}))$, we regard Λ^1 not only as a subset of \mathfrak{n}^* , but also as a (dense open) subset of \mathbf{R}^c , and we shall henceforth use the notation $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_c)$ for elements of Λ^1 . Accordingly, we shall write π_λ for the irreducible representation corresponding to λ as constructed above; note that each of the Hilbert spaces \mathcal{H}_λ is isomorphic with $L^2(\mathbf{R}^d)$ via the map J_λ . Also, with $\mathbf{Pf} = \mathbf{Pf}_{\mathbf{e}^\circ,d^\circ}$ the Pfaffian polynomial on \mathfrak{n}^* as defined in Section 1, we shall write $\mathbf{Pf}(\lambda), \lambda \in \Lambda^1$. At the same time we let $d\lambda$ denote Lebesgue measure on Λ^1 . We describe the Fourier transform and Plancherel formula in these terms. For each $\lambda \in \Lambda^1$ and $\psi \in L^1(N) \cap L^2(N)$, set $F(\psi)(\lambda) = \int_N \psi(x) \pi_\lambda(x) \, dx$. Then $F(\psi)(\lambda)$ belongs to the space $\mathcal{H}_\lambda \otimes \overline{\mathcal{H}}_\lambda$ of Hilbert–Schmidt operators on \mathcal{H}_λ . Now let μ be the Borel measure on Λ^1 defined by

$$d\mu(\lambda) = \frac{1}{(2\pi)^{n+d}} |\mathbf{Pf}(\lambda)| d\lambda.$$

Then $\{\mathcal{H}_{\lambda} \otimes \overline{\mathcal{H}}_{\lambda}\}_{{\lambda} \in \Lambda^1}$ is a measurable field of Hilbert spaces and we set

$$\mathbf{H} = \int_{\Lambda^1}^{\oplus} \mathfrak{H}_{\lambda} \otimes \overline{\mathfrak{H}}_{\lambda} \, d\mu(\lambda).$$

Now $\lambda \to \pi_{\lambda}$ is a Borel function from Λ^1 to Irr(N), $F(\psi)$ belongs to **H**, and the map $F: L^1(N) \cap L^2(N) \to \mathbf{H}$ as defined above extends to all of $L^2(N)$ as a unitary isomorphism.

With the Fourier transform on N in place, we turn to the quasiregular representation of G in $L^2(N)$. From now on we shall use the letter f to refer to elements of $L^2(N)$. Let $\delta \colon H \to \mathbf{R}_+^*$ be the character $\delta(h) = \delta_1(h)\delta_2(h) \cdots \delta_n(h)$, and let G have the Haar measure $d\nu_G(xh) = dx\delta(h)^{-1}d\nu_H(h)$. Define the unitary representation $\tau \colon G \to \mathcal{U}(L^2(N))$ as follows. For $f \in L^2(N)$, set

$$(\tau(h)f)(x_0) = f(h^{-1}x_0h)\delta(h)^{-1/2}, \quad h \in H$$
$$(\tau(x)f)(x_0) = f(x^{-1}x_0), \quad x \in N.$$

Recall that τ is isomorphic with the representation of G induced from H by the trivial character. Fix $\psi \in L^2(N)$ and for each $f \in L^2(N)$, denote by $m_{f,\psi}$ the bounded continuous function on G defined by $m_{f,\psi}(s) = \langle f, \tau(s)\psi \rangle_{L^2(N)}, s \in G$.

Recall that ψ is admissible for τ if $m_{f,\psi}$ is square-integrable for each $f \in L^2(N)$ and $\|m_{f,\psi}\|_{L^2(G)} = \|f\|_{L^2(N)}$. Following [12], we search for admissible vectors by means of the Fourier transform on $L^2(N)$. For $f \in L^2(N)$ set $\widehat{f}(\lambda) = F(f)(\lambda), \lambda \in \Lambda^1$ and let $\widehat{\tau}(s) = F \circ \tau(s) \circ F^{-1}, s \in G$. The representation $\widehat{\tau}$ is described in terms of the usual action of H on \widehat{N} . Specifically, for $\pi \in \operatorname{Irr}(N)$ and $h \in H$, set $(h \cdot \pi)(x) = \pi(h^{-1}xh), x \in N$. For each $h \in H$, the representation $h \cdot \pi_f$ is equivalent to π_{hf} via the intertwining operator $C(h, f) \colon \mathcal{H}_f \to \mathcal{H}_{hf}$ defined by

$$(C(h, f)\phi)(x) = \phi(h^{-1}xh)\delta_{\mathbf{i}^{\circ}}(h)^{-1/2}, \quad \phi \in \mathcal{H}_f,$$

where $\delta_{j^{\circ}}(h) = \prod_{j \in j^{\circ}} \delta_{j}(h)$. Passing to the quotient \widehat{N} and applying the orbit method, one sees that the stabilizer $H_{[\pi_{f}]}$ of $[\pi_{f}]$ in H coincides with the analytic subgroup $\{h \in H \mid hf \in Nf\} = \exp(\mathfrak{h} \cap (\mathfrak{n} + \mathfrak{n}^{f}))$. For $\lambda \in \Lambda^{1}$, since the action of H is already diagonalized, we have $h\lambda \in \Lambda^{1}$, and since Λ^{1} is an orbital cross-section, we have that $H_{[\pi_{\lambda}]} = H_{\lambda} = \exp(\mathfrak{h} \cap \mathfrak{g}^{\lambda}) = \exp(\mathfrak{h}_{r}) = H_{r}$ holds for each $\lambda \in \Lambda^{1}$. For $h \in H$ and $\lambda \in \Lambda^{1}$, let $D(h, \lambda) \colon \mathcal{B}(\mathcal{H}_{\lambda}) \to \mathcal{B}(\mathcal{H}_{h\lambda})$ be defined by

$$D(h, \lambda)(T) = C(h, \lambda) \circ T \circ C(h, \lambda)^{-1}$$
.

Adapting the result [12, Proposition 2.1] to the present context, we have the following description of $\hat{\tau}$ in terms of the preceding orbital parameters for the Fourier transform.

Proposition 2.1 Let $f \in L^2(N)$, $h \in H$, $x \in N$, $\lambda \in \Lambda^1$. One has

- (i) $(\widehat{\tau}(h)\widehat{f})(\lambda) = D(h, h^{-1}\lambda)(\widehat{f}(h^{-1}\lambda))\delta(h)^{1/2};$
- (ii) $(\widehat{\tau}(x)\widehat{f})(\lambda) = \pi_{\lambda}(x) \circ \widehat{f}(\lambda).$

We observe that [12, Proposition 2.2] also restates in the same way.

Proposition 2.2 For each $h \in H$, $d\mu(h\lambda) = \delta(h)^{-1}d\mu(\lambda)$.

An easy calculation shows that for each $x \in N$ and $h \in H$, one has

$$m_{f,\psi}(xh) = (f * (\tau(h)\psi)^*)(x)$$

where $\psi^*(x) = \overline{\psi}(x^{-1})$. We then apply the Fourier transform:

$$\int_{G} |m_{f,\psi}|^{2} d\nu_{G}
= \int_{H} \int_{N} |(f * (\tau(h)\psi)^{*})(x)|^{2} dx \, \delta(h)^{-1} d\nu_{H}(h)
= \int_{H} \int_{\Lambda^{1}} ||\widehat{f}(\lambda) \circ (\widehat{\tau}(h)\widehat{\psi})(\lambda)^{*}||_{HS}^{2} d\mu(\lambda)\delta(h)^{-1} d\nu_{H}(h)
= \int_{\Lambda^{1}} \left(\int_{H} ||\widehat{f}(\lambda) \circ C(h, h^{-1}\lambda)\widehat{\psi}(h^{-1}\lambda)^{*} C(h, h^{-1}\lambda)^{-1}||_{HS}^{2} d\nu_{H}(h) \right) d\mu(\lambda).$$

If *N* is abelian, so that the Fourier transform is scalar-valued, then

$$\|\widehat{f}(\lambda) \circ C(h, h^{-1}\lambda)\widehat{\psi}(h^{-1}\lambda)^*C(h, h^{-1}\lambda)^{-1}\|_{HS}^2 = |\widehat{f}(\lambda)|^2 |\widehat{\psi}(h^{-1}\lambda)|^2$$

and it becomes apparent from (2.1) that a necessary condition for τ -admissibility is that H_{λ} be compact for μ -a.e. λ . Note that in the context of this paper that means simply that $\mathfrak{h}_r=(0)$. Now for the class of groups considered here, it is reasonable to expect that the condition $\mathfrak{h}_r=(0)$ is necessary for the existence of τ -admissible vectors even when N is not abelian, but that question remains open. Therefore, for the remainder of this paper, we shall just make the assumption that $\mathfrak{h}_r=(0)$. We observe that, if N is not abelian, then this means that the irreducible decomposition of τ will have infinite multiplicity: we have $r=\dim(H)=\dim H\lambda$ holds for all $\lambda\in\Lambda^1$ and (since $\mathfrak{h}_r=(0)$), it follows that the generic dimension of H-orbits in \mathfrak{h}^\perp is r. Now Corollary 1.7 says that $r=d-d^\circ$, where 2d is the generic dimension of G orbits (that meet \mathfrak{h}^\perp) and $2d^\circ$ is the generic dimension of N orbits in \mathfrak{n}^* . Combining these observations with the results of [15,16], we have that τ has finite multiplicity if and only if r=d, if and only if N is abelian.

Recall also that in the case where N is abelian, (2.1) is the starting point for proving the Caldéron condition for admissibility (for quite general groups H): ψ is admissible for τ if and only if $\int_H |\psi(h^{-1}\lambda)|^2 \ d\nu_H(h) = 1$ holds for μ -a.e. λ [22, Theorem 2.1]. We shall see below that this result can be generalized to the case where N is not abelian: we shall write τ as a direct sum of multiplicity-free subrepresentations τ^β so that a Caldéron condition for τ^β -admissibility holds.

We begin by describing the action of H on Λ^1 explicitly. Recall that we have chosen the ordered basis $\{A_v \mid 1 \le v \le r\}$ for \mathfrak{h} in conjuction with a sequence $\{1 \le u_{a_1} < u_{a_2} < \cdots < u_{a_r} \le n\}$ of indices corresponding to a minimal spanning set of roots, as defined in Section 1. In particular for each $1 \le v$, $w \le r$, $\gamma_{u_{a_v}}(A_w) = \delta_{vw}$, and if $a < a_w$, $\gamma_{u_a}(A_w) = 0$. Write

$$Q(t,\lambda) = \exp(t_1 A_1) \exp(t_2 A_2) \cdots \exp(t_r A_r) \lambda, \quad t \in \mathbf{R}^r, \lambda \in \Lambda^1.$$

Then for each $\lambda \in \Lambda^1$, $t \to Q(t, \lambda)$ is a diffeomorphism of \mathbf{R}^r with $H\lambda$. The following notation will be helpful in the descriptions that follow: for each $1 \le a \le c$, if $a < a_1$, set $h^a = 1 \in H$, and for $a \ge a_1$, let $h^a(t) = \exp(t_1A_1) \exp(t_2A_2) \cdots \exp(t_{w(a)}A_{w(a)})$ where $w(a) = \max\{1 \le w \le r \mid a_w \le a\}$.

For each $1 \le a \le c$ we see that $Q_a(t, \lambda) = \delta(h^a(t))^{-1}\lambda_a$. More explicitly, if we set

$$\gamma_{a,v} = \gamma_{u_a}(A_v), \quad 1 \le a \le c, 1 \le v \le r,$$

then for $a = a_v$ we have $\delta(h^a(t))^{-1} = e^{t_v}$, while if $a \neq a_v$, $1 \leq v \leq r$, then

$$\delta(h^{a}(t))^{-1} = e^{\gamma_{a,1}t_1 + \gamma_{a,2}t_2 + \dots + \gamma_{a,w(a)}t_{w(a)}}.$$

Hence

$$Q_a(t,\lambda) = \begin{cases} e^{t_v} \lambda_a & \text{if } a = a_v, \\ e^{\gamma_{a,1}t_1 + \gamma_{a,2}t_2 + \dots + \gamma_{a,w(a)}t_{w(a)}} \lambda_a & \text{if } a \neq a_v. \end{cases}$$

For $1 \le \nu \le r$, set

$$z_{\nu} = e^{t_{\nu}} |\lambda_{a_{\nu}}|, \quad \epsilon_{\nu} = \operatorname{sign}(\lambda_{a_{\nu}}).$$

Making these substitutions into the function Q, we obtain a function $P(z, \lambda)$ each coordinate of which has the form

$$P_a(z,\lambda) = \begin{cases} z_v \epsilon_v & \text{if } a = a_v, \\ \left(\frac{z_1}{|\lambda_{a_1}|}\right)^{\gamma_{a,1}} \left(\frac{z_2}{|\lambda_{a_2}|}\right)^{\gamma_{a,2}} \cdots \left(\frac{z_{w(a)}}{|\lambda_{a_{w(a)}}|}\right)^{\gamma_{a,w(a)}} \lambda_a & \text{if } a \neq a_v. \end{cases}$$

The function *P* is easily seen to have the following properties.

- (i) For each $\lambda \in \Lambda^1$, $P(\cdot, \lambda)$ maps $(\mathbf{R}_+^*)^r$ diffeomorphically onto $H\lambda$.
- (ii) For each fixed $(z_1, z_2, \dots, z_r) \in (\mathbf{R}_+^*)^r$, $P(z_1, z_2, \dots, z_r, \cdot)$ maps Λ^1 into Λ^1 and is H-invariant.

We set $\Sigma = \{P(1, 1, ..., 1, \lambda) \mid \lambda \in \Lambda^1\}$; it is easily seen that Σ is a submanifold of Λ^1 having dimension c - r, and that Σ meets the H-orbit of λ at the single point $P(1, 1, ..., 1, \lambda)$. In fact, we have the following.

Lemma 2.3 Let Λ be the cross-section in Ω for the G-orbits in Ω . If $\mathfrak{h}_r = (0)$, then $p|_{\Lambda}$ is a bijection of Λ onto Σ .

Proof By part (b) of Proposition 1.6 and our assumption that $\mathfrak{h}_r=(0)$, we have $\Lambda\subset\mathfrak{h}^\perp=\{\ell\in\mathfrak{g}^*\mid\ell(\mathfrak{h})=\{0\}\}$, and hence $p|_\Lambda$ is a bijection. By Corollary 1.8, we have $p(\Lambda)=\{\lambda\in\Lambda^1\mid|\lambda_{a_v}|=1,1\leq\nu\leq r\}$. An examination of the map $P(z,\lambda)$ above shows that $\Sigma=P(1,\lambda)\subset p(\Lambda)$ and that for each $\ell\in\Lambda$ with $\lambda=p(\ell)$, $\lambda=P(1,\lambda)\in\Sigma$. This completes the proof.

For each $\epsilon \in \{-1,1\}^r$, set $\Lambda^1_\epsilon = \{\lambda \in \Lambda^1 \mid \text{sign } (\lambda_{a_v}) = \epsilon_v, 1 \leq v \leq r\}$ and $\Sigma_\epsilon = \Sigma \cap \Lambda^1_\epsilon$. In the event that r=c, then for each ϵ , Σ_ϵ is the single point $(\epsilon_1,\epsilon_2,\ldots,\epsilon_c)$. In this case we let $d\sigma$ be the counting measure on Σ , multiplied by $1/(2\pi)^{n+d}$. Otherwise write $\{1,2,\ldots,c\}-\{a_v\mid 1\leq v\leq r\}=\{b_1< b_2<\cdots< b_q\};$ set $\sigma_w=\lambda_{b_w},1\leq w\leq q$. Then each set Σ_ϵ is identified with an open subset of \mathbf{R}^q , and we thereby transfer Lebesgue measure to each Σ_ϵ . The resulting measure on Σ , including the multiple $1/(2\pi)^{n+d}$, will be denoted by $d\sigma=d\sigma_1 d\sigma_2\cdots d\sigma_q$. At the same time we identify H with $(\mathbf{R}^*_+)^r$, so that

$$\exp(t_1A_1)\exp(t_2A_2)\cdots\exp(t_rA_r)=(e^{t_1},e^{t_2},\ldots,e^{t_r})=(z_1,z_2,\ldots,z_r).$$

The natural Haar measure on H is then

$$d\nu_H(z_1, z_2, \dots, z_r) = \frac{dz_1 dz_2 \cdots dz_r}{z_1 z_2 \cdots z_r}.$$

By virtue of this identification and by restricting λ to Σ , the function $P(z,\lambda)$ yields a map from $H \times \Sigma$ to Λ^1 . We claim that $P(z,\sigma) = z\sigma$. Observe that for $a \neq a_v, 1 \leq v \leq r$, we have

$$\delta_{u_a}(z)^{-1} = z_1^{\gamma_{a,1}} z_2^{\gamma_{a,2}} \cdots z_{w(a)}^{\gamma_{a,w(a)}}, \quad z = (z_1, z_2, \dots z_r) \in H.$$

Since $|\lambda_{a_v}| = 1$ for $\lambda \in \Sigma$, $P(z, \sigma)$ is defined coordinate-wise on $H \times \Sigma_{\epsilon}$ by

$$P_a(z,\sigma) = \begin{cases} z_v \epsilon_v & \text{if } a = a_v, \\ \delta_{u_{b_w}}(z)^{-1} \sigma_w & \text{if } a = b_w. \end{cases}$$

The claim follows. It is clear that *P* is a diffeomorphism and that for any non-negative measurable function ϕ on Λ^1 ,

$$\int_{\Lambda^1} \phi(\lambda) d\lambda = \int_{\Sigma} \int_{H} \phi(z\sigma) \delta_{u_{b_1}}(z)^{-1} \delta_{u_{b_2}}(z)^{-1} \cdots \delta_{u_{b_q}}(z)^{-1} dz d\sigma.$$

From now on we identify Λ^1 with $H \times \Sigma$ as above. Now set

$$\delta_{\mathbf{e}^{\circ}}(z) = \prod_{j \in \mathbf{e}^{\circ}} \delta_{j}(z), \quad z \in H.$$

Lemma 2.4 For each $\lambda = z\sigma \in \Lambda^1$, one has $\mathbf{Pf}(z\sigma) = \delta_{\mathbf{e}^{\circ}}(z)^{-1}\mathbf{Pf}(\sigma)$. Moreover, the formula

$$\int_{\Lambda^1} \phi(\lambda) \, \mu(\lambda) = \int_{\Sigma} \int_{H} \phi(z\sigma) \delta(z)^{-1} \, d\nu_H(z) |\mathbf{Pf}(\sigma)| d\sigma,$$

holds for any non-negative measurable function ϕ on Λ^1 .

Proof Fix $\lambda = z\sigma \in \Lambda^1$, let $\ell_\sigma \in \mathfrak{g}^*$ such that $p(\ell_\sigma) = \sigma$ and set $\ell = z\ell_\sigma \in \mathfrak{g}^*$. Let $\delta_{\mathbf{e}} = \prod_{j \in \mathbf{e}} \delta_j$, where \mathbf{e} is the jump set corresponding to the minimal layer in \mathfrak{g}^* . By [2, Lemma 1.6], $\mathbf{Pf}_{\mathbf{e},\mathbf{j}}(\ell) = \delta_{\mathbf{e}}(z)^{-1}\mathbf{Pf}_{\mathbf{e},\mathbf{j}}(\ell_\sigma)$. But part (a) of Proposition 1.6, together with our choice of basis of \mathfrak{h} dual to the minimal spanning set of roots, insures that

$$\delta_{\mathbf{e}}(z)^{-1} = z_1 z_2 \cdots z_r \delta_{\mathbf{e}^{\circ}}(z)^{-1}.$$

On the other hand, observing that $p(\ell) = z\sigma$, part (c) of Proposition 1.6 gives

$$\mathbf{Pf}_{\mathbf{e},\mathbf{j}}(\ell) = \prod_{v=1}^r \ell(Z_{u_{a_r}}) \mathbf{Pf}_{\mathbf{e}^{\circ},\mathbf{j}^{\circ}}(z\sigma) = z_1 z_2 \cdots z_r \mathbf{Pf}_{\mathbf{e}^{\circ},\mathbf{j}^{\circ}}(z\sigma).$$

Similarly $\mathbf{Pf}_{\mathbf{e},\mathbf{j}}(\ell_{\sigma}) = \mathbf{Pf}_{\mathbf{e}^{\circ},\mathbf{j}^{\circ}}(\sigma)$, and hence

$$z_1 z_2 \cdots z_r \mathbf{P} \mathbf{f}_{\mathbf{e}^{\circ}, \mathbf{j}^{\circ}}(z\sigma) = \mathbf{P} \mathbf{f}_{\mathbf{e}, \mathbf{j}}(\ell) = z_1 z_2 \cdots z_r \delta_{\mathbf{e}^{\circ}}(z)^{-1} \mathbf{P} \mathbf{f}_{\mathbf{e}, \mathbf{j}}(\ell_{\sigma})$$
$$= z_1 z_2 \cdots z_r \delta_{\mathbf{e}^{\circ}}(z)^{-1} \mathbf{P} \mathbf{f}_{\mathbf{e}^{\circ}, \mathbf{j}^{\circ}}(\sigma).$$

The first part of the lemma is proved.

As for the second part, write $\delta_{u_b}(z) = \prod_{w=1}^q \delta_{u_{b_w}}(z)$; again by virtue of our choice of basis for \mathfrak{h} , we have

$$\delta(z)^{-1} = z_1 z_2 \cdots z_r \, \delta_{\mathbf{e}^{\circ}}(z)^{-1} \delta_{u_b}(z)^{-1}.$$

Hence

$$d\mu(\lambda) = |\mathbf{Pf}(z\sigma)| \delta_{u_b}(z)^{-1} dz d\sigma = z_1 z_2 \cdots z_r \delta_{\mathbf{e}^{\circ}}(z)^{-1} \delta_{u_b}(z)^{-1} d\nu_H(z) |\mathbf{Pf}(\sigma)| d\sigma$$
$$= \delta(z)^{-1} d\nu_H(z) |\mathbf{Pf}(\sigma)| d\sigma.$$

Fix an orthonormal basis $\{e^{\beta} \mid \beta \in B\}$ for $L^2(\mathbf{R}^d)$, (where *B* is some index set) and for each $\lambda = z\sigma \in H\sigma$, set $e_{\lambda}^{\beta} = C(z,\sigma)J_{\sigma}^{-1}e^{\beta}$, so that $\{e_{\lambda}^{\beta}\}_{\beta}$ is an orthonormal basis of \mathcal{H}_{λ} . For each $\lambda \in \Lambda^1$ and each basis index β , we have the subspace $\mathcal{H}_{\lambda} \otimes e_{\lambda}^{\beta} =$ $\{T \in \mathcal{H}_{\lambda} \otimes \overline{\mathcal{H}}_{\lambda} \mid \text{Image } (T^*) \subset \mathbf{C} e_{\lambda}^{\beta} \}$. Recall that $\mathcal{H}_{\lambda} \otimes e_{\lambda}^{\beta}$ is the set of maps of the form $v \mapsto \langle v, e_{\lambda}^{\beta} \rangle w$ where $w \in \mathcal{H}_{\lambda}$, and the obvious map $\mathcal{H}_{\lambda} \to \mathcal{H}_{\lambda} \otimes e_{\lambda}^{\beta}$ is an isometric isomorphism. For each basis index β , set $\mathbf{H}^{\beta} = \int_{\Lambda^1}^{\oplus} \mathcal{H}_{\lambda} \otimes e_{\lambda}^{\beta} d\mu(\lambda)$, so that $\mathbf{H} = \bigoplus_{\beta} \mathbf{H}^{\beta}$. Setting $\mathbf{K} = \int_{\Lambda^1}^{\oplus} \mathcal{H}_{\lambda} d\mu(\lambda)$, we have an obvious isometric isomorphism of **K** onto each \mathbf{H}^{β} : $w = \{w(\lambda)\}_{\lambda \in \Lambda^1} \in \mathbf{K}$ corresponds to the element

$$\{w(\lambda)\otimes e_{\lambda}^{\beta}\}_{\lambda\in\Lambda^{1}}\in\mathbf{H}^{\beta}.$$

For any element $g = \{g(\lambda)\}_{\lambda \in \Lambda^1} = \{w(\lambda) \otimes e_{\lambda}^{\beta}\}_{\lambda \in \Lambda^1}$ of \mathbf{H}^{β} , one calculates that $(\widehat{\tau}(x)g)(\lambda) = \pi_{\lambda}(x)w(\lambda) \otimes e_{\lambda}^{\beta}$ for $x \in N$ and

$$(\widehat{\tau}(z)g)(\lambda) = C(z, z^{-1}\lambda)w(z^{-1}\lambda) \otimes e_{\lambda}^{\beta} \delta(z)^{1/2}, \quad z \in H.$$

Thus the subspace ${\bf H}^{\beta}$ of ${\bf H}$ is $\widehat{ au}$ -invariant, and its inverse Fourier image $L^2(N)^{\beta}=$ $F^{-1}(\mathbf{H}^{\beta})$ is τ -invariant. Accordingly, we write $\widehat{\tau} = \bigoplus_{\beta} \widehat{\tau}^{\beta}$ and $\tau = \bigoplus_{\beta} \tau^{\beta}$. Now for each basis index β , the preceding decomposition of the Plancherel measure μ gives a direct integral decomposition of \mathbf{H}^{β} :

(2.2)
$$\mathbf{H}^{\beta} \cong \int_{\Sigma}^{\oplus} \mathbf{H}_{\sigma}^{\beta} |\mathbf{Pf}(\sigma)| \, d\sigma,$$

where $\mathbf{H}_{\sigma}^{\beta}=\int_{H}^{\oplus}\mathfrak{H}_{z\sigma}\otimes e_{z\sigma}^{\beta}\delta(z)^{-1}\,d\nu_{H}(z)$.

For the moment, fix $\sigma \in \Sigma$ and a basis index β . Define $\widehat{\tau}_{\sigma}^{\beta} : G \to \mathcal{U}(\mathbf{H}_{\sigma}^{\beta})$ by the same formula as in Proposition 2.1 above: for $g=\{g(z)\}_{z\in H}\in \mathbf{H}^\beta_\sigma$ and $z_0\in H$

- $(\widehat{\tau}_{\sigma}^{\beta}(z)g(z_0) = D(z, z^{-1}z_0\sigma)(g(z^{-1}z_0))\delta(z)^{1/2}, \quad z \in H;$ $(\widehat{\tau}_{\sigma}^{\beta}(x)g)(z_0) = \pi_{z_0\sigma}(x) \circ g(z_0), \quad x \in N.$

Proposition 2.5 For each $\sigma \in \Sigma$ and for each β , $\widehat{\tau}^{\beta}_{\sigma}$ is unitarily isomorphic with $\tilde{\pi}_{\sigma} = \operatorname{ind}_{N}^{G}(\pi_{\sigma})$ (and hence is irreducible.)

Proof Fix $\sigma \in \Sigma$ and let \mathcal{L} be the Hilbert space of $\tilde{\pi}_{\sigma}$. For $w \in \mathcal{L}$, $\lambda = z\sigma \in \Lambda^{1}$, set $(Tw)(z) = C(z,\sigma)(w(z)) \otimes e_{z\sigma}^{\beta} \delta(z)^{1/2}$. Then

$$\int_{H} \|(Tw)(z)\|_{HS}^{2} \delta(z)^{-1} d\nu_{H}(z) = \int_{H} \|C(z,\sigma)w(z) \otimes e_{z\sigma}^{\beta}\|_{HS}^{2} d\nu_{H}(z)$$

$$= \int_{H} \|w(z)\|_{\mathcal{H}_{\sigma}}^{2} d\nu_{H}(z) = \|w\|_{\mathcal{L}}^{2}.$$

Hence T is a linear isometry from \mathcal{L} into $\mathbf{H}_{\sigma}^{\beta}$. It is easily seen that T is invertible. We compute that

$$\begin{split} \widehat{\tau}_{\sigma}^{\beta}(z)(Tw)(z_{0}) &= \widehat{\tau}_{\sigma}^{\beta}(z) \left(C(z_{0},\sigma)w(z_{0}) \otimes e_{z_{0}\sigma}^{\beta} \delta(z_{0})^{1/2} \right) \\ &= C(z,z^{-1}z_{0}\sigma)C(z^{-1}z_{0},\sigma)w(z^{-1}z_{0}) \otimes e_{z_{0}\sigma}^{\beta} \delta(z^{-1}z_{0})^{1/2} \delta(z)^{1/2} \\ &= C(z_{0},\sigma)w(z^{-1}z_{0}) \otimes e_{z_{0}\sigma}^{\beta} \delta(z_{0})^{1/2} \\ &= T(\tilde{\pi}_{\sigma}(z)w)(z_{0}). \end{split}$$

It follows that the natural isomorphism (2.2) intertwines the representation $\hat{\tau}^{\beta}$ with the direct integral of the representations $\hat{\tau}^{\beta}_{\sigma}$. To sum up the preceding, we have shown that the Fourier transform, together with the decomposition of the Plancherel measure μ , implements a natural decomposition of τ into unitary irreducibles:

$$au\congigoplus_eta\int_\Sigma^\oplus\widehat au_\sigma^eta|\mathbf{Pf}(\sigma)|d\sigma.$$

Now fix an index β , and for $f \in L^2(N)^{\beta}$, write $\widehat{f}(\lambda) = w_f(\lambda) \otimes e_{\lambda}^{\beta}$, where $w_f \in \mathbf{K}$. Note that for each $\lambda \in \Lambda^1$, $\|\widehat{f}(\lambda)\|_{HS} = \|w_f(\lambda)\|_{\mathcal{H}_{\lambda}}$. In the sequel we shall often drop the cumbersome subscripts on norms indicating the Hilbert space, relying on context and other notation to affect the appropriate distinctions.

Fix $\psi \in L^2(N)^{\beta}$ and set $u = w_{\psi}$ so that $\widehat{\psi}(\lambda) = u(\lambda) \otimes e_{\lambda}^{\beta}$. One calculates that for each $\lambda \in \Lambda^1$ and $z \in H$,

(2.3)
$$\|\widehat{f}(\lambda) \circ (\widehat{\tau}(z)\widehat{\psi})(\lambda)^*\|^2 = \|w_f(\lambda)\|^2 \|u(z^{-1}\lambda)\|^2 \delta(z)$$
$$= \|\widehat{f}(\lambda)\|^2 \|\widehat{\psi}(z^{-1}\lambda)\|^2 \delta(z).$$

Define $\Delta_{\psi} \colon \Lambda^1 \to [0, +\infty)$ by

$$\Delta_{\psi}(\lambda) = \int_{H} \|\widehat{\psi}(z^{-1}\lambda)\|^{2} d\nu_{H}(z) = \int_{H} \|\widehat{\psi}(z\sigma)\|^{2} d\nu_{H}(z).$$

Note that Δ_{ψ} is constant on *H*-orbits in Λ^1 . Combining the equations (2.1) and (2.3), we get

$$\begin{split} \int_{G} |m_{f,\psi}|^{2} d\nu_{G} &= \int_{H} \int_{\Lambda^{1}} \|w_{f}(\lambda)\|^{2} \|u(z^{-1}\lambda)\|^{2} d\mu(\lambda) d\nu_{H}(z) \\ &= \int_{H} \int_{\Lambda^{1}} \|\widehat{f}(\lambda)\|^{2} \|\widehat{\psi}(z^{-1}\lambda)\|^{2} d\mu(\lambda) d\nu_{H}(z) \\ &= \int_{\Lambda^{1}} \|\widehat{f}(\lambda)\|^{2} \Big(\int_{H} \|\widehat{\psi}(z^{-1}\lambda)\|^{2} d\nu_{H}(z) \Big) d\mu(\lambda) \\ &= \int_{\Lambda^{1}} \|\widehat{f}(\lambda)\|^{2} \Delta_{\psi}(\lambda) d\mu(\lambda). \end{split}$$

So it is clear that if $\Delta_{\psi}(\lambda) = 1$ holds μ -a.e., then $m_{f,\psi}$ belongs to $L^2(G)$ and $||m_{f,\psi}|| = ||f||$, that is, ψ is admissible for τ^{β} . An easy adaptation of the argument in [22, Theorem 2.1] shows that the converse is true.

Proposition 2.6 Let $\psi \in L^2(N)^{\beta}$. Then ψ is admissible for τ^{β} if and only if $\Delta_{\psi}(\lambda) = 1$ holds for μ -a.e. $\lambda \in \Lambda^1$.

Proof The proof is already halfway done; to complete it, suppose that $||m_{f,\psi}|| = ||f||$ holds for all $f \in L^2(N)^\beta$. Fix $\lambda_0 \in \Lambda^1$. For r > 0, let $B_r(\lambda_0)$ be the ball about λ_0 of radius r, let $\chi_{B_r(\lambda_0)}$ be the characteristic function of the set $B_r(\lambda_0)$, and let $f = f_{\lambda_0,r} \in L^2(N)^\beta$ be defined by $\widehat{f}(\lambda) = \mu(B_r(\lambda_0))^{-1/2}\chi_{B_r(\lambda_0)}e_\lambda^\beta \otimes e_\lambda^\beta$. Then $||f||^2 = 1$, so from our assumption and the above calculation, we have

$$1 = \int_{\Lambda^1} \|\widehat{f}(\lambda)\|^2 \Delta_{\psi}(\lambda) \, d\mu(\lambda) = \frac{1}{\mu(B_r(\lambda_0))} \int_{B_r(\lambda_0)} \Delta_{\psi}(\lambda) \, d\mu(\lambda).$$

The result now follows from standard differentiability results.

Remark 2.7 Let $\psi \in L^2(N)^{\beta}$ be admissible for τ^{β} and let $f \in L^2(N)^{\beta}$. Write $\widehat{\psi}(\lambda) = u(\lambda) \otimes e_{\lambda}^{\beta}$ and $\widehat{f}(\lambda) = w_f(\lambda) \otimes e_{\lambda}^{\beta}$ as above. Then

$$\widehat{\tau}(xz)\widehat{\psi}(\lambda) = \pi_{\lambda}(x) \circ C(z, z^{-1}\lambda)u(z^{-1}\lambda) \otimes e_{\lambda}^{\beta} \delta(z)^{1/2}$$

and

$$\begin{split} W_{\psi}(f)(xz) &= \langle \widehat{f}, \widehat{\tau}(xz) \widehat{\psi} \rangle \\ &= \int_{\Lambda^{1}} \langle \widehat{f}(\lambda), \widehat{\tau}(xz) \widehat{\psi}(\lambda) \rangle \, d\mu(\lambda) \\ &= \int_{\Lambda^{1}} \langle w_{f}(\lambda), \pi_{\lambda}(x) \circ C(z, z^{-1}\lambda) u(z^{-1}\lambda) \rangle \, d\mu(\lambda) \, \delta(z)^{1/2}. \end{split}$$

Hence if $L^{\beta} \colon \mathbf{K} \to \mathbf{H}^{\beta}$ is the canonical isomorphism and $\widehat{\psi'} = L^{\beta'} \circ (L^{\beta})^{-1} \widehat{\psi}$, then $W_{\psi'} \circ L^{\beta'} = W_{\psi} \circ L^{\beta}$.

We now show how to construct admissible vectors for τ^{β} : suppose that G is not unimodular and that η is a unit vector in $L^2(H, \nu_H)$ which also happens to belong to $L^2(H, \delta^{-1}\nu_H)$. Since $\delta \neq 1$, we have $\delta(0, 0, \dots, z_{\nu}, \dots, 0) \neq 1$ for some $\nu, 1 \leq \nu \leq r$. Write $\delta(0, 0, \dots, z_{\nu}, \dots, 0) = z_{\nu}^p$, $p \neq 0$. Assume that $q = \dim(\Sigma) > 0$, and for each $\epsilon \in \{-1, 1\}^r$, let s_{ϵ} be the identification map from Σ_{ϵ} onto an open subset of \mathbb{R}^q .

We choose a measurable function \tilde{u} : $\mathbf{R}^q \to (0, \infty)$ such that for any polynomial function P(t) on \mathbf{R}^q , we have $\int_{\mathbf{R}^q} \tilde{u}(t)^p |P(t)| dt < \infty$. Define $u : \Sigma \to (0, \infty)$ by $u(\sigma) = \tilde{u}(s_{\epsilon}(\sigma)), \sigma \in \Sigma_{\epsilon}$. Then we have $\int_{\Sigma} u(\sigma)^p |\mathbf{Pf}(\sigma)| d\sigma < \infty$. Now for each pair of basis indices α and β , define $\psi = \psi_{n,u}^{\alpha,\beta} \in L^2(N)^\beta$ by

(2.4)
$$\widehat{\psi}(z\sigma) = \eta(z_1, z_2, \dots, z_{\nu-1}, z_{\nu}u(\sigma), z_{\nu+1}, \dots, z_r)e_{z\sigma}^{\alpha} \otimes e_{z\sigma}^{\beta}.$$

With the identification $\lambda = z\sigma$, it will be helpful to abuse notation slightly by writing

$$\eta(\lambda) = \eta(z\sigma) = \eta(z_1, z_2, \dots, z_{\nu-1}, z_{\nu}u(\sigma), z_{\nu+1}, \dots, z_r),$$

so that $\widehat{\psi}(\lambda) = \eta(\lambda)e_{\lambda}^{\alpha} \otimes e_{\lambda}^{\beta}$. Now we have that

$$\int_{H} \|\widehat{\psi}(z\sigma)\|^{2} d\nu_{H}(z) = \int_{H} |\eta(z)|^{2} d\nu_{H}(z) = 1$$

holds for all $\sigma \in \Sigma$, and the calculation

$$\int_{N} |\psi(x)|^{2} dx = \int_{\Lambda^{1}} \|\widehat{\psi}(\lambda)\|^{2} d\mu(\lambda)$$

$$= \int_{\Sigma} \int_{H} \|\widehat{\psi}(z\sigma)\|^{2} \delta(z)^{-1} d\nu_{H}(z) |\mathbf{Pf}(\sigma)| d\sigma$$

$$= \int_{\Sigma} \int_{H} |\eta(z_{1}, z_{2}, \dots, z_{\nu-1}, z_{\nu}u(\sigma), z_{\nu+1}, \dots, z_{r})|^{2} \delta(z)^{-1} d\nu_{H}(z) |\mathbf{Pf}(\sigma)| d\sigma$$

$$= \int_{\Sigma} \int_{H} |\eta(z)|^{2} (\delta(z_{1})\delta(z_{1}) \cdots \delta(z_{\nu-1})\delta(u(\sigma)^{-1}z_{\nu})\delta(z_{\nu+1}) \cdots \delta(z_{r}))^{-1}$$

$$\times d\nu_{H}(z) |\mathbf{Pf}(\sigma)| d\sigma$$

$$= \int_{H} |\eta(z)|^{2} \delta(z)^{-1} d\nu_{H}(z) \int_{\Sigma} u(\sigma)^{p} |\mathbf{Pf}(\sigma)| d\sigma < \infty$$

shows that $\psi \in L^2(N)^\beta$. Hence by Proposition 2.6, ψ is admissible for τ^β . Next, suppose that $\psi = \psi_{\eta,u}^{\alpha,\beta}$ and $\psi' = \psi_{\eta',u}^{\alpha',\beta'}$ are two such admissible vectors. For $f \in L^2(N)^\beta$ and $f' \in L^2(N)^{\beta'}$ we compute that

$$\langle m_{f,\psi}(s), m_{f,\psi'}(s) \rangle_{L^{2}(G)} = \int_{G} m_{f,\psi}(s) \overline{m_{f',\psi'}(s)} \, d\nu_{G}(s)$$

$$= \int_{H} \int_{N} (f * (\tau(z)\psi)^{*})(x) \overline{(f' * (\tau(z)\psi')^{*})(x)} \, dx \, \delta(z)^{-1} d\nu_{H}(z)$$

$$= \int_{H} \int_{\Lambda^{1}} \langle \widehat{f}(\lambda) \circ (\tau(z)\psi) \widehat{}(\lambda)^{*}, \, \widehat{f'}(\lambda) \circ (\tau(z)\psi') \widehat{}(\lambda)^{*} \rangle_{HS}$$

$$\times d\mu(\lambda) \delta(z)^{-1} d\nu_{H}(z)$$

$$= \int_{H} \int_{\Lambda^{1}} \operatorname{Trace} \left(\widehat{f'}(\lambda)^{*} \circ \widehat{f}(\lambda) \circ (\tau(z)\psi) \widehat{}(\lambda)^{*} \circ (\tau(z)\psi') \widehat{}(\lambda) \right)$$

$$\times d\mu(\lambda) \, \delta(z)^{-1} d\nu_{H}(z).$$

Now one checks that

$$\widehat{f}'(\lambda)^* \circ \widehat{f}(\lambda) \circ (\tau(z)\psi) \widehat{}(\lambda)^* \circ (\tau(z)\psi') \widehat{}(\lambda)$$

$$= \langle w_f(\lambda), w_{f'}(\lambda) \rangle \overline{\eta(z^{-1}\lambda)} \eta'(z^{-1}\lambda) \delta(z) e_{\lambda}^{\beta'} \otimes e_{\lambda}^{\beta'} \cdot \delta_{\alpha,\alpha'},$$

where $\delta_{\alpha,\alpha'}=1$ or 0 according as $\alpha=\alpha'$ or $\alpha\neq\alpha'$. Apply this with the decomposition of μ and we get

$$\langle m_{f,\psi}(s), m_{f',\psi'}(s) \rangle_{L^{2}(G)}$$

$$= \int_{H} \int_{\Lambda^{1}} \langle w_{f}(\lambda), w_{f'}(\lambda) \rangle \overline{\eta(z^{-1}\lambda)} \eta'(z^{-1}\lambda) d\mu(\lambda) d\nu_{H}(z) \cdot \delta_{\alpha,\alpha'}$$

$$= \int_{H} \int_{\Sigma} \int_{H} \langle w_{f}(z'\sigma), w_{f'}(z'\sigma) \rangle \overline{\eta(z^{-1}z'\sigma)} \eta'(z^{-1}z'\sigma) \delta(z')^{-1}$$

$$\times d\nu(z') |\mathbf{Pf}(\sigma)| d\sigma d\nu(z) \cdot \delta_{\alpha,\alpha'}$$

$$= \int_{\Sigma} \int_{H} \langle w_{f}(z'\sigma), w_{f'}(z'\sigma) \rangle \left(\int_{H} \overline{\eta(z^{-1}z'\sigma)} \eta'(z^{-1}z'\sigma) d\nu(z) \right) \delta(z')^{-1}$$

$$\times d\nu(z') |\mathbf{Pf}(\sigma)| d\sigma \cdot \delta_{\alpha,\alpha'}$$

$$= \int_{\Lambda^{1}} \langle w_{f}(\lambda), w_{f'}(\lambda) \rangle d\mu(\lambda) \overline{\langle \eta, \eta' \rangle} \cdot \delta_{\alpha,\alpha'} ,$$

which means we have the orthogonality relation

$$(2.5) \qquad \langle W_{\psi}(f), W_{\psi'}(f') \rangle_{L^{2}(G)} = \langle w_{f}, w_{f'} \rangle_{\mathbf{K}} \overline{\langle \eta, \eta' \rangle_{L^{2}(H, \nu)}} \cdot \delta_{\alpha, \alpha'}.$$

In particular, this shows that if $\alpha \neq \alpha'$, then the images of W_{ψ} and $W_{\psi'}$ are orthogonal in $L^2(G)$. We are now ready to prove the main result.

Theorem 2.8 Let $G = N \rtimes H$ where N is a connected, simply connected nilpotent Lie group, and where H is a vector group such that the Lie algebra $\operatorname{ad}(\mathfrak{h})$ is \mathbf{R} -split and completely reducible, and such that $H_{[\pi]} = (1)$ holds for almost every $[\pi] \in \widehat{N}$. Let τ be the quasiregular representation of G in $L^2(N)$. Then τ has an admissible vector if and only if G is not unimodular.

Proof Suppose first that G is not unimodular. We need to construct an admissible vector for τ . To do this, we fix a Jordan–Hölder basis of G satisfying the conditions of Section 1, and with all notations from Section 1, we conclude that $\mathfrak{h}_r=(0)$. Recalling the structure of the Fourier transform on $L^2(N)$ developed in the preceding, and in particular the decomposition $L^2(N)=\bigoplus_{\beta}L^2(N)^{\beta}$, we then execute the construction given above for τ^{β} -admissible vectors: let η be a unit vector in $L^2(H,\nu_H)$ that also belongs to $L^2(H,\delta^{-1}\nu_H)$ and let $\nu,1\leq\nu\leq r$, such that $\delta(0,0,\ldots,z_{\nu},\ldots,0)\neq 1$. Write $\delta(0,0,\ldots,z_{\nu},\ldots,0)=z_{\nu}^p,\ p\neq 0$, and assume that $q=\dim(\Sigma)>0$. We omit the proof in the case where q=0; in that case each τ^{β} is a finite direct sum of irreducible, square-integrable representaitons, and the proof is a simplification of what follows. For each $\epsilon\in\{-1,1\}^r$, recall that s_{ϵ} is the identification map from Σ_{ϵ} onto an open subset of \mathbf{R}^q .

Now for each basis index β , we choose a measurable function $\tilde{u}^{\beta} \colon \mathbf{R}^{q} \to (0, \infty)$ such that for any polynomial function P(t) on \mathbf{R}^{q} , we have

$$\sum_{\beta} \int_{\mathbf{R}^q} \tilde{u}^{\beta}(t)^p |P(t)| dt < \infty.$$

Define $u^{\beta} \colon \Sigma \to (0, \infty)$ by $u^{\beta}(\sigma) = \tilde{u}^{\beta}(s_{\epsilon}(\sigma)), \sigma \in \Sigma_{\epsilon}$, so that we have

$$\sum_{\beta} \int_{\Sigma} u^{\beta}(\sigma)^{p} |\mathbf{Pf}(\sigma)| \, d\sigma < \infty.$$

Let ψ^{β} denote the function $\psi^{\beta,\beta}_{\eta,u^{\beta}}$ as defined above, so that

$$\widehat{\psi}^{\beta}(z\sigma) = \eta(z_1, z_2, \dots, z_{\nu-1}, z_{\nu}u^{\beta}(\sigma), z_{\nu+1}, \dots, z_r)e_{z\sigma}^{\beta} \otimes e_{z\sigma}^{\beta}.$$

Then each ψ^{β} is admissible for τ^{β} and the images of $W_{\psi^{\beta}}$ are pairwise orthogonal. Set $\psi = \sum_{\beta} \psi^{\beta}$. Then ψ belongs to $L^{2}(N)$: for each β ,

$$\int_{N} |\psi^{\beta}(x)|^{2} dx = \int_{H} |\eta(z)|^{2} \delta(z)^{-1} d\nu(z) \int_{\Sigma} u^{\beta}(\sigma)^{p} |\mathbf{Pf}(\sigma)| d\sigma,$$

so $\sum_{\beta} \|\psi^{\beta}\|^2 < \infty$. For any $f \in L^2(N)$,

$$W_{\psi}(f) = \langle f, \tau(\cdot)\psi \rangle = \sum_{\beta} \langle f^{\beta}, \tau(\cdot)\psi^{\beta} \rangle = \sum_{\beta} W_{\psi^{\beta}}(f^{\beta})$$

and $\sum_{\beta} \|W_{\psi^{\beta}}(f^{\beta})\|^2 = \sum_{\beta} \|f^{\beta}\|^2 = \|f\|^2$. Thus $W_{\psi}(f) \in L^2(G)$, and $\|W_{\psi}(f)\| = \|f\|$ holds for all $f \in L^2(N)$.

On the other hand, suppose that $\psi \in L^2(N)$ is admissible for τ , and fix any basis index β . Then ψ^{β} is admissible for τ^{β} , so by Proposition 2.6, $\Delta_{\psi^{\beta}}(\lambda) = 1$ a.e. on Λ^1 , and hence $\Delta_{\psi^{\beta}}(\sigma) = 1$ a.e. on Σ . Now if G is unimodular, then $\delta(z) = 1$ for all $z \in H$, so by Lemma 2.4,

$$\begin{split} \int_{\Sigma} |\mathbf{Pf}(\sigma)| \, d\sigma &= \int_{\Sigma} \Delta_{\psi^{\beta}}(\sigma) |\mathbf{Pf}(\sigma)| \, d\sigma = \int_{\Sigma} \int_{H} \, \|\widehat{\psi}(z\sigma)\|^{2} \, d\nu(z) |\mathbf{Pf}(\sigma)| \, d\sigma \\ &= \int_{\Lambda^{1}} \|\widehat{\psi}(\lambda)\|^{2} \, d\mu(\lambda) = \|\psi\|^{2} < \infty. \end{split}$$

This is possible only if $d\sigma$ is a finite measure. But by Lemma 2.3, Σ is diffeomorphic with the cross-section Λ for G-orbits in Ω , and it is known [4, Corollary 2.2.2] that $d\sigma$ can only be finite when q=0 and Σ is a finite set. By Lemma 2.3, this means that the regular representation of the unimodular group G decomposes into a finite sum of irreducible (square integrable) representations. It is well known (see for example [11, Proposition 0.4]) that this can only happen when G is discrete.

Next we show that $L^2(G)$ can be decomposed by means of the wavelet transforms on each $L^2(N)^{\beta}$.

Lemma 2.9 There is an orthonormal basis $\{\eta_j\}$ for $L^2(H, \nu_H)$, each element of which also belongs to $L^2(H, \delta^{-1}\nu_H)$.

Proof Write $\delta(z)^{-1} d\nu_H(z) = z_1^{p_1} z_2^{p_2} \cdots z_r^{p_r} dz_1 dz_2 \cdots dz_r$ where $p_w \in \mathbf{R}, 1 \le w \le r$, and choose $\nu \ge 0$ such that $\nu \ge -\min(p_1, p_2, \dots, p_r)$. For $j = (j_1, j_2, \dots, j_r) \in \{0, 1, \dots\}^r$, set

$$\eta_j(z) = \prod_{w=1}^r \left(e^{-z_w} (2z_w)^{\frac{\nu+1}{2}} L_{j_w}^{(\nu)} (2z_w) c_{\nu,j_w}^{-1/2} \right), \ z = (z_1, z_2, \dots, z_r) \in H,$$

where $L_l^{(\nu)}(s), l = 0, 1, \dots$ is the Laguerre polynomial

$$L_l^{(\nu)}(s) = \frac{1}{l!} e^s s^{-\nu} \left(\frac{d}{ds}\right)^l (e^{-s} s^{l+\nu}), 0 < s < \infty$$

and

$$c_{\nu,l} = \int_0^\infty e^{-s} s^{\nu} L_l^{(\nu)}(s)^2 ds.$$

As in [18] we see that $\{\eta_j\}_{j\in\{0,1,2,\dots\}^r}$ is an orthonormal basis of $L^2(H,\nu_H)$. Also, since $\nu+p_w\geq 0, 1\leq w\leq r$, we have

$$\int_{H} |\eta_{j}(z)|^{2} \delta(z)^{-1} d\nu_{H}(z) = \prod_{w=1}^{r} c_{\nu, j_{w}}^{-1} \int_{0}^{\infty} e^{-2z_{w}} (2z_{w})^{\nu + p_{w}} L_{j}^{(\nu)} (2z_{w})^{2} 2^{1 - p_{w}} dz_{w} < \infty.$$

Assume that G is not unimodular, and that $q = \dim(\Sigma) > 0$. Let $\{\eta_j\}$ be the basis of $L^2(H, \nu)$ as in Lemma 2.9, and let $u \colon \Sigma \to (0, \infty)$ a measurable function such that $\int_{\Sigma} u(\sigma)^p |\mathbf{Pf}(\sigma)| d\sigma$, where p is chosen appropriately as above. Fix a basis index β_0 , set

$$W_{j,u}^{\alpha} = W_{\psi_{\eta_{j},u}^{\alpha,\beta_{0}}}, \alpha \in B, j \in \{0,1,2,\dots\}^{r},$$

and set

$$\mathbf{J}_{j}^{\alpha}=W_{j,u}^{\alpha}(L^{2}(N)^{\beta_{0}}).$$

From (2.5) we see that the subspaces J_j^{α} are pairwise orthogonal in $L^2(G)$ and that each is isomorphic with **K**.

Theorem 2.10 We have

$$L^{2}(G) = \bigoplus_{\substack{\alpha \in B \\ j \in \{0,1,2,\dots\}^{r}}} \mathbf{J}_{j}^{\alpha}.$$

Proof We must show that $L^2(G)$ is contained in the direct sum. Let $Y \in L^2(G)$ and for $z \in H$ set $Y_z(x) = Y(xz), x \in N$. We have

$$\begin{split} \|Y\|^2 &= \int_H \left(\int_N |Y_z(x)|^2 dx \right) \delta(z)^{-1} d\nu(z) \\ &= \int_H \left(\int_{\Lambda^1} \|\widehat{Y}_z(\lambda)\|^2 d\mu(\lambda) \right) \delta(z)^{-1} d\nu(z). \end{split}$$

 $https://doi.org/10.4153/CJM-2007-039-0\ Published\ online\ by\ Cambridge\ University\ Press$

Since $\|\widehat{Y}_z(\lambda)\|^2 = \sum_{\alpha,\beta} |\langle \widehat{Y}_z(\lambda)e^{\alpha}_{\lambda},e^{\beta}_{\lambda}\rangle|^2$, then for each pair of indices α and β ,

$$\int_{H} |\langle \widehat{Y}_{z}(\lambda) e_{\lambda}^{\alpha}, e_{\lambda}^{\beta} \rangle|^{2} \delta(z)^{-1} d\nu(z) < \infty$$

holds for μ -a.e. λ . Let $y_{\lambda}^{\alpha,\beta}$ denote the mapping $z \mapsto \langle \widehat{Y}_z(\lambda) e_{\lambda}^{\alpha}, e_{\lambda}^{\beta} \rangle \delta(z)^{-1/2}$; then there is a co-null subset Λ_0^1 of Λ^1 , such that $y_{\lambda}^{\alpha,\beta} \in L^2(H,\nu_H)$ holds for each $\lambda \in \Lambda_0^1$, $\alpha,\beta \in B$. Now for each $\lambda \in \Lambda_0^1$, write $\lambda = z_{\lambda}\sigma$ and set $\eta_{j,\lambda}(z) = \eta_j(z^{-1}z_{\lambda}), z \in H$. Observe that $\{\eta_{j,\lambda} \mid j \in \{0,1,2,\dots\}^r\}$ is an orthonormal basis of $L^2(H,\nu_H)$. Hence for each $\lambda \in \Lambda_0^1$, $\alpha,\beta \in B$, we have complex numbers $\{a_j(\lambda,\alpha,\beta) \mid j \in \{0,1,2,\dots\}^r\}$ such that

$$y_{\lambda}^{\alpha,\beta} = \sum_{j \in \{0,1,2,\dots\}^r} a_j(\lambda,\alpha,\beta) \eta_{j,\lambda}.$$

This means that $\widehat{Y}_z(\lambda)\delta(z)^{-1/2} = \sum_{\alpha,\beta} \sum_j a_j(\lambda,\alpha,\beta) \eta_{j,\lambda}(z) e_\lambda^\beta \otimes e_\lambda^\alpha$. Now for each $\alpha \in B, j \in \{0,1,2,\dots\}^r$, set $g_j^\alpha(\lambda) = \sum_\beta a_j(\lambda,\alpha,\beta) e_\lambda^\beta \otimes e_\lambda^{\beta_0}$. We claim that $g_j^\alpha \in \mathbf{H}^{\beta_0}$ for all α . To see this we observe that

$$\begin{split} \|Y\|^2 &= \int_H \int_{\Lambda^1} \|\widehat{Y}_z(\lambda)\|^2 \, d\mu(\lambda) \delta(z)^{-1} d\nu(z) \\ &= \int_{\Lambda^1} \sum_{\alpha,\beta} \int_H |\langle \delta(z)^{-1/2} \widehat{Y}_z(\lambda) e_\lambda^\alpha, e_\lambda^\beta \rangle|^2 \, d\nu(z) \, d\mu(\lambda) \\ &= \int_{\Lambda^1} \sum_{\alpha,\beta} \|y_\lambda^{\alpha,\beta}\|^2 \, d\mu(\lambda) \\ &= \int_{\Lambda^1} \sum_{\alpha,\beta} \sum_j |a_j(\lambda,\alpha,\beta)|^2 \, d\mu(\lambda) \\ &\geq \int_{\Lambda^1} \sum_\beta |a_j(\lambda,\alpha,\beta)|^2 \, d\mu(\lambda) \\ &= \|g_j^\alpha\|^2. \end{split}$$

Denote by f_j^{α} the inverse Fourier transform of g_j^{α} , and set $\psi = \psi_{\eta_j,u}^{\alpha,\beta_0}$. Then for a.e. $z \in H$, $(W_{i,u}^{\alpha}(f_i^{\alpha}))_z = (f_i^{\alpha} * (\tau(z)\psi)^*)$ belongs to $L^2(N)$, and for such z,

$$\begin{split} (W^{\alpha}_{j,u}(f^{\alpha}_{j})_{z})\hat{}(\lambda) &= g^{\alpha}_{j}(\lambda) \circ (\eta_{j}(z^{-1}z_{\lambda})e^{\alpha}_{\lambda} \otimes e^{\beta_{0}}_{\lambda})^{*} \delta(z)^{1/2} \\ &= \delta(z)^{1/2} \Big(\sum_{\beta} a_{j}(\lambda,\alpha,\beta)e^{\beta}_{\lambda} \otimes e^{\beta_{0}}_{\lambda} \Big) \circ \eta_{j}(z^{-1}z_{\lambda})e^{\beta_{0}}_{\lambda} \otimes e^{\alpha}_{\lambda} \\ &= \delta(z)^{1/2} \sum_{\beta} a_{j}(\lambda,\alpha,\beta)\eta_{j}(z^{-1}z_{\lambda})e^{\beta}_{\lambda} \otimes e^{\alpha}_{\lambda}. \end{split}$$

Summing over all α and j, we find

$$\begin{split} \sum_{\alpha,j} (W_{j,u}^{\alpha}(f_{j}^{\alpha})_{z}) \widehat{}(\lambda) &= \delta(z)^{1/2} \sum_{\alpha,\beta} \left(\sum_{j} a_{j}(\lambda,\alpha,\beta) \eta_{j}(z^{-1}z_{\lambda}) \right) e_{\lambda}^{\beta} \otimes e_{\lambda}^{\alpha} \\ &= \sum_{\alpha,\beta} \langle \widehat{Y}_{z}(\lambda) e_{\lambda}^{\alpha}, e_{\lambda}^{\beta} \rangle e_{\lambda}^{\beta} \otimes e_{\lambda}^{\alpha} \\ &= \widehat{Y}_{z}(\lambda). \end{split}$$

Taking the inverse Fourier transform we obtain $Y_z = \sum_{\alpha,j} W_{j,u}^{\alpha}(f_j^{\alpha})_z$ for a.e. $z \in H$, and hence

$$Y = \sum_{\alpha,j} W_{j,u}^{\alpha}(f_j^{\alpha}).$$

References

- D. Arnal, M. BenAmmar, B. Currey, and B. Dali, Explicit construction of canonical coordinates for completely solvable Lie groups. J. Lie Theory 15(2005), 521–560.
- [2] B. Currey, A continuous trace composition sequence for C*(G) where G is an exponential solvable Lie group. Math. Nachr. 159(1992), 189–212.
- [3] _____, An explicit Plancherel formula for completely solvable Lie groups. Michigan Math. J. 38(1991), no. 1, 75–87.
- [4] ____, Explicit orbital parameters and the Plancherel measure for exponential Lie groups. Pacific J. Math. (to appear).
- [5] _____, Smooth decomposition of finite multiplicity monomial representations for a class of completely solvable homogeneous spaces. Pacific J. Math. 170(1995), no. 2, 429–460.
- [6] _____, The structure of the space of coadjoint orbits of an exponential solvable Lie group. Trans. Amer. Math. Soc. 332(1992), no. 1, 241–269.
- [7] B. Currey and R. Penney, *The structure of the space of co-adjoint orbits of a completely solvable Lie group*. Mich. Math. J. **36**(1989), no. 2, 309–320.
- [8] M. Duflo and C. Moore, On the regular representation of a nonunimodular locally compact group. J. Functional Analysis **21**(1976), no. 2, 209–243.
- [9] M. Duflo and M. Raïs, Sur l'analyse harmonique sur les groupes de Lie résolubles. Ann. Sci. École Norm. Sup. 9(1976), no. 1, 107–144.
- [10] R. Fabec, and G. Ólafsson, *The continuous wavelet transform and symmetric spaces*. Acta Applicandae Math. (to appear)
- [11] H. Führ, Admissible vectors for the regular representation. Proc. Amer. Math. Soc. 130(2002), no. 10, 2959–2970 (electronic).
- [12] H. Ishi, Wavelet transforms for semidirect product groups. J. Fourier Anal. Appl. 12(2006), no. 1, 37–52
- [13] R. S. Laugesen, N. Weaver, G. Weiss, and E. N. Wilson, A characterization of the higher dimensional groups associated with continuous wavelets. J. Geom. Anal. 12(2002), no. 1, 89–102.
- [14] R. Lipsman, Harmonic analysis on exponential solvable homogeneous spaces: the algebraic or symmetric cases. Pacific. J. Math. 140(1989), no. 1, 117–147.
- [15] _____, Induced representations of completely solvable Lie groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17(1990), no. 1, 127–164.
- [16] _____, The multiplicity function on exponential and completely solvable homogeneous spaces. Geom. Dedicata 39(1991), no. 2, 155–161.
- [17] R. Lipsman and J. Wolf, Canonical semi-invariants and the Plancherel formula for parabolic groups. Trans. Amer. Math. Soc. 269(1982), no. 1, 111–131.
- [18] H. Liu and L. Peng, Admissible wavelets associated with the Heisenberg group. Pacific J. Math. 180(1997), no. 1, 101–123.
- [19] N. V. Pedersen, On the infinitesimal kernel of irreducible representations of nilpotent Lie groups. Bull. Soc. Math. France 112(1984), no. 4, 423–467.
- [20] L. Pukánszky, On the characters and the Plancherel formula of nilpotent Lie groups. J. Functional Analysis 1(1967), 255–280.

 [21] _____, On the unitary representations of exponential Lie groups. J. Functional Analysis 2(1968), 73–113.
 [22] G. Weiss and E. N. Wilson, The mathematial theory of wavelets. In: Twentieth Century Harmonic Analysis – A Celebration, NATO Sci. Ser. II Math. Phys. Chem. 33, Kluwer Acad. Publ., Dordrecht, 2001, pp. 320-366. 2001, pp. 329–366.

Department of Mathematics and Computer Science Saint Louis University Saint Louis, MO 63103 U.S.A.

e-mail: curreybn@slu.edu