Admissibility for a Class of Quasiregular Representations

Bradley N. Currey

Abstract

Given a semidirect product $G=N \rtimes H$ where N is nilpotent, connected, simply connected and normal in G and where H is a vector group for which $\operatorname{ad}(\mathfrak{b})$ is completely reducible and \mathbf{R}-split, let τ denote the quasiregular representation of G in $L^{2}(N)$. An element $\psi \in L^{2}(N)$ is said to be admissible if the wavelet transform $f \mapsto\langle f, \tau(\cdot) \psi\rangle$ defines an isometry from $L^{2}(N)$ into $L^{2}(G)$. In this paper we give an explicit construction of admissible vectors in the case where G is not unimodular and the stabilizers in H of its action on \widehat{N} are almost everywhere trivial. In this situation we prove orthogonality relations and we construct an explicit decomposition of $L^{2}(G)$ into G-invariant, multiplicity-free subspaces each of which is the image of a wavelet transform. We also show that, with the assumption of (almost-everywhere) trivial stabilizers, non-unimodularity is necessary for the existence of admissible vectors.

Introduction

For the most general notion of continuous wavelet transform, we start with a separable, locally compact topological group G, and a unitary representation τ of G acting in the Hilbert space \mathcal{H}_{τ}. Given a vector $\psi \in \mathcal{H}_{\tau}$, we have a linear mapping W_{ψ} from \mathcal{H}_{τ} into the space of bounded continuous functions on G defined by $W_{\psi}(f)=\langle f, \tau(\cdot) \psi\rangle$. In the event that W_{ψ} actually defines an isometry of \mathcal{H}_{τ} into $L^{2}(G)$, then we say that W_{ψ} is a continuous wavelet transform, and that ψ is admissible for τ. When G has Type I reduced dual, the two extreme cases - where τ is irreducible or where τ is the regular representation - are well understood [8, 11]. Most closely related to discrete wavelets is the case where G is a semidirect product $G=N \rtimes H$ with N normal and where τ is the quasiregular representation of G in $L^{2}(N)$. The simplest example of this case is the " $a x+b$ " group $G=\mathbf{R} \rtimes \mathbf{R}_{+}^{*}$, where the quasiregular representation of G in $L^{2}(\mathbf{R})$ certainly does have admissible vectors, since it is the direct sum of two (square-integrable) irreducible representations. General semidirect products of the form $G=\mathbf{R}^{n} \rtimes H$, where H is a closed subgroup of $\mathrm{GL}(n, \mathbf{R})$, are studied in [13,22]. There H is said to be admissible if the corresponding quasiregular representation has an admissible vector, and an (almost) characterization of all admissible H is proved.

It is natural then to consider the continuous wavelet transform for the quasiregular representation of $G=N \rtimes H$ when \mathbf{R}^{n} is replaced by a locally compact, connected, unimodular group N. The paper [12] lays out the general theory under the assumption that both of the following conditions hold: (i) for a.e. λ belonging to the dual \widehat{N}, the stabilizer H_{λ} in H is compact, and (ii) \widehat{N} has a co-null subset consisting of

[^0]finitely many open orbits. There are a number of important situations in which these assumptions hold (see for example [10]). Assumption (i) is certainly a natural one; in the case where $N=\mathbf{R}^{n}$, it is shown relatively easily in [13] that (i) is in fact a necessary condition for admissibility. The necessity of (i) in the case where N is not abelian remains an open question however, and seems to be quite difficult even in simple examples. On the other hand, easy examples and the general results of [13] show that (ii) is not necessary.

In this paper we consider the class of $G=N \rtimes H$ satisfying the following conditions:
(i) $\quad N$ is any connected, simply connected nilpotent Lie group,
(ii) H is a vector group acting on N in such a way that the Lie algebra $\operatorname{ad}(\mathfrak{h})$ is completely reducible and \mathbf{R}-split.
The group G is exponential, meaning that the exponential map defined on its Lie algebra \mathfrak{g} is a bijection onto G. The orbit method applies both to N and G, and the relationship between coadjoint orbits in the linear dual \mathfrak{n}^{*} of \mathfrak{n}, and coadjoint orbits of G in \mathfrak{g}^{*} is well understood. A great deal is also known about the spectral decomposition of the quasiregular representation in this context [14, 17]. In this paper we clarify the relationship between explicit orbital parametrizations in \mathfrak{n}^{*} and \mathfrak{g}^{*} as well. In Section 1 we recall the method of stratification by which the collective orbit structure can be described, applying this method both to \mathfrak{n}^{*} and to \mathfrak{g}^{*}. With carefully chosen bases for \mathfrak{n} and \mathfrak{g}, this procedure yields subsets Λ° of \mathfrak{n}^{*} and Λ of \mathfrak{g}^{*}, which parametrize a.e. the duals \widehat{N} and \widehat{G} respectively, and such that if $p: \mathfrak{g}^{*} \rightarrow \mathfrak{n}^{*}$ is the restriction map, then $p(\Lambda)$ is explicitly described as a subset of Λ°. The action of H on \widehat{N} is realized a.e. as an action of H on Λ°, and the Fourier transform of a function in $L^{2}(N)$ has domain Λ° by means of Pukanzsky's explicit version of the Plancherel formula. Thus the issues surrounding conditions (i) and (ii) above - the "size" of the stabilizers in H and the collective structure of the H-orbits in $\widehat{N}-$ can be addressed in concrete terms.

In Section 1 we show that there is a Zariski open subset Λ^{1} of Λ° and a single vector subgroup H_{0} of H such that $H_{0}=H_{\lambda}$ holds for all $\lambda \in \Lambda^{1}$. Thus, in light of the preceding constructions, condition (i) is simplified: it just says that $H_{0}=(1)$. Nevertheless, it is still an open question as to whether this is necessary for the existence of τ-admissible vectors. Therefore, for the purposes of this paper we make the assumption that condition (i) holds, and hence that $H_{0}=(1)$. With this assumption in place, we describe the action of H on Λ^{1} and obtain an explicit cross-section $\Sigma \subset \Lambda^{1}$ for the H-orbits in Λ^{1}. It is shown that $\left.p\right|_{\Lambda}$ is a bijection onto Σ. A decomposition of τ is described in terms of an explicit measure on Σ. The observation is made that if N is not abelian, then the irreducible decomposition of τ has infinite multiplicity. In fact we construct an explicit, direct-sum decomposition of $L^{2}(N)$ into τ-invariant subspaces $L^{2}(N)^{\beta}$ that are pairwise isomorphic and multiplicity-free. In the case where $N=\mathbf{R}^{n}$, one has $L^{2}(N)^{\beta}=L^{2}(N)$.

By virtue of the results [13, Theorem 1.8] and [11, Theorem 0.2], we expect the existence of admissible vectors to be tied to the non-unimodularity of G, and this is shown to be precisely the case. Note that in this context, both H and N are unimodular, so G is non-unimodular if and only if the H-action on N is non-unimodular. First
we prove a Caldéron condition for the admissibility with respect to the subrepresentations τ^{β} of τ acting in $L^{2}(N)^{\beta}$. The construction of τ^{β}-admissible vectors is now relatively easy when G is non-unimodular, and we use this construction, together with the relationship between Σ and Λ described above, to prove the following.
Theorem Let $G=N \rtimes H$ where N is a connected, simply connected nilpotent Lie group and H is a vector group such that the Lie algebra $\operatorname{ad}(\mathfrak{b})$ is \mathbf{R}-split and completely reducible. Assume furthermore that for a.e. $\lambda \in \widehat{N}$, the stabilizer H_{λ} is trivial. Let τ be the quasiregular representation of G in $L^{2}(N)$. Then τ has an admissible vector if and only if G is not unimodular.

Finally, in the case where admissible vectors exist, we generalize the methods of [18] to show that the wavelet transform yields an explicit direct-sum decomposition of the regular representation of G into pairwise isomorphic, multiplicity-free subrepresentations, each of which is isomorphic with τ^{β}.

1 Orbital Parameters in \mathfrak{n}^{*} and in \mathfrak{g}^{*}

We begin by setting some notation. Let \mathfrak{g} be a Lie algebra over \mathbf{R} of the form $\mathfrak{g}=\mathfrak{n} \oplus \mathfrak{h}$, where \mathfrak{n} is nilpotent, $\mathfrak{n} \supset[\mathfrak{g}, \mathfrak{g}]$, and where \mathfrak{h} is an abelian subalgebra of \mathfrak{g} with $\operatorname{ad}(\mathfrak{h})$ completely reducible and R-split. Let $G=N \rtimes H$ be the connected, simply connected Lie group with Lie algebra \mathfrak{g}. Let \mathfrak{g}^{*} (resp., \mathfrak{n}^{*}) be the linear dual of \mathfrak{g} (resp., \mathfrak{n}), and let $p: \mathfrak{g}^{*} \rightarrow \mathfrak{n}^{*}$ be the restriction mapping. For a subalgebra \mathfrak{s} of \mathfrak{g} let $\mathfrak{s}^{\perp}=\left\{\ell \in \mathfrak{g}^{*}|\ell|_{\mathfrak{s}}=0\right\}$. We denote the coadjoint action of G on \mathfrak{g}^{*} multiplicatively, as well as the coadjoint action of N on \mathfrak{n}^{*} and the "restricted coadjoint action" of G on \mathfrak{n}^{*}. For any subset t of \mathfrak{g}, if f is a linear functional defined on $[\mathfrak{g}, \mathrm{t}]$, then set

$$
\mathrm{t}^{f}=\{Z \in \mathfrak{g} \mid f[Z, T]=0 \text { holds for every } T \in \mathrm{t}\}
$$

If t is an ideal in \mathfrak{g}, then t^{f} is a subalgebra of \mathfrak{g}. Recall that for any $\ell \in \mathfrak{g}^{*}$, the Lie algebra $\mathfrak{g}(\ell)$ of its stabilizer $G(\ell)$ in G is \mathfrak{g}^{ℓ}, and similarly for $f \in \mathfrak{n}^{*}$, the Lie algebra of its stabilizer $N(f)$ in N is $\mathfrak{n}(f)=\mathfrak{n}^{f} \cap \mathfrak{n}$.

Next we summarize some results concerning the classification and parametrization of coadjoint orbits [6, 7]. Let \mathfrak{g} be any completely solvable Lie algebra, and choose any Jordan-Hölder sequence $(0)=\mathfrak{g}_{0} \subset \mathfrak{g}_{1} \subset \cdots \subset \mathfrak{g}_{n}=\mathfrak{g}$, with ordered basis $\left\{Z_{1}, Z_{2}, \ldots, Z_{n}\right\}$ so that $Z_{j} \in \mathfrak{g}_{j}-\mathfrak{g}_{j-1}$. Let δ_{j} be the character of G such that $\operatorname{Ad}(s) Z_{j}=\delta_{j}(s) Z_{j} \bmod \mathfrak{g}_{j-1}$, and let $\mathbf{d} \delta_{j}$ denote its differential.
(1) To each $\ell \in \mathfrak{g}^{*}$ there is associated an index set $\mathbf{e}(\ell) \subset\{1,2, \ldots, n\}$, defined by $\mathbf{e}(\ell)=\left\{1 \leq j \leq n \mid \mathfrak{g}_{j} \not \subset \mathfrak{g}_{j-1}+\mathfrak{g}(\ell)\right\}$. For a subset \mathbf{e} of $\{1,2, \ldots, n\}$, the set $\Omega_{\mathbf{e}}=\left\{\ell \in \mathfrak{g}^{*} \mid \mathbf{e}(\ell)=\mathbf{e}\right\}$ is G-invariant. The $\Omega_{\mathbf{e}}$ are determined by polynomials as follows: to each index set \mathbf{e} one associates the skew-symmetric matrix

$$
M_{\mathbf{e}}(\ell)=\left[\ell\left[Z_{i}, Z_{j}\right]\right]_{i, j \in \mathbf{e}}
$$

Setting $Q_{\mathbf{e}}(\ell)=\operatorname{det} M_{\mathbf{e}}(\ell)$, one finds that there is a total ordering \prec on the set $\mathcal{E}=$ $\left\{\mathbf{e} \mid \Omega_{\mathbf{e}} \neq \varnothing\right\}$ such that $\Omega_{\mathbf{e}}=\left\{\ell \in \mathfrak{g}^{*} \mid Q_{\mathbf{e}^{\prime}}(\ell)=0\right.$ for all $\mathbf{e}^{\prime} \prec \mathbf{e}$, and $\left.Q_{\mathbf{e}}(\ell) \neq 0\right\}$. We refer to the collection of non-empty Ω_{e} as the coarse stratification of \mathfrak{g}^{*}, and to its elements as coarse layers.
(2) Let $\mathbf{e} \in \mathcal{E}$; then $|\mathbf{e}|$ is even, and we set $d=|\mathbf{e}| / 2$. To each $\ell \in \Omega_{\mathbf{e}}$ there is associated a "polarizing sequence" of subalgebras

$$
\mathfrak{g}=\mathfrak{p}_{0}(\ell) \supset \mathfrak{p}_{1}(\ell) \supset \cdots \supset \mathfrak{p}_{d}(\ell)=\mathfrak{p}(\ell)
$$

and an index sequence pair $\mathbf{i}(\ell)=\left\{i_{1}<i_{2}<\cdots<i_{d}\right\}$ and $\mathbf{j}(\ell)=\left\{j_{1}, j_{2}, \ldots, j_{d}\right\}$, having values in $\mathbf{e}(\ell)$, defined by the recursive equations:

$$
\begin{gathered}
i_{k}=\min \left\{1 \leq j \leq n \mid \mathfrak{g}_{j} \cap \mathfrak{p}_{k-1}(\ell) \not \subset \mathfrak{p}_{k-1}(\ell)^{\ell}\right\} \\
\mathfrak{p}_{k}(\ell)=\left(\mathfrak{p}_{k-1}(\ell) \cap \mathfrak{g}_{i_{k}}\right)^{\ell} \cap \mathfrak{p}_{k-1}(\ell), \mathfrak{j}_{k}=\min \left\{1 \leq j \leq n \mid \mathfrak{g}_{j} \cap \mathfrak{p}_{k-1}(\ell) \not \subset \mathfrak{p}_{k}(\ell)\right\} .
\end{gathered}
$$

For each $k, i_{k}<j_{k}$, and $\mathbf{e}(\ell)$ is the disjoint union of the values of $\mathbf{i}(\ell)$ and $\mathbf{j}(\ell)$. Note that since $\mathbf{i}(\ell)$ must be increasing, it is determined by $\mathbf{e}(\ell)$ and $\mathbf{j}(\ell)$. For any splitting of \mathbf{e} into such a sequence pair (\mathbf{i}, \mathbf{j}) we set $\Omega_{\mathbf{e}, \mathbf{j}}=\left\{\ell \in \Omega_{\mathbf{e}} \mid \mathbf{j}(\ell)=\mathbf{j}\right\}$. These sets are also algebraic and G-invariant, and we refer to the collection of non-empty $\Omega_{\mathrm{e}, \mathrm{j}}$ as the fine stratification of \mathfrak{g}^{*}. For $1 \leq k \leq d$, if we set

$$
M_{\mathbf{e}, k}(\ell)=\left[\ell\left[Z_{i}, Z_{j}\right]\right]_{i, j \in\left\{i_{1}, j_{1}, i_{2}, j_{2}, \ldots, i_{k}, j_{k}\right\}}
$$

let $\mathbf{P f}_{\mathbf{e}, k}(\ell)$ denote the Pfaffian of $M_{\mathbf{e}, k}(\ell)$, and let $\mathbf{P}_{\mathbf{e}, \mathbf{j}}(\ell)=\mathbf{P f}_{\mathbf{e}, 1}(\ell) \mathbf{P f}_{\mathbf{e}, 2}(\ell) \cdots \mathbf{P f}_{\mathbf{e}, d}(\ell)$, then there is a total ordering \prec on the pairs \mathbf{e}, \mathbf{j} such that

$$
\Omega_{\mathbf{e}, \mathbf{j}}=\left\{\ell \in \mathfrak{g}^{*} \mid \mathbf{P}_{\mathbf{e}^{\prime}, \mathbf{j}^{\prime}}(\ell)=0 \text { for all }\left(\mathbf{e}^{\prime}, \mathbf{j}^{\prime}\right) \nprec(\mathbf{e}, \mathbf{j}) \text { and } \mathbf{P}_{\mathbf{e}, \mathbf{j}}(\ell) \neq 0\right\}
$$

The following rational functions are naturally associated with the fine stratification. Fix $\ell \in \Omega$. Define $\rho_{0}(Z, \ell)=Z$; assume that $\rho_{k-1}(Z, \ell)$ is defined and set

$$
\begin{aligned}
\rho_{k}(Z, \ell)=\rho_{k-1}(Z, \ell) & -\frac{\ell\left[\rho_{k-1}(Z, \ell), \rho_{k-1}\left(Z_{i_{k}}, \ell\right)\right]}{\ell\left[\rho_{k-1}\left(Z_{j_{k}}, \ell\right), \rho_{k-1}\left(Z_{i_{k}}, \ell\right)\right]} \rho_{k-1}\left(Z_{j_{k}}, \ell\right) \\
& -\frac{\ell\left[\rho_{k-1}(Z, \ell), \rho_{k-1}\left(Z_{j_{k}}, \ell\right)\right]}{\ell\left[\rho_{k-1}\left(Z_{i_{k}}, \ell\right), \rho_{k-1}\left(Z_{j_{k}}, \ell\right)\right]} \rho_{k-1}\left(Z_{i_{k}}, \ell\right)
\end{aligned}
$$

Set $Y_{k}(\ell)=\rho_{k-1}\left(Z_{i_{k}}, \ell\right)$, and $X_{k}(\ell)=\rho_{k-1}\left(Z_{j_{k}}, \ell\right), 1 \leq k \leq d$; then it can be shown [2, Lemma 1.5] that for each $1 \leq k \leq d$,

$$
\mathbf{P f}_{\mathbf{e}, k}(\ell)=\ell\left[Y_{1}(\ell), X_{1}(\ell)\right] \ell\left[Y_{2}(\ell), X_{2}(\ell)\right] \cdots \ell\left[Y_{k}(\ell), X_{k}(\ell)\right]
$$

If we set

$$
\mathfrak{m}_{k}(\ell)=\operatorname{span}\left\{Y_{1}(\ell), Y_{2}(\ell), \ldots, Y_{k}(\ell), X_{1}(\ell), X_{2}(\ell), \ldots, X_{k}(\ell)\right\}
$$

then for each $\ell \in \Omega, \mathfrak{g}=\mathfrak{m}_{k}(\ell) \oplus \mathfrak{m}_{k}(\ell)^{\ell}$ and $\rho_{k}(Z, \ell)$ is the projection of Z into $\mathfrak{m}_{k}(\ell)^{\ell}$ parallel to $\mathfrak{m}_{k}(\ell)$. It follows that

$$
\ell\left[\rho_{k}(Z, \ell), \rho_{k}(T, \ell)\right]=\ell\left[\rho_{k}(Z, \ell), T\right], \quad Z, T \in \mathfrak{g}, \ell \in \mathfrak{g}^{*}
$$

The functions $\rho_{k}(\cdot, \ell)$ have the additional properties:
(i) $\quad \rho_{k}\left(\mathfrak{g}_{j}, \ell\right) \subset \mathfrak{g}_{j}, 1 \leq j \leq n, 0 \leq k \leq d$,
(ii) $\quad \rho_{k}(\mathfrak{g}, \ell) \cap \mathfrak{g}_{i_{k+1}-1} \subset \mathfrak{g}(\ell), 0 \leq k \leq d-1$.

Finally, if α is an automorphism of \mathfrak{g} such that $\alpha\left(\mathfrak{g}_{j}\right)=\mathfrak{g}_{j}$ holds for every j, then α^{*} leaves each fine layer invariant.
(3) Now fix a layer $\Omega_{\mathbf{e}, \mathrm{j}}$ in the fine stratification. For each $\ell \in \Omega_{\mathbf{e}, \mathrm{j}}$, define the "dilation set" $\varphi(\ell)=\left\{j \in \mathbf{e} \mid \mathfrak{g}_{j-1}^{\ell} \cap \operatorname{ker}\left(\mathbf{d} \delta_{j}\right)=\mathfrak{g}_{j}^{\ell} \cap \operatorname{ker}\left(\mathbf{d} \delta_{j}\right)\right\}$. The index set $\varphi(\ell)$ identifies those directions in the orbit of ℓ where the coadjoint action of G "dilates" by the character δ_{j}^{-1}. The indices in $\varphi(\ell)$ are included in the values of the sequence \mathbf{i} and are defined by $\varphi(\ell)=\left\{i_{k} \mid \mathbf{d} \delta_{i_{k}}\left(X_{k}(\ell)\right) \neq 0\right\}$. There are examples where $\varphi(\ell)$ is not constant on the fine layer. For each subset φ of the values of \mathbf{i}, the set $\Omega_{\mathrm{e}, \mathbf{j}, \varphi}=\left\{\ell \in \Omega_{\mathrm{e}, \mathbf{j}} \mid \varphi(\ell)=\varphi\right\}$ is an algebraic subset of $\Omega_{\mathrm{e}, \mathbf{j}}$, and we refer to this further refinement of the fine stratification as the ultra-fine stratification of \mathfrak{g}^{*}. The ultra-fine stratification also has an ordering for which the minimal layer is a Zariski open subset of the minimal fine layer.
(4) Now fix an ultra-fine layer $\Omega=\Omega_{\mathbf{e}, \mathbf{j}, \varphi}$, and for $\ell \in \Omega, j=i_{k} \in \varphi$, set

$$
q_{j}(\ell)=\frac{\mathbf{d} \delta_{j}\left(X_{k}(\ell)\right)}{\ell\left[X_{k}(\ell), Z_{j}\right]}
$$

Let $V=V_{\mathbf{e}, \varphi}=\left\{\ell \in \mathfrak{g}^{*} \mid\right.$ if $j \in \mathbf{e}-\varphi$, then $\left.\ell\left(Z_{j}\right)=0\right\}$. Then the set

$$
\Lambda=\Lambda_{\mathbf{e}, \mathbf{j}, \varphi}=\left\{\ell \in V \cap \Omega \mid \text { for every } j \in \varphi,\left|q_{j}(\ell)\right|=1\right\}
$$

is a topological cross-section for the orbits in Ω. If \mathfrak{g} is nilpotent, then the ultra-fine stratification coincides with the fine stratification and $\Lambda=V \cap \Omega$.

We now return to the case where $\mathfrak{g}=\mathfrak{n} \oplus \mathfrak{h}$ as described above, and we apply the stratification procedure first to the nilpotent Lie algebra \mathfrak{n}. We fix once and for all an ordered basis $\left\{Z_{1}, Z_{2}, \ldots, Z_{n}\right\}$ of \mathfrak{n} for which the following hold for all $1 \leq j \leq n$:
(i) $\mathfrak{n}_{j}=\operatorname{span}\left\{Z_{1}, Z_{2}, \ldots, Z_{j}\right\}$ is an ideal in \mathfrak{g},
(ii) for each $A \in \mathfrak{h}, Z_{j}$ is an eigenvector for ad A.

Having chosen the basis $Z_{1}, Z_{2}, \ldots, Z_{n}$ for \mathfrak{n}, let Ω° be the minimal (and hence Zariski open) fine layer in n^{*}, with Λ° its cross-section. Denote the objects referred to in (1)-(3) above by $\mathbf{e}^{\circ}, \mathbf{i}^{\circ}, \mathbf{j}^{\circ}$, and ρ_{k}°. For each $1 \leq j \leq n$, set $e_{j}=Z_{j}^{*} \in \mathfrak{r}^{*}$ and set $\gamma_{j}=-\mathbf{d} \delta_{j}$ so that ad ${ }^{*} A\left(e_{j}\right)=\gamma_{j}(A) e_{j}, A \in \mathfrak{h}$. For each $h \in H$, since $\operatorname{Ad}^{*}(h)\left(\Omega^{\circ}\right)=$ Ω° and the e_{j} are eigenvectors of $\operatorname{Ad}^{*}(h)$, we have that $\operatorname{Ad}^{*}(h)\left(\Lambda^{\circ}\right)=\Lambda^{\circ}$.

With this in mind, we choose a convenient basis for \mathfrak{h}. Set $c=n-2 d^{\circ}$, write $\{1, \ldots, n\}-\mathbf{e}^{\circ}=\left\{u_{1}<u_{2}<\cdots<u_{c}\right\}$, and set $\lambda_{a}=\ell\left(Z_{u_{a}}\right), 1 \leq a \leq c$. Then $\ell \rightarrow \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{c}\right)$ identifies Λ° with a Zariski open subset of \mathbf{R}^{c}. We select a subset $\alpha_{v}, 1 \leq v \leq r$ of $\gamma_{u_{a}}, 1 \leq a \leq c$ as follows: $a_{1}=\min \left\{1 \leq a \leq c \mid \gamma_{u_{a}} \neq 0\right\}$, $a_{2}=\min \left\{1 \leq a \leq c \mid \gamma_{u_{a}}\right.$ is not a multiple of $\left.\gamma_{u_{a_{1}}}\right\}, a_{3}=\min \{1 \leq a \leq c \mid$ $\gamma_{u_{a}}$ is not in the span of $\left.\gamma_{u_{a_{1}}}, \gamma_{u_{a_{2}}}\right\}$, and so on, until for some $r>0$, every γ_{j} belongs to the span of $\left\{\gamma_{u_{a_{v}}} \mid 1 \leq v \leq r\right\}$. Set $\alpha_{v}=\gamma_{u_{a_{v}}}, 1 \leq v \leq r$. We shall refer to the set $\left\{\alpha_{v} \mid 1 \leq v \leq r\right\}$ as the minimal spanning set of roots with respect to the orbital cross-section Λ°. We shall use the notation $\mathfrak{h}_{v}=\bigcap_{w=1}^{v}$ ker $\alpha_{w}, 1 \leq v \leq r$. We now make an important observation: let $f \in \Lambda^{\circ}$; for each $j \in \mathbf{e}^{\circ}, f\left(Z_{j}\right)=0$, and if $j \notin \mathbf{e}^{\circ}, 1 \leq j \leq n$, then $\mathfrak{h}_{r} \subset \operatorname{ker} \gamma_{j}$. It follows that $\mathfrak{b}_{r} \subset \mathfrak{n}^{f}$ holds for every $f \in \Lambda^{\circ}$.

Let $\left\{A_{1}, A_{2}, \ldots A_{r}\right\} \subset \mathfrak{h}$ be a basis of $\mathfrak{h} \bmod \mathfrak{h}_{r}$ that is dual to the minimal spanning set of roots, so that $\alpha_{v}\left(A_{w}\right)=0$ or 1 according as $v \neq w$ or $v=w$. Choosing a basis $\left\{A_{r+1}, \ldots, A_{p}\right\}$ for \mathfrak{h}_{r}, we fix from now on the ordered basis $\left\{A_{1}, A_{2}, \ldots, A_{p}\right\}$ for \mathfrak{b}. With the ordered Jordan-Hölder basis $\left\{Z_{1}, Z_{2}, \ldots, Z_{n}, A_{p}, A_{p-1}, \ldots, A_{1}\right\}$ for \mathfrak{g} in place, we apply the stratification procedure to \mathfrak{g}^{*} as described above (of course, we could rename $Z_{m}=A_{1}, Z_{m-1}=A_{2}$, etc.). Let $\Omega=\Omega_{\mathrm{e}, \mathrm{j}}$ be the minimal, Zariski open, fine layer in \mathfrak{g}^{*}. Write the defining index sequence pair as $\mathbf{i}=\left\{i_{1}<i_{2}<\cdots<i_{d}\right\}$, $\mathbf{j}=\left\{j_{1}, j_{2}, \ldots, j_{d}\right\}$, so that $2 d$ is the dimension of the coadjoint orbits in Ω. Set

$$
K^{\circ}=\left\{1 \leq k \leq d \mid j_{k} \leq n\right\}=\left\{k_{1}<k_{2}<\cdots<k_{d^{\circ}}\right\} .
$$

Lemma 1.1 One has $p(\Omega) \subset \Omega^{\circ}$, and the index sequence pair for Ω° is

$$
\mathbf{i}^{\circ}=\left\{i_{k_{1}}<i_{k_{2}}<\cdots<i_{k_{d^{\circ}}}\right\}, \quad \mathbf{j}^{\circ}=\left\{j_{k_{1}}, j_{k_{2}}, \ldots, j_{k_{d^{\circ}}}\right\}
$$

Proof By [1, Lemma2.2], $p(\Omega)$ is contained in the layer $\Omega_{\mathrm{e}^{\circ}, \mathrm{j}^{\circ}}^{\circ}$ of N-orbits in \mathfrak{n}^{*} whose index data is the above. At the same time we have that $p(\Omega)$ is open in \mathfrak{n}^{*}, and since Ω° is dense in \mathfrak{r}^{*}, it follows that $\Omega^{\circ}=\Omega_{\mathbf{e}^{\circ}, \mathfrak{j}^{\circ}}^{\circ}$.

The next lemma is proved in [1, Lemma 4.2] and clarifies the relationship between the functions $\rho_{k}, 0 \leq k \leq d$ and $\rho_{r}^{\circ}, 1 \leq r \leq d^{\circ}$.

Lemma 1.2 Fix $k=k_{r} \in K^{\circ}, \ell \in \Omega$, and set $f=p(\ell)$. Set

$$
y_{k_{r}}(\ell)=\operatorname{span}\left\{Y_{h}(\ell) \mid 1 \leq h \leq k_{r}-1, h \notin K^{\circ}\right\}
$$

We have each of the following.
(i) $\quad y_{k_{r}}(\ell) \subset \mathfrak{n}(f)$.
(ii) For each $k_{r-1}<h<k_{r}, \rho_{h}(Z, \ell)=\rho_{r-1}^{\circ}(Z, f) \bmod y_{k_{r}}(\ell)$ holds for all $Z \in \mathfrak{n}$.
(iii) For any $Z \in \mathfrak{n}, \ell\left[Z, Y_{k_{r}}(\ell)\right]=f\left[Z, Y_{r}^{\circ}(f)\right]$ and $\ell\left[Z, X_{k_{r}}(\ell)\right]=f\left[Z, X_{r}^{\circ}(f)\right]$.
(iv) $\rho_{k}(Z, \ell)=\rho_{r}^{\circ}(Z, f) \bmod y_{k_{r}}(\ell)$ holds for all $Z \in \mathfrak{n}$.

We now focus on the special properties of the stratification procedure on \mathfrak{g} when applied to the elements $\ell \in p^{-1}\left(\Lambda^{\circ}\right)$.

Lemma 1.3 Let $\ell \in \Omega$ such that $f=p(\ell) \in \Lambda^{\circ}$.
(i) One has $\rho_{k}(\mathfrak{h}, \ell) \subset \mathfrak{h}, 1 \leq k \leq d$.
(ii) For each $j \in \mathbf{e}^{\circ}, A \in \mathfrak{h}$, one has $\ell\left[\rho_{k}(A, \ell), Z_{j}\right]=\ell\left[A, Z_{j}\right]=0,1 \leq k \leq d$.

Proof We proceed by induction on k; if $k=0$, then $\rho_{0}(\cdot, \ell)$ is the identity map and both statements (i) and (ii) are clear. Suppose that $k \geq 1$ and that (i) and (ii) hold for $k-1$.

To prove (i) for k, let $A \in \mathfrak{h}$. The assumption that (i) holds for $k-1$ says that $\rho_{k-1}(A, \ell)$ belongs to \mathfrak{b}. Suppose first that $j_{k}>n$. Then the assumption that (i) and
(ii) hold for $k-1$ also gives $X_{k}(\ell) \in \mathfrak{h}$, and since \mathfrak{h} is abelian, $\left[A, X_{k}(\ell)\right]=0$. Thus

$$
\begin{aligned}
\rho_{k}(A, \ell) & =\rho_{k-1}(A, \ell)-\frac{\ell\left[A, Y_{k}(\ell)\right]}{\ell\left[X_{k}(\ell), Y_{k}(\ell)\right]} X_{k}(\ell)-\frac{\ell\left[A, X_{k}(\ell)\right]}{\ell\left[Y_{k}(\ell), X_{k}(\ell)\right]} Y_{k}(\ell) \\
& =\rho_{k-1}(A, \ell)-\frac{\ell\left[A, Y_{k}(\ell)\right]}{\ell\left[X_{k}(\ell), Y_{k}(\ell)\right]} X_{k}(\ell)
\end{aligned}
$$

belongs to \mathfrak{b}. On the other hand, if $j_{k} \leq n$, then the assumption that (ii) holds for $k-1$ says that $\ell\left[A, X_{k}(\ell)\right]=\ell\left[A, Y_{k}(\ell)\right]=0$, hence $\rho_{k}(A, \ell)=\rho_{k-1}(A, \ell)$ belongs to \mathfrak{h} in this case. This completes the induction step for part (i).

As for (ii), let $j \in \mathbf{e}^{\circ}$ and let $A \in \mathfrak{h}$; we need only show that $\ell\left[A, \rho_{k}\left(Z_{j}, \ell\right)\right]=$ $\ell\left[A, \rho_{k-1}\left(Z_{j}, \ell\right)\right]$. As before, we suppose first that $j_{k}>n$, so that we have $X_{k}(\ell) \in \mathfrak{h}$ and $\ell\left[A, X_{k}(\ell)\right]=0$. The assumption that (ii) holds for $k-1$ now gives

$$
\ell\left[Z_{j}, X_{k}(\ell)\right]=\ell\left[Z_{j}, \rho_{k-1}\left(Z_{j_{k}}, \ell\right)\right]=0
$$

Hence

$$
\begin{aligned}
\ell\left[A, \rho_{k}\left(Z_{j}, \ell\right)\right]= & \ell\left[A, \rho_{k-1}\left(Z_{j}, \ell\right)\right]-\frac{\ell\left[Z_{j}, Y_{k}(\ell)\right] \ell\left[A, X_{k}(\ell)\right]}{\ell\left[X_{k}(\ell), Y_{k}(\ell)\right]} \\
& -\frac{\ell\left[Z_{j}, X_{k}(\ell)\right] \ell\left[A, Y_{k}(\ell)\right]}{\ell\left[Y_{k}(\ell), X_{k}(\ell)\right]} \\
= & \ell\left[A, \rho_{k-1}\left(Z_{j}, \ell\right)\right] .
\end{aligned}
$$

For the case $j_{k} \leq n$, the assumption that (ii) holds for $k-1$ immediately gives $\ell\left[A, X_{k}(\ell)\right]=\ell\left[A, Y_{k}(\ell)\right]=0$, whence $\ell\left[A, \rho_{k}\left(Z_{j}, \ell\right)\right]=\ell\left[A, \rho_{k-1}\left(Z_{j}, \ell\right)\right]$. This completes the proof.

Lemma 1.4 Let $\ell \in \Omega$ such that $f=p(\ell) \in \Lambda^{\circ}$. Assume that $\{1,2, \ldots, d\}-K^{\circ}$ is non-empty, and write $\{1,2, \ldots, d\}-K^{\circ}=\left\{h_{1}<h_{2}<\cdots\right\}$. Choose an index $h_{v} \in\{1,2, \ldots, d\}-K^{\circ}$.
(i) For $0 \leq k<h_{v}$, one has $\rho_{k}\left(A_{v}, \ell\right)=A_{v}$.
(ii) One has $v \leq r$ and $\left\{i_{h_{1}}<i_{h_{2}}<\cdots<i_{h_{v}}\right\}=\left\{u_{a_{1}}<u_{a_{2}}<\cdots<u_{a_{v}}\right\}$.
(iii) One has $\left\{j_{h_{1}}=m, j_{h_{2}}=m-1, \ldots, j_{h_{v}}=m-v+1\right\}$.

Proof Suppose that $v=1$; we repeat the argument for Lemma 1.3(i) with the additional fact that the case $j_{k}>n$ cannot occur here, as $h_{1}=\min \left\{1 \leq k \leq d \mid j_{k}>n\right\}$. It follows immediately that $\rho_{k}\left(A_{1}, \ell\right)=A_{1}, 1 \leq k<h_{1}$.

Now set $u=u_{a_{1}}, i=i_{h_{1}}$ and $j=j_{h_{1}}$; we show that $u=i$. First we claim that $u \leq i$. To see this, note that by definition of $u, \ell\left[\mathfrak{h}, \mathfrak{g}_{u-1}\right]=0$. If $u>i$ were true, then $\mathfrak{b} \subset \mathfrak{g}_{i}^{\ell}$ and $\mathfrak{g}_{i} \subset \mathfrak{h}^{\ell}$. The first of these inclusions implies that

$$
\mathfrak{p}_{h_{1}-1}(\ell)=\mathfrak{p}_{h_{1}-1}(\ell) \cap \mathfrak{n}+\mathfrak{b} .
$$

Since $i \notin \mathbf{i}^{\circ}, \mathfrak{g}_{i} \cap \mathfrak{p}_{h_{1}-1}(\ell) \subset\left(\mathfrak{p}_{h_{1}-1}(\ell) \cap \mathfrak{n}\right)^{\ell}$. This together with the second inclusion above gives

$$
\begin{aligned}
\mathfrak{g}_{i} \cap \mathfrak{p}_{h_{1}-1}(\ell) & \subset\left(\mathfrak{p}_{h_{1}-1}(\ell) \cap \mathfrak{n}\right)^{\ell} \cap \mathfrak{h}^{\ell} \\
& \subset\left(\mathfrak{p}_{h_{1}-1}(\ell) \cap \mathfrak{n}+\mathfrak{h}\right)^{\ell} \\
& =\left(p_{h_{1}-1}(\ell)\right)^{\ell},
\end{aligned}
$$

contradicting the definition of $i=i_{h_{1}}$. Thus the claim is proved. In light of this and the fact that $\left(\mathbf{e}-\mathbf{e}^{\circ}\right) \cap\{1,2, \ldots, n\}=\mathbf{i}-\mathbf{i}^{\circ}$, it remains to show that $u \in \mathbf{e}$. Suppose then that $u \notin \mathbf{e}$; then for any $\ell \in \Omega$, we have $Z_{u}=T(\ell)+W(\ell)$ where $T(\ell) \in \mathfrak{g}(\ell)$ and $W(\ell) \in \mathfrak{g}_{u-1}$. But, again since $\ell\left[\mathfrak{h}, \mathfrak{g}_{u-1}\right]=0$, it follows that

$$
\ell\left(Z_{u}\right)=\gamma_{u}\left(A_{1}\right) \ell\left(Z_{u}\right)=\ell\left[A_{1}, Z_{u}\right]=\ell\left[A_{1}, T(\ell)\right]+\ell\left[A_{1}, W(\ell)\right]=0
$$

holds for all $\ell \in \Omega$, which is impossible since Ω is dense in \mathfrak{g}^{*}.
Next we show that $j=m$. Observe that $\mathfrak{g}_{m-1}=\mathfrak{n}+\mathfrak{h}_{1}$ and $\mathfrak{h}_{1} \subset \mathfrak{p}_{h_{1}}(\ell) \subset \mathfrak{p}_{h_{1}-1}(\ell)$. On the other hand, since $i \in \mathbf{i}-\mathbf{i}^{\circ}$, we have $j>n$ and $\mathfrak{p}_{h_{1}-1}(\ell) \cap \mathfrak{n} \subset \mathfrak{p}_{h_{1}}(\ell)$. It follows that $\mathfrak{p}_{h_{1}-1}(\ell) \cap \mathfrak{g}_{m-1}=\mathfrak{p}_{h_{1}-1}(\ell) \cap \mathfrak{n}+\mathfrak{h}_{1} \subset \mathfrak{p}_{h_{1}}(\ell)$, which means that $j=m$.

Now suppose that $v>1$ and that the proposition holds for $1 \leq w \leq v-1$. To prove part (i) for v, let $0 \leq k<h_{v}$. We proceed by induction on k, the statement being clear when $k=0$. If $k \in K^{\circ}$, then by Lemma 1.3 we have $\ell\left[A_{v}, X_{k}(\ell)\right]=$ $\ell\left[A_{v}, Y_{k}(\ell)\right]=0$, and hence $\rho_{k}\left(A_{v}, \ell\right)=\rho_{k-1}\left(A_{v}, \ell\right)$. If $k \notin K^{\circ}$, say $k=h_{w}$, then by our induction hypothesis, $i_{k}=u_{a_{w}}, j_{k}=m-w+1$, and $X_{k}(\ell)=A_{w}$. Hence $\ell\left[A_{v}, X_{k}(\ell)\right]=\ell\left[A_{v}, A_{w}\right]=0$ and

$$
\ell\left[A_{v}, Y_{k}(\ell)\right]=\ell\left[\rho_{k-1}\left(A_{v}, \ell\right), Z_{i_{k}}\right]=\ell\left[A_{v}, Z_{i_{k}}\right]=0
$$

So $\rho_{k}\left(A_{v}, \ell\right)=\rho_{k-1}\left(A_{v}, \ell\right)$ in this case also. Now by induction on k, part (i) is true for v.

As for part (ii), set $u=u_{a_{v}}, i=i_{h_{v}}$, and $j=j_{h_{v}}$. Then $\left[\mathfrak{h}_{v-1}, \mathfrak{g}_{u-1}\right]=(0)$. Imitating the argument above for the case $v=1$, we see that the assumption that $u>i$ leads to the inclusions $\mathfrak{h}_{v-1} \subset \mathfrak{g}_{i}^{\ell}$ and $\mathfrak{g}_{i} \subset \mathfrak{h}_{v-1}^{\ell}$. In the same way as when $v=1$, we claim that $\mathfrak{p}_{h_{v}-1}(\ell)=\mathfrak{p}_{h_{v}-1}(\ell) \cap \mathfrak{n}+\mathfrak{h}_{v-1}$. To see this, note that $\mathfrak{h}_{v-1} \subset$ $\mathfrak{p}_{h_{v}-1}(\ell)$, so obviously $\mathfrak{p}_{h_{v}-1}(\ell) \supset \mathfrak{p}_{h_{v}-1}(\ell) \cap \mathfrak{n}+\mathfrak{h}_{v-1}$. Counting dimensions gives equality:

$$
\begin{aligned}
\operatorname{dim}\left(\mathfrak{p}_{h_{v}-1}(\ell)\right) & =m-h_{v}+1, \\
\operatorname{dim}\left(\mathfrak{p}_{h_{v}-1}(\ell) \cap \mathfrak{n}\right) & =n-\left|\left\{i_{k} \in \mathbf{i}^{\circ} \mid k \leq h_{v}-1\right\}\right| \\
& =n-\left\{h_{v}-1-(v-1)\right\} \\
& =n-\left(h_{v}-v\right),
\end{aligned}
$$

so

$$
\begin{aligned}
\operatorname{dim}\left(\left(\mathfrak{p}_{h_{v}-1}(\ell) \cap \mathfrak{n}\right)+\mathfrak{h}_{v-1}\right) & =n-\left(h_{v}-v\right)+p-v+1=m-h_{v}+1 \\
& =\operatorname{dim}\left(\mathfrak{p}_{h_{v}-1}(\ell)\right) .
\end{aligned}
$$

Now we follow verbatim the same line of reasoning as in the case $v=1$ to arrive at a contradiction, thereby concluding that $u \leq i$. Since by induction we already have $i_{h_{w}}=u_{a_{w}}, 1 \leq w \leq v-1$, we get $i_{h_{w}}<u$ for $1 \leq w \leq v-1$. Now, arguing as in the case $v=1$, we find that it remains to show that $u \in \mathbf{e}$. But again, the argument for this is identical to the case $v=1$: if $u \notin \mathbf{e}$, then we find that $\ell\left(Z_{u}\right)=\ell\left[A_{v}, Z_{u}\right]=0$ holds for all $\ell \in \Omega$, etc.

Finally we show that $j=m-v+1$. As in the case $v=1, \mathfrak{g}_{m-v+1}=\mathfrak{n}+\mathfrak{h}_{v-1}$ and $\mathfrak{h}_{v} \subset \mathfrak{p}_{h_{v}}(\ell) \subset \mathfrak{p}_{h_{v}-1}(\ell)$. Also $i \in \mathbf{i}-\mathbf{i}^{\circ}$, so $j>n$ and $\mathfrak{p}_{h_{v}-1}(\ell) \cap \mathfrak{n} \subset \mathfrak{p}_{h_{v}}(\ell)$. It follows that $\mathfrak{p}_{h_{v}-1}(\ell) \cap \mathfrak{g}_{m-v}=\mathfrak{p}_{h_{v}-1}(\ell) \cap \mathfrak{n}+\mathfrak{h}_{v} \subset \mathfrak{p}_{h_{v}}(\ell)$. Since we already have $j_{h_{w}}=m-w+1$ for $1 \leq w \leq v-1, j=m-v+1$ follows. This completes the proof.

Lemma 1.5 Let $d-d^{\circ}<w \leq p$. Then for each $\ell \in \Lambda^{\circ}$ and $0 \leq k \leq d$, one has $\rho_{k}\left(A_{w}, \ell\right)=A_{w}$.

Proof As usual we proceed by induction on k, the case $k=0$ being clear. Suppose that $k \geq 1$ and that the lemma holds for $k-1$. If $k \in K^{\circ}$, then Lemma 1.3 gives $\ell\left[A_{w}, X_{k}(\ell)\right]=\ell\left[A_{w}, Y_{k}(\ell)\right]=0$. If $k=h_{v} \in\{1,2, \ldots, d\}-K^{\circ}$, then Lemma 1.4 gives $X_{k}(\ell)=A_{v}$ and $Y_{k}(\ell)=\rho_{k-1}\left(Z_{u_{a_{v}}}, \ell\right)$, so that in this case also $\ell\left[A_{w}, X_{k}(\ell)\right]=$ $\ell\left[A_{w}, Y_{k}(\ell)\right]=0$. In either case then, we have $\rho_{k}\left(A_{w}, \ell\right)=\rho_{k-1}\left(A_{w}, \ell\right)$.

Proposition 1.6 Let \mathfrak{g} be a completely solvable Lie algebra of the form $\mathfrak{g}=\mathfrak{n} \oplus \mathfrak{h}$, where \mathfrak{n} is a nilpotent ideal and \mathfrak{h} is an abelian subalgebra such that $\mathrm{ad}(\mathfrak{h})$ is completely reducible. Let $\left\{Z_{1}, Z_{2}, \ldots, Z_{n}, A_{p}, A_{p-1}, \ldots, A_{2}, A_{1}\right\}$ be an ordered Jordan-Hölder basis of \mathfrak{g} with the following properties.
(a) $\left\{Z_{1}, Z_{2}, \ldots, Z_{n}\right\}$ is a basis of \mathfrak{n} with respect to which $\operatorname{ad}(\mathfrak{b})$ is diagonalized.
(b) $\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$ is dual to the minimal spanning set of roots and $\left\{A_{r+1}, \ldots, A_{p}\right\}$ is a basis for \mathfrak{b}_{r} where \mathfrak{h}_{r} is defined as above.
Let $\Omega=\Omega_{\mathrm{e}, \mathrm{j}}$ be the minimal fine layer in \mathfrak{g}^{*} and $\Omega^{\circ}=\Omega_{\mathrm{e}^{\circ}, \mathrm{j}}$ o the minimal fine layer in \mathfrak{n}^{*}, with respect to the bases chosen above. Write K° and $\{1,2, \ldots, d\}-K^{\circ}=$ $\left\{h_{1}<h_{2}<\cdots<h_{d-d^{\circ}}\right\}$ as above. Let $\mathbf{P f}_{\mathbf{e}^{\circ}, w}, 1 \leq w \leq d^{\circ}$ be the Pfaffian polynomials that define Ω°. Then one has the following.
(i) $d-d^{\circ}=r$, and the increasing sequence $\left\{i_{h_{1}}<i_{h_{2}}<\cdots<i_{h_{r}}\right\}$ is precisely the sequence $\left\{u_{a_{1}}<u_{a_{2}}<\cdots<u_{a_{r}}\right\}$ corresponding to the minimal spanning set of roots.
(ii) $j_{h_{v}}=m-v+1,1 \leq v \leq r$.
(iii) Let $\ell \in \Omega \cap p^{-1}\left(\Lambda^{\circ}\right)$ with $f=p(\ell)$. For each $1 \leq k \leq d$, let

$$
\begin{aligned}
v_{0} & =\max \left\{1 \leq v \leq r \mid h_{v} \leq k\right\} \\
w_{0} & =\max \left\{1 \leq w \leq d^{\circ} \mid k_{w} \leq k\right\}
\end{aligned}
$$

Then

$$
\mathbf{P f}_{\mathrm{e}, k}(\ell)=\prod_{v=1}^{v_{0}} \ell\left(Z_{i_{h_{v}}}\right) \mathbf{P f}_{\mathbf{e}^{\mathrm{o}}, w_{0}}(f)
$$

(iv) For every $\ell \in \Omega$, the dilation set $\varphi(\ell)$ is precisely the set $\left\{i_{k} \mid k \notin K^{\circ}\right\}=\left\{i_{h_{v}} \mid\right.$ $1 \leq v \leq r\}$ and hence the minimal fine layer in \mathfrak{g}^{*} coincides with the minimal ultra-fine layer.

Proof It follows from Lemma 1.4 that the sequence $\left\{i_{h_{1}}<i_{h_{2}}<\cdots<i_{h_{d-d^{0}}}\right\}$ coincides with the first $d-d^{\circ}$ terms of the sequence $\left\{u_{a_{1}}<u_{a_{2}}<\cdots<u_{a_{r}}\right\}$. Now if $d-d^{\circ}<w \leq r$, then Lemma 1.5 implies that $A_{w} \in \mathfrak{g}(\ell)$ holds for all $\ell \in p^{-1}\left(\Lambda^{\circ}\right)$. But this means that $f\left(Z_{u_{a_{w}}}\right)=f\left[A_{w}, Z_{u_{a_{w}}}\right]=0$ holds for all $f \in \Lambda^{\circ}$. Since Λ° is a dense open subset of $V=\operatorname{span}\left\{e_{u_{1}}, e_{u_{2}}, \ldots, e_{u_{c}}\right\}$, this is impossible. Thus part (i) is proved. Part (ii) now follows from Lemma 1.4.

For part (iii) we compute using Lemma 1.2, Lemma 1.4, and the properties of ρ_{k} :

$$
\begin{aligned}
\ell\left[Y_{1}(\ell), X_{1}(\ell)\right] \ell & {\left[Y_{2}(\ell), X_{2}(\ell)\right] \cdots \ell\left[Y_{k}(\ell), X_{k}(\ell)\right] } \\
& =\ell\left[Z_{i_{1}}, Z_{j_{1}}\right] \ell\left[Z_{i_{2}}, \rho_{1}\left(Z_{j_{2}}, \ell\right)\right] \cdots \ell\left[Z_{i_{k}}, \rho_{k-1}\left(Z_{j_{k}}, \ell\right)\right] \\
& =\prod_{v=1}^{v_{0}} \ell\left[Z_{i_{h_{v}}}, \rho_{h_{v}}-1\left(Z_{j_{h_{v}}}, \ell\right)\right] \prod_{w=1}^{w_{0}} \ell\left[Z_{i_{k_{w}}}, \rho_{k_{w}-1}\left(Z_{j_{k_{w}}}, \ell\right)\right] \\
& =\prod_{v=1}^{v_{0}} \ell\left[Z_{i_{h_{v}}}, A_{v}\right] \prod_{w=1}^{w_{0}} f\left[Z_{i_{k_{w}}}, \rho_{w-1}^{\circ}\left(Z_{j_{k_{w}}}, f\right)\right] \\
& =\left(\prod_{v=1}^{v_{0}} \ell\left(Z_{i_{h_{v}}}\right)\right) \mathbf{P f}_{\mathbf{e}^{\circ}, w_{0}}(f) .
\end{aligned}
$$

Finally for part (iv), Lemma 1.4, part (i) shows that for $k=h_{v} \notin K^{\circ}$, we have $X_{k}(\ell)=A_{\nu}$, hence $\varphi(\ell)=\left\{i_{k} \in \mathbf{i} \mid \mathbf{d} \delta_{i_{k}}\left(X_{k}(\ell)\right) \neq 0\right\}=\left\{i_{k} \in \mathbf{i} \mid k \notin K^{\circ}\right\}$ holds for each $\ell \in \Omega$.

Corollary 1.7 Let $\ell \in \Omega \cap p^{-1}\left(\Lambda^{\circ}\right)$ with $f=p(\ell)$. Then one has

$$
\operatorname{dim}(\mathfrak{h} / \mathfrak{h} \cap \mathfrak{g}(\ell))=\frac{1}{2}(\operatorname{dim}(\mathfrak{g} / \mathfrak{g}(\ell))-\operatorname{dim}(\mathfrak{n} / \mathfrak{n}(f)))
$$

Proof This amounts to showing that $\mathfrak{h}_{r}=\bigcap_{v=1}^{r} \operatorname{ker} \alpha_{v}=\mathfrak{b} \cap \mathfrak{g}(\ell)$ holds for each $\ell \in \Omega \cap p^{-1}\left(\Lambda^{\circ}\right)$. It is already clear that for such $\ell, \mathfrak{h}_{r} \subset \mathfrak{h} \cap \mathfrak{g}(\ell)$. On the other hand, if $A \in \mathfrak{h} \cap \mathfrak{g}(\ell)$, then for each $1 \leq v \leq r, \alpha_{v}(A) \ell\left(Z_{i_{h_{v}}}\right)=-\ell\left[A, Z_{i_{h_{v}}}\right]=0$. From Proposition 1.6(iii), we have $\ell\left(Z_{i_{k_{v}}}\right) \neq 0$, hence $A \in \operatorname{ker} \alpha_{v}$, and the equation above is proved. Now

$$
\operatorname{dim} \mathfrak{h} / \mathfrak{h} \cap \mathfrak{g}(\ell))=r=d-d^{\circ}=\frac{1}{2}(\operatorname{dim}(\mathfrak{g} / \mathfrak{g}(\ell))-\operatorname{dim}(\mathfrak{n} / \mathfrak{n}(f)))
$$

Corollary 1.8 With the hypothesis of Proposition 1.6, we have

$$
p(\Omega) \cap \Lambda^{\circ}=\left\{f \in \Lambda^{\circ} \mid f\left(Z_{i_{h_{v}}}\right) \neq 0, \text { holds for all } 1 \leq v \leq r\right\}
$$

and

$$
p(\Lambda)=\left\{f \in \Lambda^{\circ}| | f\left(Z_{i_{h_{v}}}\right) \mid=1, \text { holds for all } 1 \leq v \leq r\right\}
$$

Proof Recall that $\Omega=\left\{\ell \in \mathfrak{g}^{*} \mid \mathbf{P f}_{\mathrm{e}, \mathbf{j}}(\ell) \neq 0\right\}$, and that

$$
\Omega^{\circ}=\left\{f \in \mathfrak{n}^{*} \mid \mathbf{P f}_{\mathbf{e}^{\circ}, j^{\circ}}(f) \neq 0\right\}
$$

By Proposition 1.6 part (iii), if $f=p(\ell) \in \Lambda^{\circ}$, then $\mathbf{P f}_{\mathbf{e}, \mathbf{j}}(\ell)=R(f) \mathbf{P f}_{\mathbf{e}^{\circ}, \mathrm{j}^{\circ}}(f)$ where $R(f)$ is a product of the factors $f\left(Z_{i_{k_{v}}}\right), 1 \leq v \leq r$. These observations mean that $f \in p(\Omega) \cap \Lambda^{\circ}$ if and only if $f \in \Lambda^{\circ}$ and $R(f) \neq 0$. The first equation above follows. As for the second, set

$$
\begin{aligned}
V & =\left\{\ell \in \mathfrak{g}^{*} \mid \ell\left(Z_{j}\right)=0 \text { for all } j \in \mathbf{e}-\varphi\right\}, \\
V^{\circ} & =\left\{f \in \mathfrak{n}^{*} \mid f\left(Z_{j}\right)=0 \text { for all } j \in \mathbf{e}^{\circ}\right\} .
\end{aligned}
$$

Observe that, by virtue of preceding results, we have $p(V)=V^{\circ}$ and $p(\Omega) \cap V^{\circ}=$ $p(\Omega) \cap \Lambda^{\circ}$. Now from Proposition 1.6(iv) and the definition of the cross-section Λ, we have

$$
\Lambda=\left\{\ell \in V \cap \Omega| | q_{i_{h_{v}}}(\ell) \mid=1, \text { holds for all } 1 \leq v \leq r\right\}
$$

Let $f \in p(\Lambda), f=p(\ell)$ for some $\ell \in \Lambda$. Then $f \in p(V)=V^{\circ}$, and $f \in p(\Omega) \subset$ Ω°, so $f \in \Lambda^{\circ}$. But now an examination of the definition of q_{j} together with the observation that $X_{h_{v}}(\ell)=A_{v}$ gives $q_{i_{h_{v}}}(\ell)^{-1}=\ell\left(Z_{i_{h_{v}}}\right)$. Hence f belongs to the righthand side of the above equation.

On the other hand, let $f \in \Lambda^{\circ}$ with $\left|f\left(Z_{i_{h_{v}}}\right)\right|=1,1 \leq v \leq r$. Let $\ell \in p^{-1}(f) \cap V$. By definition of Ω, we have $\ell \in \Omega \cap V$, and $\left|\ell\left(Z_{i_{h_{v}}}\right)\right|=1,1 \leq v \leq r$. Hence $\ell \in \Lambda$ and $f \in p(\Lambda)$.

2 The Wavelet Transform

In this section, we apply the algebraic constructions of Section 1 in order to address the question of admissibility. Denote by $\operatorname{Irr}(N)$ the Borel space of irreducible unitary representations of N, and by \widehat{N} the Borel space of unitary equivalence classes in $\operatorname{Irr}(N)$. Let $\kappa^{\circ}: \mathfrak{n}^{*} / N \rightarrow \widehat{N}$ be the canonical Kirillov correspondence. With the constructions of Section 1 in place, we associate to each linear functional $f \in \mathfrak{n}^{*}$ a specific irreducible representation π_{f} whose equivalence class is $\kappa^{\circ}(N f)$, as follows. First of all, the basis $\left\{Z_{1}, Z_{2}, \ldots, Z_{n}\right\}$ provides us with global coordinates on N via the exponential mapping, and Lebesgue measure becomes Haar measure on $N: d(\exp X)=d X, X \in \mathfrak{n}$. We denote this measure by $d x$. Next, we partition \mathfrak{n}^{*} by the fine stratification, and let $\Omega^{\circ}=\Omega_{\mathbf{e}^{\circ} ; j^{\circ}}$ be the fine layer containing f. Then $\mathfrak{p}(f)=\sum_{j} \mathfrak{n}_{j}^{f} \cap \mathfrak{n}_{j}=\mathfrak{p}_{d}(f)$ is a subalgebra of \mathfrak{n} with the property that $\mathfrak{p}(f)^{f}=\mathfrak{p}(f)$. Rearranging the sequence \boldsymbol{j}° in increasing order $\left\{j_{1}<j_{2}<\cdots<j_{d}\right\}$, we have that

$$
\left(s_{1}, s_{2}, \ldots, s_{d}\right) \mapsto \exp \left(s_{d} Z_{j_{d}}\right) \exp \left(s_{d-1} Z_{j_{d-1}}\right) \cdots \exp \left(s_{1} Z_{j_{1}}\right) P(f)
$$

is a global chart for $N / P(f)$, and Lebesgue measure on \mathbf{R}^{d} is thereby carried to an invariant measure on $N / P(f)$. Let χ_{f} be the unitary character on $P(f)=\exp p(f)$ whose differential is if. Then the unitary representation π_{f}, induced from $P(f)$ to N by χ_{f}, is irreducible. Denoting by $\left[\pi_{f}\right]$ its equivalence class in \widehat{N}, one has
$\kappa^{\circ}(N f)=\left[\pi_{f}\right]$. We denote the Hilbert space in which π_{f} acts by \mathcal{H}_{f}. Note that the map $J_{f}: \mathcal{H}_{f} \rightarrow L^{2}\left(\mathbf{R}^{d}\right)$ defined by

$$
J_{f} \psi(s)=\psi\left(\exp \left(s_{1} Z_{j_{1}}\right) \exp \left(s_{2} Z_{j_{2}}\right) \cdots \exp \left(s_{d} Z_{j_{d}}\right)\right)
$$

is an isometric isomorphism.
An algorithm for determination of the Plancherel measure class and the Plancherel formula for nilpotent groups in terms of the orbit method is given in [20]. A similar result for the class of exponential solvable groups is proved in [4], and it is this version, specialized to the nilpotent case, that we use here.

The procedure is implemented as follows. Recall that we have a cross-section Λ° for the coadjoint orbits in Ω° and that $\Lambda^{\circ}=\Omega^{\circ} \cap V^{\circ}$ where $V^{\circ}=\left\{f \in \mathfrak{n}^{*} \mid f\left(Z_{j}\right)=\right.$ 0 holds for all $\left.j \in \mathbf{e}^{\circ}\right\}$. Let Ω be the minimal fine layer in \mathfrak{g}^{*}, and set $\Lambda^{1}=\Lambda^{\circ} \cap p(\Omega)$. Recall that we have written $\{1,2, \ldots, n\}-\mathbf{e}^{\circ}=\left\{u_{1}<u_{2}<\cdots<u_{c}\right\}$, where $c=n-2 d$. Via the identification $f \rightarrow\left(f\left(Z_{u_{1}}\right), f\left(Z_{u_{2}}\right), \ldots, f\left(Z_{u_{c}}\right)\right)$, we regard Λ^{1} not only as a subset of \mathfrak{n}^{*}, but also as a (dense open) subset of \mathbf{R}^{c}, and we shall henceforth use the notation $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{c}\right)$ for elements of Λ^{1}. Accordingly, we shall write π_{λ} for the irreducible representation corresponding to λ as constructed above; note that each of the Hilbert spaces \mathcal{H}_{λ} is isomorphic with $L^{2}\left(\mathbf{R}^{d}\right)$ via the map J_{λ}. Also, with $\mathbf{P f}=\mathbf{P f}_{\mathbf{e}^{\circ}, d^{\circ}}$ the Pfaffian polynomial on \mathfrak{r}^{*} as defined in Section 1, we shall write $\operatorname{Pf}(\lambda), \lambda \in \Lambda^{1}$. At the same time we let $d \lambda$ denote Lebesgue measure on Λ^{1}. We describe the Fourier transform and Plancherel formula in these terms. For each $\lambda \in \Lambda^{1}$ and $\psi \in L^{1}(N) \cap L^{2}(N)$, set $F(\psi)(\lambda)=\int_{N} \psi(x) \pi_{\lambda}(x) d x$. Then $F(\psi)(\lambda)$ belongs to the space $\mathcal{H}_{\lambda} \otimes \overline{\mathcal{H}}_{\lambda}$ of Hilbert-Schmidt operators on \mathcal{H}_{λ}. Now let μ be the Borel measure on Λ^{1} defined by

$$
d \mu(\lambda)=\frac{1}{(2 \pi)^{n+d}}|\mathbf{P f}(\lambda)| d \lambda
$$

Then $\left\{\mathcal{H}_{\lambda} \otimes \overline{\mathcal{H}}_{\lambda}\right\}_{\lambda \in \Lambda^{1}}$ is a measurable field of Hilbert spaces and we set

$$
\mathbf{H}=\int_{\Lambda^{1}}^{\oplus} \mathcal{H}_{\lambda} \otimes \overline{\mathcal{H}}_{\lambda} d \mu(\lambda)
$$

Now $\lambda \rightarrow \pi_{\lambda}$ is a Borel function from Λ^{1} to $\operatorname{Irr}(N), F(\psi)$ belongs to \mathbf{H}, and the map $F: L^{1}(N) \cap L^{2}(N) \rightarrow \mathbf{H}$ as defined above extends to all of $L^{2}(N)$ as a unitary isomorphism.

With the Fourier transform on N in place, we turn to the quasiregular representation of G in $L^{2}(N)$. From now on we shall use the letter f to refer to elements of $L^{2}(N)$. Let $\delta: H \rightarrow \mathbf{R}_{+}^{*}$ be the character $\delta(h)=\delta_{1}(h) \delta_{2}(h) \cdots \delta_{n}(h)$, and let G have the Haar measure $d \nu_{G}(x h)=d x \delta(h)^{-1} d \nu_{H}(h)$. Define the unitary representation $\tau: G \rightarrow \mathcal{U}\left(L^{2}(N)\right)$ as follows. For $f \in L^{2}(N)$, set

$$
\begin{aligned}
& (\tau(h) f)\left(x_{0}\right)=f\left(h^{-1} x_{0} h\right) \delta(h)^{-1 / 2}, \quad h \in H \\
& (\tau(x) f)\left(x_{0}\right)=f\left(x^{-1} x_{0}\right), \quad x \in N .
\end{aligned}
$$

Recall that τ is isomorphic with the representation of G induced from H by the trivial character. Fix $\psi \in L^{2}(N)$ and for each $f \in L^{2}(N)$, denote by $m_{f, \psi}$ the bounded continuous function on G defined by $m_{f, \psi}(s)=\langle f, \tau(s) \psi\rangle_{L^{2}(N)}, s \in G$.

Recall that ψ is admissible for τ if $m_{f, \psi}$ is square-integrable for each $f \in L^{2}(N)$ and $\left\|m_{f, \psi}\right\|_{L^{2}(G)}=\|f\|_{L^{2}(N)}$. Following [12], we search for admissible vectors by means of the Fourier transform on $L^{2}(N)$. For $f \in L^{2}(N)$ set $\widehat{f}(\lambda)=F(f)(\lambda), \lambda \in$ Λ^{1} and let $\widehat{\tau}(s)=F \circ \tau(s) \circ F^{-1}, s \in G$. The representation $\widehat{\tau}$ is described in terms of the usual action of H on \widehat{N}. Specifically, for $\pi \in \operatorname{Irr}(N)$ and $h \in H$, set $(h \cdot \pi)(x)=$ $\pi\left(h^{-1} x h\right), x \in N$. For each $h \in H$, the representation $h \cdot \pi_{f}$ is equivalent to $\pi_{h f}$ via the intertwining operator $C(h, f): \mathcal{H}_{f} \rightarrow \mathcal{H}_{h f}$ defined by

$$
(C(h, f) \phi)(x)=\phi\left(h^{-1} x h\right) \delta_{\mathbf{j}^{\circ}}(h)^{-1 / 2}, \quad \phi \in \mathcal{H}_{f}
$$

where $\delta_{\mathbf{j}^{\circ}}(h)=\prod_{j \in \mathfrak{j}^{\circ}} \delta_{j}(h)$. Passing to the quotient \widehat{N} and applying the orbit method, one sees that the stabilizer $H_{\left[\pi_{f}\right]}$ of $\left[\pi_{f}\right]$ in H coincides with the analytic subgroup $\{h \in H \mid h f \in N f\}=\exp \left(\mathfrak{h} \cap\left(\mathfrak{n}+\mathfrak{n}^{f}\right)\right)$. For $\lambda \in \Lambda^{1}$, since the action of H is already diagonalized, we have $h \lambda \in \Lambda^{1}$, and since Λ^{1} is an orbital cross-section, we have that $H_{\left[\pi_{\lambda}\right]}=H_{\lambda}=\exp \left(\mathfrak{h} \cap \mathfrak{g}^{\lambda}\right)=\exp \left(\mathfrak{h}_{r}\right)=H_{r}$ holds for each $\lambda \in \Lambda^{1}$. For $h \in H$ and $\lambda \in \Lambda^{1}$, let $D(h, \lambda): \mathcal{B}\left(\mathcal{H}_{\lambda}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{h \lambda}\right)$ be defined by

$$
D(h, \lambda)(T)=C(h, \lambda) \circ T \circ C(h, \lambda)^{-1} .
$$

Adapting the result [12, Proposition 2.1] to the present context, we have the following description of $\widehat{\tau}$ in terms of the preceding orbital parameters for the Fourier transform.

Proposition 2.1 Let $f \in L^{2}(N), h \in H, x \in N, \lambda \in \Lambda^{1}$. One has
(i) $\quad(\widehat{\tau}(h) \widehat{f})(\lambda)=D\left(h, h^{-1} \lambda\right)\left(\widehat{f}\left(h^{-1} \lambda\right)\right) \delta(h)^{1 / 2}$;
(ii) $\quad(\widehat{\tau}(x) \widehat{f})(\lambda)=\pi_{\lambda}(x) \circ \widehat{f}(\lambda)$.

We observe that [12, Proposition 2.2] also restates in the same way.
Proposition 2.2 For each $h \in H, d \mu(h \lambda)=\delta(h)^{-1} d \mu(\lambda)$.
An easy calculation shows that for each $x \in N$ and $h \in H$, one has

$$
m_{f, \psi}(x h)=\left(f *(\tau(h) \psi)^{*}\right)(x)
$$

where $\psi^{*}(x)=\bar{\psi}\left(x^{-1}\right)$. We then apply the Fourier transform:

$$
\begin{align*}
& \int_{G}\left|m_{f, \psi}\right|^{2} d \nu_{G} \tag{2.1}\\
&=\int_{H} \int_{N}\left|\left(f *(\tau(h) \psi)^{*}\right)(x)\right|^{2} d x \delta(h)^{-1} d \nu_{H}(h) \\
&=\int_{H} \int_{\Lambda^{1}}\left\|\widehat{f}(\lambda) \circ(\widehat{\tau}(h) \widehat{\psi})(\lambda)^{*}\right\|_{H S}^{2} d \mu(\lambda) \delta(h)^{-1} d \nu_{H}(h) \\
&=\int_{\Lambda^{1}}\left(\int_{H}\left\|\widehat{f}(\lambda) \circ C\left(h, h^{-1} \lambda\right) \widehat{\psi}\left(h^{-1} \lambda\right)^{*} C\left(h, h^{-1} \lambda\right)^{-1}\right\|_{H S}^{2} d \nu_{H}(h)\right) d \mu(\lambda)
\end{align*}
$$

If N is abelian, so that the Fourier transform is scalar-valued, then

$$
\left\|\widehat{f}(\lambda) \circ C\left(h, h^{-1} \lambda\right) \widehat{\psi}\left(h^{-1} \lambda\right)^{*} C\left(h, h^{-1} \lambda\right)^{-1}\right\|_{H S}^{2}=|\widehat{f}(\lambda)|^{2}\left|\widehat{\psi}\left(h^{-1} \lambda\right)\right|^{2}
$$

and it becomes apparent from (2.1) that a necessary condition for τ-admissibility is that H_{λ} be compact for μ-a.e. λ. Note that in the context of this paper that means simply that $\mathfrak{b}_{r}=(0)$. Now for the class of groups considered here, it is reasonable to expect that the condition $\mathfrak{h}_{r}=(0)$ is necessary for the existence of τ-admissible vectors even when N is not abelian, but that question remains open. Therefore, for the remainder of this paper, we shall just make the assumption that $\mathfrak{b}_{r}=(0)$. We observe that, if N is not abelian, then this means that the irreducible decomposition of τ will have infinite multiplicity: we have $r=\operatorname{dim}(H)=\operatorname{dim} H \lambda$ holds for all $\lambda \in \Lambda^{1}$ and (since $\mathfrak{h}_{r}=(0)$), it follows that the generic dimension of H-orbits in $\mathfrak{h}{ }^{\perp}$ is r. Now Corollary 1.7 says that $r=d-d^{\circ}$, where $2 d$ is the generic dimension of G orbits (that meet \mathfrak{h}^{\perp}) and $2 d^{\circ}$ is the generic dimension of N orbits in \mathfrak{r}^{*}. Combining these observations with the results of $[15,16]$, we have that τ has finite multiplicity if and only if $r=d$, if and only if N is abelian.

Recall also that in the case where N is abelian, (2.1) is the starting point for proving the Caldéron condition for admissibility (for quite general groups H): ψ is admissible for τ if and only if $\int_{H}\left|\psi\left(h^{-1} \lambda\right)\right|^{2} d \nu_{H}(h)=1$ holds for μ-a.e. λ [22, Theorem 2.1]. We shall see below that this result can be generalized to the case where N is not abelian: we shall write τ as a direct sum of multiplicity-free subrepresentations τ^{β} so that a Caldéron condition for τ^{β}-admissibility holds.

We begin by describing the action of H on Λ^{1} explicitly. Recall that we have chosen the ordered basis $\left\{A_{v} \mid 1 \leq v \leq r\right\}$ for \mathfrak{h} in conjuction with a sequence $\left\{1 \leq u_{a_{1}}<\right.$ $\left.u_{a_{2}}<\cdots<u_{a_{r}} \leq n\right\}$ of indices corresponding to a minimal spanning set of roots, as defined in Section 1. In particular for each $1 \leq v, w \leq r, \gamma_{u_{a_{v}}}\left(A_{w}\right)=\delta_{v w}$, and if $a<a_{w}, \gamma_{u_{a}}\left(A_{w}\right)=0$. Write

$$
Q(t, \lambda)=\exp \left(t_{1} A_{1}\right) \exp \left(t_{2} A_{2}\right) \cdots \exp \left(t_{r} A_{r}\right) \lambda, \quad t \in \mathbf{R}^{r}, \lambda \in \Lambda^{1} .
$$

Then for each $\lambda \in \Lambda^{1}, t \rightarrow Q(t, \lambda)$ is a diffeomorphism of \mathbf{R}^{r} with $H \lambda$. The following notation will be helpful in the descriptions that follow: for each $1 \leq a \leq c$, if $a<a_{1}$, set $h^{a}=1 \in H$, and for $a \geq a_{1}$, let $h^{a}(t)=\exp \left(t_{1} A_{1}\right) \exp \left(t_{2} A_{2}\right) \cdots \exp \left(t_{w(a)} A_{w(a)}\right)$ where $w(a)=\max \left\{1 \leq w \leq r \mid a_{w} \leq a\right\}$.

For each $1 \leq a \leq c$ we see that $Q_{a}(t, \lambda)=\delta\left(h^{a}(t)\right)^{-1} \lambda_{a}$. More explicitly, if we set

$$
\gamma_{a, v}=\gamma_{u_{a}}\left(A_{v}\right), \quad 1 \leq a \leq c, 1 \leq v \leq r,
$$

then for $a=a_{v}$ we have $\delta\left(h^{a}(t)\right)^{-1}=e^{t_{v}}$, while if $a \neq a_{v}, 1 \leq v \leq r$, then

$$
\delta\left(h^{a}(t)\right)^{-1}=e^{\gamma_{a, 1} t_{1}+\gamma_{a, 2} t_{2}+\cdots+\gamma_{a, w(a)} t_{w(a)}}
$$

Hence

$$
Q_{a}(t, \lambda)= \begin{cases}e^{t_{v}} \lambda_{a} & \text { if } a=a_{v} \\ e^{\gamma_{a, 1} t_{1}+\gamma_{a, 2} t_{2}+\cdots+\gamma_{a, w(a)} t_{w(a)}} \lambda_{a} & \text { if } a \neq a_{v}\end{cases}
$$

For $1 \leq v \leq r$, set

$$
z_{v}=e^{t_{v}}\left|\lambda_{a_{v}}\right|, \quad \epsilon_{v}=\operatorname{sign}\left(\lambda_{a_{v}}\right)
$$

Making these substitutions into the function Q, we obtain a function $P(z, \lambda)$ each coordinate of which has the form

$$
P_{a}(z, \lambda)= \begin{cases}z_{v} \epsilon_{v} & \text { if } a=a_{v} \\ \left(\frac{z_{1}}{\left|\lambda_{a_{1}}\right|}\right)^{\gamma_{a, 1}}\left(\frac{z_{2}}{\left|\lambda_{a_{2}}\right|}\right)^{\gamma_{a, 2}} \cdots\left(\frac{z_{w(a)}}{\left|\lambda_{a_{w(a)}}\right|}\right)^{\gamma_{a, w(a)}} \lambda_{a} & \text { if } a \neq a_{v}\end{cases}
$$

The function P is easily seen to have the following properties.
(i) For each $\lambda \in \Lambda^{1}, P(\cdot, \lambda)$ maps $\left(\mathbf{R}_{+}^{*}\right)^{r}$ diffeomorphically onto $H \lambda$.
(ii) For each fixed $\left(z_{1}, z_{2}, \ldots, z_{r}\right) \in\left(\mathbf{R}_{+}^{*}\right)^{r}, P\left(z_{1}, z_{2}, \ldots, z_{r}, \cdot\right)$ maps Λ^{1} into Λ^{1} and is H-invariant.
We set $\Sigma=\left\{P(1,1, \ldots, 1, \lambda) \mid \lambda \in \Lambda^{1}\right\}$; it is easily seen that Σ is a submanifold of Λ^{1} having dimension $c-r$, and that Σ meets the H-orbit of λ at the single point $P(1,1, \ldots, 1, \lambda)$. In fact, we have the following.

Lemma 2.3 Let Λ be the cross-section in Ω for the G-orbits in Ω. If $\mathfrak{h} r=(0)$, then $\left.p\right|_{\Lambda}$ is a bijection of Λ onto Σ.

Proof By part (b) of Proposition 1.6 and our assumption that $\mathfrak{h}_{r}=(0)$, we have $\Lambda \subset \mathfrak{h}{ }^{\perp}=\left\{\ell \in \mathfrak{g}^{*} \mid \ell(\mathfrak{h})=\{0\}\right\}$, and hence $\left.p\right|_{\Lambda}$ is a bijection. By Corollary 1.8, we have $p(\Lambda)=\left\{\lambda \in \Lambda^{1}| | \lambda_{a_{v}} \mid=1,1 \leq v \leq r\right\}$. An examination of the map $P(z, \lambda)$ above shows that $\Sigma=P(1, \lambda) \subset p(\Lambda)$ and that for each $\ell \in \Lambda$ with $\lambda=p(\ell)$, $\lambda=P(1, \lambda) \in \Sigma$. This completes the proof.

For each $\epsilon \in\{-1,1\}^{r}$, set $\Lambda_{\epsilon}^{1}=\left\{\lambda \in \Lambda^{1} \mid \operatorname{sign}\left(\lambda_{a_{v}}\right)=\epsilon_{v}, 1 \leq v \leq r\right\}$ and $\Sigma_{\epsilon}=$ $\Sigma \cap \Lambda_{\epsilon}^{1}$. In the event that $r=c$, then for each $\epsilon, \Sigma_{\epsilon}$ is the single point $\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{c}\right)$. In this case we let $d \sigma$ be the counting measure on Σ, multiplied by $1 /(2 \pi)^{n+d}$. Otherwise write $\{1,2, \ldots, c\}-\left\{a_{v} \mid 1 \leq v \leq r\right\}=\left\{b_{1}<b_{2}<\cdots<b_{q}\right\}$; set $\sigma_{w}=\lambda_{b_{w}}, 1 \leq$ $w \leq q$. Then each set Σ_{ϵ} is identified with an open subset of \mathbf{R}^{q}, and we thereby transfer Lebesgue measure to each Σ_{ϵ}. The resulting measure on Σ, including the multiple $1 /(2 \pi)^{n+d}$, will be denoted by $d \sigma=d \sigma_{1} d \sigma_{2} \cdots d \sigma_{q}$. At the same time we identify H with $\left(\mathbf{R}_{+}^{*}\right)^{r}$, so that

$$
\exp \left(t_{1} A_{1}\right) \exp \left(t_{2} A_{2}\right) \cdots \exp \left(t_{r} A_{r}\right)=\left(e^{t_{1}}, e^{t_{2}}, \ldots, e^{t_{r}}\right)=\left(z_{1}, z_{2}, \ldots, z_{r}\right)
$$

The natural Haar measure on H is then

$$
d \nu_{H}\left(z_{1}, z_{2}, \ldots, z_{r}\right)=\frac{d z_{1} d z_{2} \cdots d z_{r}}{z_{1} z_{2} \cdots z_{r}}
$$

By virtue of this identification and by restricting λ to Σ, the function $P(z, \lambda)$ yields a map from $H \times \Sigma$ to Λ^{1}. We claim that $P(z, \sigma)=z \sigma$. Observe that for $a \neq a_{v}, 1 \leq$ $v \leq r$, we have

$$
\delta_{u_{a}}(z)^{-1}=z_{1}^{\gamma_{a, 1}} z_{2}^{\gamma_{a, 2}} \cdots z_{w(a)}^{\gamma_{a, w(a)}}, \quad z=\left(z_{1}, z_{2}, \ldots z_{r}\right) \in H
$$

Since $\left|\lambda_{a_{v}}\right|=1$ for $\lambda \in \Sigma, P(z, \sigma)$ is defined coordinate-wise on $H \times \Sigma_{\epsilon}$ by

$$
P_{a}(z, \sigma)= \begin{cases}z_{v} \epsilon_{v} & \text { if } a=a_{v} \\ \delta_{u_{b_{w}}}(z)^{-1} \sigma_{w} & \text { if } a=b_{w}\end{cases}
$$

The claim follows. It is clear that P is a diffeomorphism and that for any non-negative measurable function ϕ on Λ^{1},

$$
\int_{\Lambda^{1}} \phi(\lambda) d \lambda=\int_{\Sigma} \int_{H} \phi(z \sigma) \delta_{u_{b_{1}}}(z)^{-1} \delta_{u_{b_{2}}}(z)^{-1} \cdots \delta_{u_{b_{q}}}(z)^{-1} d z d \sigma
$$

From now on we identify Λ^{1} with $H \times \Sigma$ as above. Now set

$$
\delta_{\mathbf{e}^{\circ}}(z)=\prod_{j \in \mathbf{e}^{\circ}} \delta_{j}(z), \quad z \in H
$$

Lemma 2.4 For each $\lambda=z \sigma \in \Lambda^{1}$, one has $\operatorname{Pf}(z \sigma)=\delta_{\mathbf{e}^{\circ}}(z)^{-1} \mathbf{P f}(\sigma)$. Moreover, the formula

$$
\int_{\Lambda^{1}} \phi(\lambda) \mu(\lambda)=\int_{\Sigma} \int_{H} \phi(z \sigma) \delta(z)^{-1} d \nu_{H}(z)|\mathbf{P f}(\sigma)| d \sigma
$$

holds for any non-negative measurable function ϕ on Λ^{1}.
Proof Fix $\lambda=z \sigma \in \Lambda^{1}$, let $\ell_{\sigma} \in \mathfrak{g}^{*}$ such that $p\left(\ell_{\sigma}\right)=\sigma$ and set $\ell=z \ell_{\sigma} \in \mathfrak{g}^{*}$. Let $\delta_{\mathbf{e}}=\prod_{j \in \mathbf{e}} \delta_{j}$, where \mathbf{e} is the jump set corresponding to the minimal layer in \mathfrak{g}^{*}. By [2, Lemma 1.6], $\mathbf{P f}_{\mathbf{e}, \mathbf{j}}(\ell)=\delta_{\mathbf{e}}(z)^{-1} \mathbf{P f}_{\mathrm{e}, \mathrm{j}}\left(\ell_{\sigma}\right)$. But part (a) of Proposition 1.6, together with our choice of basis of \mathfrak{h} dual to the minimal spanning set of roots, insures that

$$
\delta_{\mathbf{e}}(z)^{-1}=z_{1} z_{2} \cdots z_{r} \delta_{\mathbf{e}^{\circ}}(z)^{-1}
$$

On the other hand, observing that $p(\ell)=z \sigma$, part (c) of Proposition 1.6 gives

$$
\mathbf{P f}_{\mathbf{e}, \mathbf{j}}(\ell)=\prod_{v=1}^{r} \ell\left(Z_{u_{a_{r}}}\right) \mathbf{P f}_{\mathbf{e}^{\circ}, \mathbf{j}^{\circ}}(z \sigma)=z_{1} z_{2} \cdots z_{r} \mathbf{P f}_{\mathbf{e}^{\circ}, \mathbf{j}^{\circ}}(z \sigma) .
$$

Similarly $\mathbf{P f}_{\mathbf{e}, \mathbf{j}}\left(\ell_{\sigma}\right)=\mathbf{P f}_{\mathbf{e}^{\circ}, \mathbf{j}^{\circ}}(\sigma)$, and hence

$$
\begin{aligned}
z_{1} z_{2} \cdots z_{r} \mathbf{P f}_{\mathbf{e}^{\circ}, \mathbf{j}^{\circ}}(z \sigma) & =\mathbf{P f}_{\mathbf{e}, \mathbf{j}}(\ell)=z_{1} z_{2} \cdots z_{r} \delta_{\mathbf{e}^{\circ}}(z)^{-1} \mathbf{P f}_{\mathbf{e}, \mathbf{j}}\left(\ell_{\sigma}\right) \\
& =z_{1} z_{2} \cdots z_{r} \delta_{\mathbf{e}^{\circ}}(z)^{-1} \mathbf{P f}_{\mathbf{e}^{\circ}, \mathbf{j}^{\circ}}(\sigma)
\end{aligned}
$$

The first part of the lemma is proved.
As for the second part, write $\delta_{u_{b}}(z)=\prod_{w=1}^{q} \delta_{u_{b_{w}}}(z)$; again by virtue of our choice of basis for \mathfrak{b}, we have

$$
\delta(z)^{-1}=z_{1} z_{2} \cdots z_{r} \delta_{\mathrm{e}^{\circ}}(z)^{-1} \delta_{u_{b}}(z)^{-1}
$$

Hence

$$
\begin{aligned}
d \mu(\lambda) & =|\mathbf{P f}(z \sigma)| \delta_{u_{b}}(z)^{-1} d z d \sigma=z_{1} z_{2} \cdots z_{r} \delta_{\mathbf{e}^{\circ}}(z)^{-1} \delta_{u_{b}}(z)^{-1} d \nu_{H}(z)|\mathbf{P f}(\sigma)| d \sigma \\
& =\delta(z)^{-1} d \nu_{H}(z)|\mathbf{P f}(\sigma)| d \sigma .
\end{aligned}
$$

Fix an orthonormal basis $\left\{e^{\beta} \mid \beta \in B\right\}$ for $L^{2}\left(\mathbf{R}^{d}\right)$, (where B is some index set) and for each $\lambda=z \sigma \in H \sigma$, set $e_{\lambda}^{\beta}=C(z, \sigma) J_{\sigma}^{-1} e^{\beta}$, so that $\left\{e_{\lambda}^{\beta}\right\}_{\beta}$ is an orthonormal basis of \mathcal{H}_{λ}. For each $\lambda \in \Lambda^{1}$ and each basis index β, we have the subspace $\mathcal{H}_{\lambda} \otimes e_{\lambda}^{\beta}=$ $\left\{T \in \mathcal{H}_{\lambda} \otimes \overline{\mathcal{H}}_{\lambda} \mid\right.$ Image $\left.\left(T^{*}\right) \subset \mathbf{C} e_{\lambda}^{\beta}\right\}$. Recall that $\mathcal{H}_{\lambda} \otimes e_{\lambda}^{\beta}$ is the set of maps of the form $v \mapsto\left\langle v, e_{\lambda}^{\beta}\right\rangle w$ where $w \in \mathcal{H}_{\lambda}$, and the obvious map $\mathcal{H}_{\lambda} \rightarrow \mathcal{H}_{\lambda} \otimes e_{\lambda}^{\beta}$ is an isometric isomorphism. For each basis index β, set $\mathbf{H}^{\beta}=\int_{\Lambda^{1}}^{\oplus} \mathcal{H}_{\lambda} \otimes e_{\lambda}^{\beta} d \mu(\lambda)$, so that $\mathbf{H}=\oplus_{\beta} \mathbf{H}^{\beta}$. Setting $\mathbf{K}=\int_{\Lambda^{1}}^{\oplus} \mathcal{H}_{\lambda} d \mu(\lambda)$, we have an obvious isometric isomorphism of \mathbf{K} onto each $\mathbf{H}^{\beta}: w=\{w(\lambda)\}_{\lambda \in \Lambda^{1}} \in \mathbf{K}$ corresponds to the element

$$
\left\{w(\lambda) \otimes e_{\lambda}^{\beta}\right\}_{\lambda \in \Lambda^{1}} \in \mathbf{H}^{\beta}
$$

For any element $g=\{g(\lambda)\}_{\lambda \in \Lambda^{1}}=\left\{w(\lambda) \otimes e_{\lambda}^{\beta}\right\}_{\lambda \in \Lambda^{1}}$ of \mathbf{H}^{β}, one calculates that $(\widehat{\tau}(x) g)(\lambda)=\pi_{\lambda}(x) w(\lambda) \otimes e_{\lambda}^{\beta}$ for $x \in N$ and

$$
(\widehat{\tau}(z) g)(\lambda)=C\left(z, z^{-1} \lambda\right) w\left(z^{-1} \lambda\right) \otimes e_{\lambda}^{\beta} \delta(z)^{1 / 2}, \quad z \in H
$$

Thus the subspace \mathbf{H}^{β} of \mathbf{H} is $\widehat{\tau}$-invariant, and its inverse Fourier image $L^{2}(N)^{\beta}=$ $F^{-1}\left(\mathbf{H}^{\beta}\right)$ is τ-invariant. Accordingly, we write $\widehat{\tau}=\bigoplus_{\beta} \widehat{\tau}^{\beta}$ and $\tau=\bigoplus_{\beta} \tau^{\beta}$. Now for each basis index β, the preceding decomposition of the Plancherel measure μ gives a direct integral decomposition of \mathbf{H}^{β} :

$$
\begin{equation*}
\mathbf{H}^{\beta} \cong \int_{\Sigma}^{\oplus} \mathbf{H}_{\sigma}^{\beta}|\mathbf{P f}(\sigma)| d \sigma \tag{2.2}
\end{equation*}
$$

where $\mathbf{H}_{\sigma}^{\beta}=\int_{H}^{\oplus} \mathcal{H}_{z \sigma} \otimes e_{z \sigma}^{\beta} \delta(z)^{-1} d \nu_{H}(z)$.
For the moment, fix $\sigma \in \Sigma$ and a basis index β. Define $\widehat{\tau}_{\sigma}^{\beta}: G \rightarrow \mathcal{U}\left(\mathbf{H}_{\sigma}^{\beta}\right)$ by the same formula as in Proposition 2.1 above: for $g=\{g(z)\}_{z \in H} \in \mathbf{H}_{\sigma}^{\beta}$ and $z_{0} \in H$ define
(i) $\quad\left(\widehat{\tau}_{\sigma}^{\beta}(z) g\left(z_{0}\right)=D\left(z, z^{-1} z_{0} \sigma\right)\left(g\left(z^{-1} z_{0}\right)\right) \delta(z)^{1 / 2}, \quad z \in H\right.$;
(ii) $\quad\left(\widehat{\tau}_{\sigma}^{\beta}(x) g\right)\left(z_{0}\right)=\pi_{z_{0} \sigma}(x) \circ g\left(z_{0}\right), \quad x \in N$.

Proposition 2.5 For each $\sigma \in \Sigma$ and for each β, $\widehat{\tau}_{\sigma}^{\beta}$ is unitarily isomorphic with $\tilde{\pi}_{\sigma}=\operatorname{ind}_{N}^{G}\left(\pi_{\sigma}\right)$ (and hence is irreducible.)

Proof Fix $\sigma \in \Sigma$ and let \mathcal{L} be the Hilbert space of $\tilde{\pi}_{\sigma}$. For $w \in \mathcal{L}, \lambda=z \sigma \in \Lambda^{1}$, set $(T w)(z)=C(z, \sigma)(w(z)) \otimes e_{z \sigma}^{\beta} \delta(z)^{1 / 2}$. Then

$$
\begin{aligned}
\int_{H}\|(T w)(z)\|_{H S}^{2} \delta(z)^{-1} d \nu_{H}(z) & =\int_{H}\left\|C(z, \sigma) w(z) \otimes e_{z \sigma}^{\beta}\right\|_{H S}^{2} d \nu_{H}(z) \\
& =\int_{H}\|w(z)\|_{\mathcal{H}_{\sigma}}^{2} d \nu_{H}(z)=\|w\|_{\mathcal{L}}^{2} .
\end{aligned}
$$

Hence T is a linear isometry from \mathcal{L} into $\mathbf{H}_{\sigma}^{\beta}$. It is easily seen that T is invertible. We compute that

$$
\begin{aligned}
\widehat{\tau}_{\sigma}^{\beta}(z)(T w)\left(z_{0}\right) & =\widehat{\tau}_{\sigma}^{\beta}(z)\left(C\left(z_{0}, \sigma\right) w\left(z_{0}\right) \otimes e_{z_{0} \sigma}^{\beta} \delta\left(z_{0}\right)^{1 / 2}\right) \\
& =C\left(z, z^{-1} z_{0} \sigma\right) C\left(z^{-1} z_{0}, \sigma\right) w\left(z^{-1} z_{0}\right) \otimes e_{z_{0} \sigma}^{\beta} \delta\left(z^{-1} z_{0}\right)^{1 / 2} \delta(z)^{1 / 2} \\
& =C\left(z_{0}, \sigma\right) w\left(z^{-1} z_{0}\right) \otimes e_{z_{0} \sigma}^{\beta} \delta\left(z_{0}\right)^{1 / 2} \\
& =T\left(\tilde{\pi}_{\sigma}(z) w\right)\left(z_{0}\right) .
\end{aligned}
$$

It follows that the natural isomorphism (2.2) intertwines the representation $\widehat{\tau}^{\beta}$ with the direct integral of the representations $\widehat{\tau}_{\sigma}^{\beta}$. To sum up the preceding, we have shown that the Fourier transform, together with the decomposition of the Plancherel measure μ, implements a natural decomposition of τ into unitary irreducibles:

$$
\tau \cong \bigoplus_{\beta} \int_{\Sigma}^{\oplus} \widehat{\tau}_{\sigma}^{\beta}|\mathbf{P f}(\sigma)| d \sigma
$$

Now fix an index β, and for $f \in L^{2}(N)^{\beta}$, write $\widehat{f}(\lambda)=w_{f}(\lambda) \otimes e_{\lambda}^{\beta}$, where $w_{f} \in \mathbf{K}$. Note that for each $\lambda \in \Lambda^{1},\|\widehat{f}(\lambda)\|_{H S}=\left\|w_{f}(\lambda)\right\|_{\mathcal{H}_{\lambda}}$. In the sequel we shall often drop the cumbersome subscripts on norms indicating the Hilbert space, relying on context and other notation to affect the appropriate distinctions.

Fix $\psi \in L^{2}(N)^{\beta}$ and set $u=w_{\psi}$ so that $\widehat{\psi}(\lambda)=u(\lambda) \otimes e_{\lambda}^{\beta}$. One calculates that for each $\lambda \in \Lambda^{1}$ and $z \in H$,

$$
\begin{align*}
\left\|\widehat{f}(\lambda) \circ(\widehat{\tau}(z) \widehat{\psi})(\lambda)^{*}\right\|^{2} & =\left\|w_{f}(\lambda)\right\|^{2}\left\|u\left(z^{-1} \lambda\right)\right\|^{2} \delta(z) \tag{2.3}\\
& =\|\widehat{f}(\lambda)\|^{2}\left\|\widehat{\psi}\left(z^{-1} \lambda\right)\right\|^{2} \delta(z)
\end{align*}
$$

Define $\Delta_{\psi}: \Lambda^{1} \rightarrow[0,+\infty)$ by

$$
\Delta_{\psi}(\lambda)=\int_{H}\left\|\widehat{\psi}\left(z^{-1} \lambda\right)\right\|^{2} d \nu_{H}(z)=\int_{H}\|\widehat{\psi}(z \sigma)\|^{2} d \nu_{H}(z)
$$

Note that Δ_{ψ} is constant on H-orbits in Λ^{1}. Combining the equations (2.1) and (2.3), we get

$$
\begin{aligned}
\int_{G}\left|m_{f, \psi}\right|^{2} d \nu_{G} & =\int_{H} \int_{\Lambda^{1}}\left\|w_{f}(\lambda)\right\|^{2}\left\|u\left(z^{-1} \lambda\right)\right\|^{2} d \mu(\lambda) d \nu_{H}(z) \\
& =\int_{H} \int_{\Lambda^{1}}\|\widehat{f}(\lambda)\|^{2}\left\|\widehat{\psi}\left(z^{-1} \lambda\right)\right\|^{2} d \mu(\lambda) d \nu_{H}(z) \\
& =\int_{\Lambda^{1}}\|\widehat{f}(\lambda)\|^{2}\left(\int_{H}\left\|\widehat{\psi}\left(z^{-1} \lambda\right)\right\|^{2} d \nu_{H}(z)\right) d \mu(\lambda) \\
& =\int_{\Lambda^{1}}\|\widehat{f}(\lambda)\|^{2} \Delta_{\psi}(\lambda) d \mu(\lambda)
\end{aligned}
$$

So it is clear that if $\Delta_{\psi}(\lambda)=1$ holds μ-a.e., then $m_{f, \psi}$ belongs to $L^{2}(G)$ and $\left\|m_{f, \psi}\right\|=$ $\|f\|$, that is, ψ is admissible for τ^{β}. An easy adaptation of the argument in [22, Theorem 2.1] shows that the converse is true.

Proposition 2.6 Let $\psi \in L^{2}(N)^{\beta}$. Then ψ is admissible for τ^{β} if and only if $\Delta_{\psi}(\lambda)=1$ holds for μ-a.e. $\lambda \in \Lambda^{1}$.

Proof The proof is already halfway done; to complete it, suppose that $\left\|m_{f, \psi}\right\|=$ $\|f\|$ holds for all $f \in L^{2}(N)^{\beta}$. Fix $\lambda_{0} \in \Lambda^{1}$. For $r>0$, let $B_{r}\left(\lambda_{0}\right)$ be the ball about λ_{0} of radius r, let $\chi_{B_{r}\left(\lambda_{0}\right)}$ be the characteristic function of the set $B_{r}\left(\lambda_{0}\right)$, and let $f=f_{\lambda_{o}, r} \in L^{2}(N)^{\beta}$ be defined by $\widehat{f}(\lambda)=\mu\left(B_{r}\left(\lambda_{0}\right)\right)^{-1 / 2} \chi_{B_{r}\left(\lambda_{0}\right)} e_{\lambda}^{\beta} \otimes e_{\lambda}^{\beta}$. Then $\|f\|^{2}=1$, so from our assumption and the above calculation, we have

$$
1=\int_{\Lambda^{1}}\|\widehat{f}(\lambda)\|^{2} \Delta_{\psi}(\lambda) d \mu(\lambda)=\frac{1}{\mu\left(B_{r}\left(\lambda_{0}\right)\right)} \int_{B_{r}\left(\lambda_{0}\right)} \Delta_{\psi}(\lambda) d \mu(\lambda) .
$$

The result now follows from standard differentiability results.
Remark 2.7 Let $\psi \in L^{2}(N)^{\beta}$ be admissible for τ^{β} and let $f \in L^{2}(N)^{\beta}$. Write $\widehat{\psi}(\lambda)=u(\lambda) \otimes e_{\lambda}^{\beta}$ and $\widehat{f}(\lambda)=w_{f}(\lambda) \otimes e_{\lambda}^{\beta}$ as above. Then

$$
\widehat{\tau}(x z) \widehat{\psi}(\lambda)=\pi_{\lambda}(x) \circ C\left(z, z^{-1} \lambda\right) u\left(z^{-1} \lambda\right) \otimes e_{\lambda}^{\beta} \delta(z)^{1 / 2}
$$

and

$$
\begin{aligned}
W_{\psi}(f)(x z) & =\langle\widehat{f}, \widehat{\tau}(x z) \widehat{\psi}\rangle \\
& =\int_{\Lambda^{1}}\langle\widehat{f}(\lambda), \widehat{\tau}(x z) \widehat{\psi}(\lambda)\rangle d \mu(\lambda) \\
& =\int_{\Lambda^{1}}\left\langle w_{f}(\lambda), \pi_{\lambda}(x) \circ C\left(z, z^{-1} \lambda\right) u\left(z^{-1} \lambda\right)\right\rangle d \mu(\lambda) \delta(z)^{1 / 2}
\end{aligned}
$$

Hence if $L^{\beta}: \mathbf{K} \rightarrow \mathbf{H}^{\beta}$ is the canonical isomorphism and $\widehat{\psi^{\prime}}=L^{\beta^{\prime}} \circ\left(L^{\beta}\right)^{-1} \widehat{\psi}$, then $W_{\psi^{\prime}} \circ L^{\beta^{\prime}}=W_{\psi} \circ L^{\beta}$.

We now show how to construct admissible vectors for τ^{β} : suppose that G is not unimodular and that η is a unit vector in $L^{2}\left(H, \nu_{H}\right)$ which also happens to belong to $L^{2}\left(H, \delta^{-1} \nu_{H}\right)$. Since $\delta \neq 1$, we have $\delta\left(0,0, \ldots, z_{v}, \ldots, 0\right) \neq 1$ for some $v, 1 \leq v \leq r$. Write $\delta\left(0,0, \ldots, z_{v}, \ldots, 0\right)=z_{v}^{p}, p \neq 0$. Assume that $q=\operatorname{dim}(\Sigma)>0$, and for each $\epsilon \in\{-1,1\}^{r}$, let s_{ϵ} be the identification map from Σ_{ϵ} onto an open subset of \mathbf{R}^{q}.

We choose a measurable function $\tilde{u}: \mathbf{R}^{q} \rightarrow(0, \infty)$ such that for any polynomial function $P(t)$ on \mathbf{R}^{q}, we have $\int_{\mathbf{R}^{q}} \tilde{u}(t)^{p}|P(t)| d t<\infty$. Define $u: \Sigma \rightarrow(0, \infty)$ by $u(\sigma)=\tilde{u}\left(s_{\epsilon}(\sigma)\right), \sigma \in \Sigma_{\epsilon}$. Then we have $\int_{\Sigma} u(\sigma)^{p}|\mathbf{P f}(\sigma)| d \sigma<\infty$. Now for each pair of basis indices α and β, define $\psi=\psi_{\eta, u}^{\alpha, \beta} \in L^{2}(N)^{\beta}$ by

$$
\begin{equation*}
\widehat{\psi}(z \sigma)=\eta\left(z_{1}, z_{2}, \ldots, z_{v-1}, z_{v} u(\sigma), z_{v+1}, \ldots, z_{r}\right) e_{z \sigma}^{\alpha} \otimes e_{z \sigma}^{\beta} . \tag{2.4}
\end{equation*}
$$

With the identification $\lambda=z \sigma$, it will be helpful to abuse notation slightly by writing

$$
\eta(\lambda)=\eta(z \sigma)=\eta\left(z_{1}, z_{2}, \ldots, z_{v-1}, z_{v} u(\sigma), z_{v+1}, \ldots, z_{r}\right)
$$

so that $\widehat{\psi}(\lambda)=\eta(\lambda) e_{\lambda}^{\alpha} \otimes e_{\lambda}^{\beta}$. Now we have that

$$
\int_{H}\|\widehat{\psi}(z \sigma)\|^{2} d \nu_{H}(z)=\int_{H}|\eta(z)|^{2} d \nu_{H}(z)=1
$$

holds for all $\sigma \in \Sigma$, and the calculation

$$
\begin{aligned}
& \int_{N}|\psi(x)|^{2} d x=\int_{\Lambda^{1}}\|\widehat{\psi}(\lambda)\|^{2} d \mu(\lambda) \\
&= \int_{\Sigma} \int_{H}\|\widehat{\psi}(z \sigma)\|^{2} \delta(z)^{-1} d \nu_{H}(z)|\mathbf{P f}(\sigma)| d \sigma \\
&=\left.\int_{\Sigma} \int_{H} \mid \eta\left(z_{1}, z_{2}, \ldots, z_{v-1}, z_{v} u(\sigma), z_{v+1}, \ldots, z_{r}\right)\right)\left.\right|^{2} \delta(z)^{-1} d \nu_{H}(z)|\mathbf{P f}(\sigma)| d \sigma \\
&= \int_{\Sigma} \int_{H}|\eta(z)|^{2}\left(\delta\left(z_{1}\right) \delta\left(z_{1}\right) \cdots \delta\left(z_{v-1}\right) \delta\left(u(\sigma)^{-1} z_{v}\right) \delta\left(z_{v+1}\right) \cdots \delta\left(z_{r}\right)\right)^{-1} \\
& \quad \times d \nu_{H}(z)|\mathbf{P f}(\sigma)| d \sigma \\
&=\int_{H}|\eta(z)|^{2} \delta(z)^{-1} d \nu_{H}(z) \int_{\Sigma} u(\sigma)^{p}|\mathbf{P f}(\sigma)| d \sigma<\infty
\end{aligned}
$$

shows that $\psi \in L^{2}(N)^{\beta}$. Hence by Proposition 2.6, ψ is admissible for τ^{β}.
Next, suppose that $\psi=\psi_{\eta, u}^{\alpha, \beta}$ and $\psi^{\prime}=\psi_{\eta^{\prime}, u}^{\alpha^{\prime}, \beta^{\prime}}$ are two such admissible vectors. For $f \in L^{2}(N)^{\beta}$ and $f^{\prime} \in L^{2}(N)^{\beta^{\prime}}$ we compute that

$$
\begin{aligned}
&\left\langle m_{f, \psi}(s), m_{f, \psi^{\prime}}(s)\right\rangle_{L^{2}(G)}=\int_{G} m_{f, \psi}(s) \overline{m_{f^{\prime}, \psi^{\prime}}(s)} d \nu_{G}(s) \\
&= \int_{H} \int_{N}\left(f *(\tau(z) \psi)^{*}\right)(x) \overline{\left(f^{\prime} *\left(\tau(z) \psi^{\prime}\right)^{*}\right)(x)} d x \delta(z)^{-1} d \nu_{H}(z) \\
&= \int_{H} \int_{\Lambda^{1}}\left\langle\widehat{f}(\lambda) \circ(\tau(z) \psi) \uparrow(\lambda)^{*}, \widehat{f}^{\prime}(\lambda) \circ\left(\tau(z) \psi^{\prime}\right)(\lambda)^{*}\right\rangle_{H S} \\
& \quad \times d \mu(\lambda) \delta(z)^{-1} d \nu_{H}(z) \\
&= \int_{H} \int_{\Lambda^{1}} \operatorname{Trace}\left(\widehat{f}^{\prime}(\lambda)^{*} \circ \widehat{f}(\lambda) \circ(\tau(z) \psi)^{\Upsilon}(\lambda)^{*} \circ\left(\tau(z) \psi^{\prime}\right)^{\curlyvee}(\lambda)\right) \\
& \quad \quad \times d \mu(\lambda) \delta(z)^{-1} d \nu_{H}(z) .
\end{aligned}
$$

Now one checks that

$$
\begin{aligned}
\widehat{f}^{\prime}(\lambda)^{*} \circ \widehat{f}(\lambda) & \circ(\tau(z) \psi) \Upsilon(\lambda)^{*} \circ\left(\tau(z) \psi^{\prime}\right)(\lambda) \\
& =\left\langle w_{f}(\lambda), w_{f^{\prime}}(\lambda)\right\rangle \overline{\eta\left(z^{-1} \lambda\right)} \eta^{\prime}\left(z^{-1} \lambda\right) \delta(z) e_{\lambda}^{\beta^{\prime}} \otimes e_{\lambda}^{\beta^{\prime}} \cdot \delta_{\alpha, \alpha^{\prime}}
\end{aligned}
$$

where $\delta_{\alpha, \alpha^{\prime}}=1$ or 0 according as $\alpha=\alpha^{\prime}$ or $\alpha \neq \alpha^{\prime}$. Apply this with the decomposition of μ and we get

$$
\begin{aligned}
&\left\langle m_{f, \psi}(s), m_{f^{\prime}, \psi^{\prime}}(s)\right\rangle_{L^{2}(G)} \\
&= \int_{H} \int_{\Lambda^{1}}\left\langle w_{f}(\lambda), w_{f^{\prime}}(\lambda)\right\rangle \overline{\eta\left(z^{-1} \lambda\right)} \eta^{\prime}\left(z^{-1} \lambda\right) d \mu(\lambda) d \nu_{H}(z) \cdot \delta_{\alpha, \alpha^{\prime}} \\
&= \int_{H} \int_{\Sigma} \int_{H}\left\langle w_{f}\left(z^{\prime} \sigma\right), w_{f^{\prime}}\left(z^{\prime} \sigma\right)\right\rangle \overline{\eta\left(z^{-1} z^{\prime} \sigma\right)} \eta^{\prime}\left(z^{-1} z^{\prime} \sigma\right) \delta\left(z^{\prime}\right)^{-1} \\
& \quad \times d \nu\left(z^{\prime}\right)|\mathbf{P f}(\sigma)| d \sigma d \nu(z) \cdot \delta_{\alpha, \alpha^{\prime}} \\
&= \int_{\Sigma} \int_{H}\left\langle w_{f}\left(z^{\prime} \sigma\right), w_{f^{\prime}}\left(z^{\prime} \sigma\right)\right\rangle\left(\int_{H} \overline{\eta\left(z^{-1} z^{\prime} \sigma\right)} \eta^{\prime}\left(z^{-1} z^{\prime} \sigma\right) d \nu(z)\right) \delta\left(z^{\prime}\right)^{-1} \\
& \quad \times d \nu\left(z^{\prime}\right)|\mathbf{P f}(\sigma)| d \sigma \cdot \delta_{\alpha, \alpha^{\prime}} \\
&= \int_{\Lambda^{1}}\left\langle w_{f}(\lambda), w_{f^{\prime}}(\lambda)\right\rangle d \mu(\lambda) \overline{\left\langle\eta, \eta^{\prime}\right\rangle} \cdot \delta_{\alpha, \alpha^{\prime}},
\end{aligned}
$$

which means we have the orthogonality relation

$$
\begin{equation*}
\left\langle W_{\psi}(f), W_{\psi^{\prime}}\left(f^{\prime}\right)\right\rangle_{L^{2}(G)}=\left\langle w_{f}, w_{f^{\prime}}\right\rangle_{\mathbf{K}}{\overline{\left\langle\eta, \eta^{\prime}\right\rangle}}_{L^{2}(H, \nu)} \cdot \delta_{\alpha, \alpha^{\prime}} \tag{2.5}
\end{equation*}
$$

In particular, this shows that if $\alpha \neq \alpha^{\prime}$, then the images of W_{ψ} and $W_{\psi^{\prime}}$ are orthogonal in $L^{2}(G)$. We are now ready to prove the main result.

Theorem 2.8 Let $G=N \rtimes H$ where N is a connected, simply connected nilpotent Lie group, and where H is a vector group such that the Lie algebra $\operatorname{ad}(\mathfrak{h})$ is \mathbf{R}-split and completely reducible, and such that $H_{[\pi]}=(1)$ holds for almost every $[\pi] \in \widehat{N}$. Let τ be the quasiregular representation of G in $L^{2}(N)$. Then τ has an admissible vector if and only if G is not unimodular.

Proof Suppose first that G is not unimodular. We need to construct an admissible vector for τ. To do this, we fix a Jordan-Hölder basis of G satisfying the conditions of Section 1, and with all notations from Section 1, we conclude that $\mathfrak{h}_{r}=(0)$. Recalling the structure of the Fourier transform on $L^{2}(N)$ developed in the preceding, and in particular the decomposition $L^{2}(N)=\bigoplus_{\beta} L^{2}(N)^{\beta}$, we then execute the construction given above for τ^{β}-admissible vectors: let η be a unit vector in $L^{2}\left(H, \nu_{H}\right)$ that also belongs to $L^{2}\left(H, \delta^{-1} \nu_{H}\right)$ and let $v, 1 \leq v \leq r$, such that $\delta\left(0,0, \ldots, z_{v}, \ldots, 0\right) \neq 1$. Write $\delta\left(0,0, \ldots, z_{v}, \ldots, 0\right)=z_{v}^{p}, p \neq 0$, and assume that $q=\operatorname{dim}(\Sigma)>0$. We omit the proof in the case where $q=0$; in that case each τ^{β} is a finite direct sum of irreducible, square-integrable representaitons, and the proof is a simplification of what follows. For each $\epsilon \in\{-1,1\}^{r}$, recall that s_{ϵ} is the identification map from Σ_{ϵ} onto an open subset of \mathbf{R}^{q}.

Now for each basis index β, we choose a measurable function $\tilde{u}^{\beta}: \mathbf{R}^{q} \rightarrow(0, \infty)$ such that for any polynomial function $P(t)$ on \mathbf{R}^{q}, we have

$$
\sum_{\beta} \int_{\mathbf{R}^{q}} \tilde{u}^{\beta}(t)^{p}|P(t)| d t<\infty
$$

Define $u^{\beta}: \Sigma \rightarrow(0, \infty)$ by $u^{\beta}(\sigma)=\tilde{u}^{\beta}\left(s_{\epsilon}(\sigma)\right), \sigma \in \Sigma_{\epsilon}$, so that we have

$$
\sum_{\beta} \int_{\Sigma} u^{\beta}(\sigma)^{p}|\mathbf{P f}(\sigma)| d \sigma<\infty
$$

Let ψ^{β} denote the function $\psi_{\eta, u^{\beta}}^{\beta, \beta}$ as defined above, so that

$$
\widehat{\psi}^{\beta}(z \sigma)=\eta\left(z_{1}, z_{2}, \ldots, z_{v-1}, z_{v} u^{\beta}(\sigma), z_{v+1}, \ldots, z_{r}\right) e_{z \sigma}^{\beta} \otimes e_{z \sigma}^{\beta} .
$$

Then each ψ^{β} is admissible for τ^{β} and the images of $W_{\psi^{\beta}}$ are pairwise orthogonal. Set $\psi=\sum_{\beta} \psi^{\beta}$. Then ψ belongs to $L^{2}(N)$: for each β,

$$
\int_{N}\left|\psi^{\beta}(x)\right|^{2} d x=\int_{H}|\eta(z)|^{2} \delta(z)^{-1} d \nu(z) \int_{\Sigma} u^{\beta}(\sigma)^{p}|\mathbf{P f}(\sigma)| d \sigma
$$

so $\sum_{\beta}\left\|\psi^{\beta}\right\|^{2}<\infty$. For any $f \in L^{2}(N)$,

$$
W_{\psi}(f)=\langle f, \tau(\cdot) \psi\rangle=\sum_{\beta}\left\langle f^{\beta}, \tau(\cdot) \psi^{\beta}\right\rangle=\sum_{\beta} W_{\psi^{\beta}}\left(f^{\beta}\right)
$$

and $\sum_{\beta}\left\|W_{\psi^{\beta}}\left(f^{\beta}\right)\right\|^{2}=\sum_{\beta}\left\|f^{\beta}\right\|^{2}=\|f\|^{2}$. Thus $W_{\psi}(f) \in L^{2}(G)$, and $\left\|W_{\psi}(f)\right\|=$ $\|f\|$ holds for all $f \in L^{2}(N)$.

On the other hand, suppose that $\psi \in L^{2}(N)$ is admissible for τ, and fix any basis index β. Then ψ^{β} is admissible for τ^{β}, so by Proposition 2.6, $\Delta_{\psi^{\beta}}(\lambda)=1$ a.e. on Λ^{1}, and hence $\Delta_{\psi^{\beta}}(\sigma)=1$ a.e. on Σ. Now if G is unimodular, then $\delta(z)=1$ for all $z \in H$, so by Lemma 2.4,

$$
\begin{aligned}
\int_{\Sigma}|\mathbf{P f}(\sigma)| d \sigma & =\int_{\Sigma} \Delta_{\psi^{\beta}}(\sigma)|\mathbf{P f}(\sigma)| d \sigma=\int_{\Sigma} \int_{H}\|\widehat{\psi}(z \sigma)\|^{2} d \nu(z)|\mathbf{P f}(\sigma)| d \sigma \\
& =\int_{\Lambda^{1}}\|\widehat{\psi}(\lambda)\|^{2} d \mu(\lambda)=\|\psi\|^{2}<\infty
\end{aligned}
$$

This is possible only if $d \sigma$ is a finite measure. But by Lemma 2.3, Σ is diffeomorphic with the cross-section Λ for G-orbits in Ω, and it is known [4, Corollary 2.2.2] that $d \sigma$ can only be finite when $q=0$ and Σ is a finite set. By Lemma 2.3, this means that the regular representation of the unimodular group G decomposes into a finite sum of irreducible (square integrable) representations. It is well known (see for example [11, Proposition 0.4$]$) that this can only happen when G is discrete.

Next we show that $L^{2}(G)$ can be decomposed by means of the wavelet transforms on each $L^{2}(N)^{\beta}$.

Lemma 2.9 There is an orthonormal basis $\left\{\eta_{j}\right\}$ for $L^{2}\left(H, \nu_{H}\right)$, each element of which also belongs to $L^{2}\left(H, \delta^{-1} \nu_{H}\right)$.

Proof Write $\delta(z)^{-1} d \nu_{H}(z)=z_{1}^{p_{1}} z_{2}^{p_{2}} \cdots z_{r}^{p_{r}} d z_{1} d z_{2} \cdots d z_{r}$ where $p_{w} \in \mathbf{R}, 1 \leq w \leq r$, and choose $\nu \geq 0$ such that $\nu \geq-\min \left(p_{1}, p_{2}, \ldots, p_{r}\right)$. For $j=\left(j_{1}, j_{2}, \ldots, j_{r}\right) \in$ $\{0,1, \ldots\}^{r}$, set

$$
\eta_{j}(z)=\prod_{w=1}^{r}\left(e^{-z_{w}}\left(2 z_{w}\right)^{\frac{\nu+1}{2}} L_{j_{w}}^{(\nu)}\left(2 z_{w}\right) c_{\nu, j_{w}}^{-1 / 2}\right), z=\left(z_{1}, z_{2}, \ldots, z_{r}\right) \in H
$$

where $L_{l}^{(\nu)}(s), l=0,1, \ldots$ is the Laguerre polynomial

$$
L_{l}^{(\nu)}(s)=\frac{1}{l!} e^{s} s^{-\nu}\left(\frac{d}{d s}\right)^{l}\left(e^{-s} s^{l+\nu}\right), 0<s<\infty
$$

and

$$
c_{\nu, l}=\int_{0}^{\infty} e^{-s} s^{\nu} L_{l}^{(\nu)}(s)^{2} d s
$$

As in [18] we see that $\left\{\eta_{j}\right\}_{j \in\{0,1,2, \ldots\}^{r}}$ is an orthonormal basis of $L^{2}\left(H, \nu_{H}\right)$. Also, since $\nu+p_{w} \geq 0,1 \leq w \leq r$, we have

$$
\int_{H}\left|\eta_{j}(z)\right|^{2} \delta(z)^{-1} d \nu_{H}(z)=\prod_{w=1}^{r} c_{\nu, j_{w}}^{-1} \int_{0}^{\infty} e^{-2 z_{w}}\left(2 z_{w}\right)^{\nu+p_{w}} L_{j}^{(\nu)}\left(2 z_{w}\right)^{2} 2^{1-p_{w}} d z_{w}<\infty
$$

Assume that G is not unimodular, and that $q=\operatorname{dim}(\Sigma)>0$. Let $\left\{\eta_{j}\right\}$ be the basis of $L^{2}(H, \nu)$ as in Lemma 2.9, and let $u: \Sigma \rightarrow(0, \infty)$ a measurable function such that $\int_{\Sigma} u(\sigma)^{p}|\mathbf{P f}(\sigma)| d \sigma$, where p is chosen appropriately as above. Fix a basis index β_{0}, set

$$
W_{j, u}^{\alpha}=W_{\psi_{\eta_{j}, u}^{\alpha, \beta}}, \alpha \in B, j \in\{0,1,2, \ldots\}^{r}
$$

and set

$$
\mathbf{J}_{j}^{\alpha}=W_{j, u}^{\alpha}\left(L^{2}(N)^{\beta_{0}}\right)
$$

From (2.5) we see that the subspaces \mathbf{J}_{j}^{α} are pairwise orthogonal in $L^{2}(G)$ and that each is isomorphic with \mathbf{K}.

Theorem 2.10 We have

$$
L^{2}(G)=\bigoplus_{\substack{\alpha \in B \\ j \in\{0,1,2, \ldots\}^{r}}} \mathbf{J}_{j}^{\alpha}
$$

Proof We must show that $L^{2}(G)$ is contained in the direct sum. Let $Y \in L^{2}(G)$ and for $z \in H$ set $Y_{z}(x)=Y(x z), x \in N$. We have

$$
\begin{aligned}
\|Y\|^{2} & =\int_{H}\left(\int_{N}\left|Y_{z}(x)\right|^{2} d x\right) \delta(z)^{-1} d \nu(z) \\
& =\int_{H}\left(\int_{\Lambda^{1}}\left\|\widehat{Y}_{z}(\lambda)\right\|^{2} d \mu(\lambda)\right) \delta(z)^{-1} d \nu(z)
\end{aligned}
$$

Since $\left\|\widehat{Y}_{z}(\lambda)\right\|^{2}=\sum_{\alpha, \beta}\left|\left\langle\widehat{Y}_{z}(\lambda) e_{\lambda}^{\alpha}, e_{\lambda}^{\beta}\right\rangle\right|^{2}$, then for each pair of indices α and β,

$$
\int_{H}\left|\left\langle\widehat{Y}_{z}(\lambda) e_{\lambda}^{\alpha}, e_{\lambda}^{\beta}\right\rangle\right|^{2} \delta(z)^{-1} d \nu(z)<\infty
$$

holds for μ-a.e. λ. Let $y_{\lambda}^{\alpha, \beta}$ denote the mapping $z \mapsto\left\langle\widehat{Y}_{z}(\lambda) e_{\lambda}^{\alpha}, e_{\lambda}^{\beta}\right\rangle \delta(z)^{-1 / 2}$; then there is a co-null subset Λ_{0}^{1} of Λ^{1}, such that $y_{\lambda}^{\alpha, \beta} \in L^{2}\left(H, \nu_{H}\right)$ holds for each $\lambda \in \Lambda_{0}^{1}$, $\alpha, \beta \in B$. Now for each $\lambda \in \Lambda_{0}^{1}$, write $\lambda=z_{\lambda} \sigma$ and set $\eta_{j, \lambda}(z)=\eta_{j}\left(z^{-1} z_{\lambda}\right), z \in$ H. Observe that $\left\{\eta_{j, \lambda} \mid j \in\{0,1,2, \ldots\}^{r}\right\}$ is an orthonormal basis of $L^{2}\left(H, \nu_{H}\right)$. Hence for each $\lambda \in \Lambda_{0}^{1}, \alpha, \beta \in B$, we have complex numbers $\left\{a_{j}(\lambda, \alpha, \beta) \mid j \in\right.$ $\left.\{0,1,2, \ldots\}^{r}\right\}$ such that

$$
y_{\lambda}^{\alpha, \beta}=\sum_{j \in\{0,1,2, \ldots\}^{r}} a_{j}(\lambda, \alpha, \beta) \eta_{j, \lambda}
$$

This means that $\widehat{Y}_{z}(\lambda) \delta(z)^{-1 / 2}=\sum_{\alpha, \beta} \sum_{j} a_{j}(\lambda, \alpha, \beta) \eta_{j, \lambda}(z) e_{\lambda}^{\beta} \otimes e_{\lambda}^{\alpha}$. Now for each $\alpha \in B, j \in\{0,1,2, \ldots\}^{r}$, set $g_{j}^{\alpha}(\lambda)=\sum_{\beta} a_{j}(\lambda, \alpha, \beta) e_{\lambda}^{\beta} \otimes e_{\lambda}^{\beta_{0}}$. We claim that $g_{j}^{\alpha} \in$ $\mathbf{H}^{\beta_{0}}$ for all α. To see this we observe that

$$
\begin{aligned}
\|Y\|^{2} & =\int_{H} \int_{\Lambda^{1}}\left\|\widehat{Y}_{z}(\lambda)\right\|^{2} d \mu(\lambda) \delta(z)^{-1} d \nu(z) \\
& =\int_{\Lambda^{1}} \sum_{\alpha, \beta} \int_{H}\left|\left\langle\delta(z)^{-1 / 2} \widehat{Y}_{z}(\lambda) e_{\lambda}^{\alpha}, e_{\lambda}^{\beta}\right\rangle\right|^{2} d \nu(z) d \mu(\lambda) \\
& =\int_{\Lambda^{1}} \sum_{\alpha, \beta}\left\|y_{\lambda}^{\alpha, \beta}\right\|^{2} d \mu(\lambda) \\
& =\int_{\Lambda^{1}} \sum_{\alpha, \beta} \sum_{j}\left|a_{j}(\lambda, \alpha, \beta)\right|^{2} d \mu(\lambda) \\
& \geq \int_{\Lambda^{1}} \sum_{\beta}\left|a_{j}(\lambda, \alpha, \beta)\right|^{2} d \mu(\lambda) \\
& =\left\|g_{j}^{\alpha}\right\|^{2}
\end{aligned}
$$

Denote by f_{j}^{α} the inverse Fourier transform of g_{j}^{α}, and set $\psi=\psi_{\eta_{j}, u}^{\alpha, \beta_{0}}$. Then for a.e. $z \in H,\left(W_{j, u}^{\alpha}\left(f_{j}^{\alpha}\right)\right)_{z}=\left(f_{j}^{\alpha} *(\tau(z) \psi)^{*}\right)$ belongs to $L^{2}(N)$, and for such z,

$$
\begin{aligned}
\left(W_{j, u}^{\alpha}\left(f_{j}^{\alpha}\right)_{z}\right)(\lambda) & =g_{j}^{\alpha}(\lambda) \circ\left(\eta_{j}\left(z^{-1} z_{\lambda}\right) e_{\lambda}^{\alpha} \otimes e_{\lambda}^{\beta_{0}}\right)^{*} \delta(z)^{1 / 2} \\
& =\delta(z)^{1 / 2}\left(\sum_{\beta} a_{j}(\lambda, \alpha, \beta) e_{\lambda}^{\beta} \otimes e_{\lambda}^{\beta_{0}}\right) \circ \eta_{j}\left(z^{-1} z_{\lambda}\right) e_{\lambda}^{\beta_{0}} \otimes e_{\lambda}^{\alpha} \\
& =\delta(z)^{1 / 2} \sum_{\beta} a_{j}(\lambda, \alpha, \beta) \eta_{j}\left(z^{-1} z_{\lambda}\right) e_{\lambda}^{\beta} \otimes e_{\lambda}^{\alpha} .
\end{aligned}
$$

Summing over all α and j, we find

$$
\begin{aligned}
\sum_{\alpha, j}\left(W_{j, u}^{\alpha}\left(f_{j}^{\alpha}\right)_{z}\right)^{\wedge}(\lambda) & =\delta(z)^{1 / 2} \sum_{\alpha, \beta}\left(\sum_{j} a_{j}(\lambda, \alpha, \beta) \eta_{j}\left(z^{-1} z_{\lambda}\right)\right) e_{\lambda}^{\beta} \otimes e_{\lambda}^{\alpha} \\
& =\sum_{\alpha, \beta}\left\langle\widehat{Y}_{z}(\lambda) e_{\lambda}^{\alpha}, e_{\lambda}^{\beta}\right\rangle e_{\lambda}^{\beta} \otimes e_{\lambda}^{\alpha} \\
& =\widehat{Y}_{z}(\lambda) .
\end{aligned}
$$

Taking the inverse Fourier transform we obtain $Y_{z}=\sum_{\alpha, j} W_{j, u}^{\alpha}\left(f_{j}^{\alpha}\right)_{z}$ for a.e. $z \in H$, and hence

$$
Y=\sum_{\alpha, j} W_{j, u}^{\alpha}\left(f_{j}^{\alpha}\right)
$$

References

[1] D. Arnal, M. BenAmmar, B. Currey, and B. Dali, Explicit construction of canonical coordinates for completely solvable Lie groups. J. Lie Theory 15(2005), 521-560.
[2] B. Currey, A continuous trace composition sequence for $C^{*}(G)$ where G is an exponential solvable Lie group. Math. Nachr. 159(1992), 189-212.
[3] An explicit Plancherel formula for completely solvable Lie groups. Michigan Math. J. 38(1991), no. 1, 75-87. Math. (to appear).
[5] Smooth decomposition of finite multiplicity monomial representations for a class of completely solvable homogeneous spaces. Pacific J. Math. 170(1995), no. 2, 429-460.
[6] , The structure of the space of coadjoint orbits of an exponential solvable Lie group. Trans. Amer. Math. Soc. 332(1992), no. 1, 241-269.
[7] B. Currey and R. Penney, The structure of the space of co-adjoint orbits of a completely solvable Lie group. Mich. Math. J. 36(1989), no. 2, 309-320.
[8] M. Duflo and C. Moore, On the regular representation of a nonunimodular locally compact group. J. Functional Analysis 21(1976), no. 2, 209-243.
[9] M. Duflo and M. Raïs, Sur l'analyse harmonique sur les groupes de Lie résolubles. Ann. Sci. École Norm. Sup. 9(1976), no. 1, 107-144.
[10] R. Fabec, and G. Ólafsson, The continuous wavelet transform and symmetric spaces. Acta Applicandae Math. (to appear)
[11] H. Führ, Admissible vectors for the regular representation. Proc. Amer. Math. Soc. 130(2002), no. 10, 2959-2970 (electronic).
[12] H. Ishi, Wavelet transforms for semidirect product groups. J. Fourier Anal. Appl. 12(2006), no. 1, 37-52.
[13] R. S. Laugesen, N. Weaver, G. Weiss, and E. N. Wilson, A characterization of the higher dimensional groups associated with continuous wavelets. J. Geom. Anal. 12(2002), no. 1, 89-102.
[14] R. Lipsman, Harmonic analysis on exponential solvable homogeneous spaces: the algebraic or symmetric cases. Pacific. J. Math. 140(1989), no. 1, 117-147.
$[15] \longrightarrow$ Induced representations of completely solvable Lie groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17(1990), no. 1, 127-164.
[16] \longrightarrow, The multiplicity function on exponential and completely solvable homogeneous spaces. Geom. Dedicata 39(1991), no. 2, 155-161.
[17] R. Lipsman and J. Wolf, Canonical semi-invariants and the Plancherel formula for parabolic groups. Trans. Amer. Math. Soc. 269(1982), no. 1, 111-131.
[18] H. Liu and L. Peng, Admissible wavelets associated with the Heisenberg group. Pacific J. Math. 180(1997), no. 1, 101-123.
[19] N. V. Pedersen, On the infinitesimal kernel of irreducible representations of nilpotent Lie groups. Bull. Soc. Math. France 112(1984), no. 4, 423-467.
[20] L. Pukánszky, On the characters and the Plancherel formula of nilpotent Lie groups. J. Functional Analysis 1(1967), 255-280.
[21] 73-113.
[22] G. Weiss and E. N. Wilson, The mathematial theory of wavelets. In: Twentieth Century Harmonic Analysis - A Celebration, NATO Sci. Ser. II Math. Phys. Chem. 33, Kluwer Acad. Publ., Dordrecht, 2001, pp. 329-366.

Department of Mathematics and Computer Science
Saint Louis University
Saint Louis, MO 63103
U.S.A.
e-mail:curreybn@slu.edu

[^0]: Received by the editors November 3, 2004; revised March 16, 2005
 AMS subject classification: 22E27, 22E30.
 (C)Canadian Mathematical Society 2007.

