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UNIQUENESS PROBLEM

WITH TRUNCATED MULTIPLICITIES

IN VALUE DISTRIBUTION THEORY, II

HIROTAKA FUJIMOTO

Abstract. Let H1, H2, . . . , Hq be hyperplanes in P N (
�
) in general position.

Previously, the author proved that, in the case where q ≥ 2N +3, the condition
ν(f, Hj) = ν(g,Hj) imply f = g for algebraically nondegenerate meromorphic
maps f, g :

� n
→ P N(

�
), where ν(f, Hj) denote the pull-backs of Hj through

f considered as divisors. In this connection, it is shown that, for q ≥ 2N + 2,
there is some integer `0 such that, for any two nondegenerate meromorphic
maps f, g :

� n
→ P N (

�
) with min(ν(f, Hj), `0) = min(ν(g,Hj), `0) the map

f × g into P N(
�
) × P N(

�
) is algebraically degenerate. He also shows that, for

N = 2 and q = 7, there is some `0 such that the conditions min(ν(f, Hj), `0) =
min(ν(g,Hj), `0) imply f = g for any two nondegenerate meromorphic maps
f, g into P 2(

�
) and seven generic hyperplanes Hj ’s.

§1. Introduction

In [2]–[4], the author gave several types of generalizations of the clas-

sical Nevanlinna’s uniqueness theorem for meromorphic functions to the

case of meromorphic maps of Cn into PN (C). He considered two (linearly)

nondegenerate meromorphic maps f and g of Cn into PN (C) satisfying

the condition that ν(f,Hj) = ν(g,Hj) for q hyperplanes H1,H2, · · · ,Hq in

PN (C) located in general position, where we denote by ν(f,H) the map

of Cn into Z whose values at each point z ∈ Cn is given by the intersec-

tion multiplicity of f(Cn) and a hyperplane H at f(z). He showed that,

if q ≥ 3N + 2 then f = g, and if q = 3N + 1 then there is a projective

linear transformation L of PN (C) onto PN (C) itself such that g = L · f .

Moreover, he proved that, if either f or g is algebraically nondegenerate

and q ≥ 2N +3, then f = g. In connection with these results, it is an inter-

esting problem to ask whether these results remain valid if the assumption

concerning multiplicity is weaken. In this paper, we will try to get some

partial answers to this problem.
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Take q hyperplanes H1,H2, . . . ,Hq in PN (C) located in general posi-

tion, a nondegenerate meromorphic map g : Cn → PN (C) and a positive

integer `0. We consider the family G(H1, . . . ,Hq; g; `0) of all nondegenerate

meromorphic maps f : Cn → PN (C) satisfying the condition

(H) min(ν(f,Hj), `0) = min(ν(g,Hj), `0) (1 ≤ j ≤ q).

Here, for `0 = 1, the condition (H) means that f−1(Hj) = g−1(Hj)

(1 ≤ j ≤ q). The purpose of this paper is to give some degeneracy and

uniqueness theorems of maps in G(Hj ; g; `0) for a sufficiently large `0.

There are some results related to this study which concern the family

F(H1, . . . ,Hq; g; `0) of all maps f in G(Hj ; g; `0) satisfying the additional

conditions;

(a) dim
⋃

i<j f
−1(Hi ∩Hj) ≤ n− 2,

(b) f = g on
⋃q

j=1 g
−1(Hj).

For the case `0 = 1, the following results were given by L. Smiley and

S. Ji:

Theorem 1.1. ([10]) If q > 3N + 1, then F(Hj ; g; 1) = {g}.

Theorem 1.2. ([8]) Assume that q = 3N + 1. Then, for three maps

f1, f2, f3 ∈ F(Hj ; g; 1), the map F = f1×f2×f3 : Cn → PN (C)×PN (C)×
PN (C) is algebraically degenerate, namely, {(f1(z), f2(z), f3(z)) ; z ∈ Cn}
is included in a proper algebraic subset of PN (C) × PN (C) × PN (C).

In the previous paper ([7]), the author considered the family F(Hj ; g; `0)

for the case `0 > 1 and gave the following results:

Theorem 1.3. Suppose that q ≥ 2N +2 and take N +2 maps f1, . . . ,

fN+2 in F(Hj ; g;N(N+1)/2+N). Then, suitably chosen N+1 hyperplanes

among Hj’s, say H1,H2, . . . ,HN+1, satisfy the following:

If we take homogeneous coordinates (w1 : · · · : wN+1) on PN (C) with

Hj = {wj = 0} (1 ≤ j ≤ N + 1) and write fk = (fk
1 : · · · : fk

N+1) with

nonzero holomorphic functions fk
j , then

f1
i

f1
j

− fN+2
i

fN+2
j

,
f2

i

f2
j

− fN+2
i

fN+2
j

, . . . ,
fN+1

i

fN+1
j

− fN+2
i

fN+2
j

are linearly dependent over C for 1 ≤ i, j ≤ N + 1.
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Theorem 1.4. If q = 3N + 1, then #F(Hj; g; 2) ≤ 2, where #A

denotes the number of elements of the set A.

In this paper, we prove the following result for the family G(Hj ; g; `0):

Theorem 1.5. Assume that q ≥ 2N + 2. Then, there exists some

positive integer `0 depending only on N such that, for any two maps f1 and

f2 in G(H1, . . . ,Hq; g; `0), the map F := f1 × f2 : Cn → PN (C) × PN (C)

is algebraically degenerate.

For the particular case N = 2, we can show the following uniqueness

theorem:

Theorem 1.6. Assume that N = 2 and q = 7. Then, there exist some

positive integer `0 and a proper algebraic set V in the cartesian product of

seven copies of the space P 2(C)∗ of all hyperplanes in P 2(C) such that, for

an arbitrary set (H1,H2, . . . ,H7) 6∈ V , G(H1, · · · ,H7; g; `0) = {g}.

We have several open problems related to the above results. We have

not got yet any uniqueness theorem for maps in G(H1, . . . ,Hq; g; `0) in case

N > 2. We do not know the best possible number `0. We cannot answer to

the question whether Theorem 1.6 remains valid under the only assumption

that Hj’s are in general position or not.

In §2, we give some combinatorial lemmas which are improvements of

the results given in [2] and, in §3, a representation theorem of meromorphic

mappings as an application of Borel’s method. After these preparations, we

give a proof of Theorem 1.5 in §§4 and 5. Theorem 1.6 is proved in §6.

§2. Combinatorial lemmas

Set I := {1, 2, . . . , q}. For 1 ≤ s ≤ q we denote by Iq,s the set of all

combinations of s elements in I, namely,

Iq,s := {(i1, i2, . . . , is) ; 1 ≤ i1 < i2 < · · · < is ≤ q}.

Consider a relation
R∼ between two elements in Iq,s satisfying the con-

ditions;

(i) I
R∼ I for all elements I in Iq,s,

(ii) if I
R∼ J , then J

R∼ I.

In the following, we call such a relation a pre-quivalence relation.

https://doi.org/10.1017/S0027763000007030 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007030


164 H. FUJIMOTO

To give some properties of
R∼, we consider Z-module Zq. With each pair

of I = (i1, . . . , is) and J = (j1, . . . , js) in Iq,s we associate the element

RI,J = δi1 + · · · + δis − (δj1 + · · · + δjs) ∈ Zq,

where δi := (0, . . . , 0,
i-th
1 , 0, . . . , 0) ∈ Zq (1 ≤ i ≤ q). By R we denote Z-

submodule of Zq generated by all elements RI,J associated with I and J in

Iq,s with I
R∼ J . In the following, we assume R 6= {(0, . . . , 0)}.

Every element L = (`1, `2, . . . , `q) ∈ R can be represented as

L = m1RI1,J1 +m2RI2,J2 + · · · +mkRIk,Jk
,

where m` are integers and I`, J` are elements in Iq,s with I`
R∼ J`. This

implies the following:

If L = (`1, `2, . . . , `q) ∈ R, then `1 + `2 + · · · + `q = 0.(2.1)

Definition 2.2. For two elements I and J in Iq,s by the notation

I ∼ J we mean that there is a positive integer m such that mRI,J ∈ R.

We can easily show that

(2.3)

(i) if I
R∼ J , then I ∼ J ,

(ii) the relation ∼ is an equivalence relation.

Now, we prove the following:

Proposition 2.4. There are q real numbers p1, p2, . . . , pq satisfying

the following conditions;

(i) for I = (i1, . . . , is), J = (j1, . . . , js) ∈ Iq,s, pi1 + · · · + pis = pj1 +

· · · + pjs if and only if I ∼ J ,

(ii) for 1 ≤ i < j ≤ q, pi = pj if and only if there is a nonzero integer

m0 such that

(0, . . . , 0,
i-th
m0, 0, . . . , 0,

j-th
−m0, 0, . . . , 0) ∈ R.(2.5)

Proof. Take a system of generators Li := (`i1, `i2, . . . , `iq) (1 ≤ i ≤ K)

of R and define a matrix

L := (`ij ; 1 ≤ i ≤ K, 1 ≤ j ≤ q) .
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We change L by the following operations:

T0. Two columns are exchanged for each other.

T1. One row is multiplied by a nonzero integer and

T2. A nonzero integer multiple of one row is added to the another row.

As is easily seen, by repeating these changes suitably, we obtain a new

matrix L̃ of the form

L̃ =















˜̀
11

˜̀
1R+1 · · · ˜̀

1q
˜̀
22

˜̀
2R+1 · · · ˜̀

2q

. . . · · ·
˜̀
RR

˜̀
RR+1 · · · ˜̀

Rq

0 0















,

where ˜̀
ii (1 ≤ i ≤ R) are positive integers and R ≤ q − 1 by (2.1). We

denote the first R rows of L̃ by L∗
1, L

∗
2, . . . , L

∗
R. Then, after suitable changes

of indices 1, 2, . . . , q, every L ∈ R is represented as

m0L = m1L
∗
1 + · · · +mRL

∗
R

for some integers mi (0 ≤ i ≤ R), where m0 > 0. Moreover, the vector

(m1/m0, . . . ,mR/m0) of rational numbers are uniquely determined. In fact,

the above-mentioned operations T1 and T2 are invertible up to multiplica-

tions of nonzero integers and so L∗
1, L

∗
2, . . . , L

∗
R give a basis of R over Q.

For each I and J in Iq,s, we can write RI,J as

RI,J =

R
∑

`=1

rIJ
` L∗

` + (0, . . . , 0, rIJ
R+1, . . . , r

IJ
q )

with rational numbers rIJ
` . Here, I ∼ J if and only if rIJ

R+1 = · · · = rIJ
q = 0.

Now, take real numbers pR+1, pR+2, . . . , pq which are linearly indepen-

dent over Q and set

pj := −(˜̀jR+1pR+1 + ˜̀
jR+2pR+2 + · · · + ˜̀

jqpq)/˜̀jj (1 ≤ j ≤ R).(2.6)

Then, the numbers pi (R + 1 ≤ i ≤ q) satisfy the condition that, for all I

and J with I 6∼ J ,

rIJ
R+1pR+1 + · · · + rIJ

q pq 6= 0,

and, for 1 ≤ i < j ≤ R, pi = pj if and only if

1
˜̀
ii

(˜̀iR+1, . . . , ˜̀iq) =
1
˜̀
jj

(˜̀jR+1, . . . , ˜̀jq).

https://doi.org/10.1017/S0027763000007030 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007030


166 H. FUJIMOTO

By (L1, L2) we denote the inner product of L1 and L2, namely, (L1, L2) =
∑q

j=1 `j`
′
j for L1 = (`1, . . . , `q), L2 = (`′1, . . . , `

′
q) ∈ Zq. Since (L∗

j ,

(p1, . . . , pq)) = 0 (1 ≤ j ≤ R) by (2.6), we have

pi1 + · · · + pis − (pj1 + · · · + pjs) = (RI,J , (p1, . . . , pq))

= rIJ
R+1pR+1 + · · · + rIJ

q pq,

This identity vanishes if and only if I ∼ J , which shows that these pj’s

satisfy the condition (i) of Proposition 2.4. On the other hand, if (2.5) holds

for some m0, then m0pi−m0pj = 0 and so pi = pj. Conversely, assume that

pi = pj for 1 ≤ i < j ≤ q. Then, 1 ≤ i ≤ R. If 1 ≤ i ≤ R < j ≤ q, then (2.5)

holds for m0 := ˜̀
ii and, if 1 ≤ i < j ≤ R, then (1/˜̀ii)(˜̀iR+1, . . . , ˜̀iq) =

(1/˜̀jj)(˜̀jR+1, . . . , ˜̀jq), which gives also (2.5) for some nonzero integer m0.

This completes the proof of Proposition 2.4.

Proposition 2.7. Take real numbers p1, p2, . . . , pq satisfying the con-

ditions of Proposition 2.4 and q elements g1, . . . , gq in a torsion free abelian

group G. If pi = pj for some i, j with 1 ≤ i < j ≤ q, then there are some

positive integer m0 and I1, J1, . . . , Ik0 , Jk0 ∈ Iq,s with I`
R∼ J` (1 ≤ ` ≤ k0)

such that

(gi/gj)
m0 =

k0
∏

`=1

GI`
/GJ`

,

where GI := gi1gi2 · · · gis for I = (i1, . . . , is) ∈ Iq,s and the number k0 is

taken so as to be bounded by a constant depending only on q.

Proof. By Proposition 2.4, there is a nonzero integer m0 satisfying

(2.5). Since R is generated by RI,J with I
R∼ J , this implies that

(gi/gj)
m0 =

k0
∏

`=1

GI`
/GJ`

for I`, J` ∈ Iq,s with I`
R∼ J`, Moreover, the number k0 can be taken so as

to be bounded above by a constant depending only on q, because there are

only finitely many possible cases in these combinatorial considerations.

Definition 2.8. Let
R∼ be a pre-equivalence relation among the ele-

ments in Iq,s. For 1 ≤ s < r ≤ q, we say that the relation
R∼ have the prop-

erty (Pr,s) if any chosen r distinct elements ι(1), ι(2), . . . , ι(r) in I satisfy
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the condition that, for any given i1, . . . , is (1 ≤ i1 < · · · < is ≤ r) there ex-

ist some other j1, . . . , js (1 ≤ j1 < · · · < js ≤ r, {i1, . . . , is} 6= {j1, . . . , js})
such that

(ι(i1), ι(i2), . . . , ι(is))
R∼ (ι(j1), ι(j2), . . . , ι(js)).

Now, take a pre-equivalence relation
R∼ among the elements in Iq,s with

the property (Pr,s) and choose real numbers p1, p2, . . . , pq satisfying the

conditions in Proposition 2.4. Changing labels 1, 2, . . . , q, we assume that

p1 ≤ p2 ≤ · · · ≤ pq.(2.9)

Proposition 2.10. (i) ps = ps+1 = · · · = ps+u for some u ≥ q−r+1.

(ii) Choose r distinct elements in {1, 2, . . . , q} arbitrarily, say 1, 2, . . . , r.

Assume that

p1 ≤ · · · ≤ pt−1 < pt = · · · = ps+v < ps+v+1 ≤ · · · ≤ pr

for some t and v with 1 ≤ t ≤ s, 1 ≤ v ≤ r − s. If for some i1, . . . , is with

1 ≤ i1 < · · · < is ≤ r

p1 + · · · + ps = pi1 + · · · + pis ,

then (i1, . . . , it−1) = (1, . . . , t− 1) and t ≤ ij ≤ s+ v for t ≤ j ≤ s.

Proof. Take the number v with 0 ≤ v ≤ q − s such that

p1 ≤ · · · ≤ ps = · · · = ps+v < ps+v+1 ≤ · · · ≤ pq,

and assume that 0 ≤ v < q − r + 1. In I, we choose r elements ι(1) := 1,

. . . , ι(s) := s, ι(s+ 1) := q− r+ s+ 1, . . . , ι(r) := q. By the assumption, for

I = (1, 2, . . . , s) ∈ Ir,s, we can take some other J = (j1, . . . , js) ∈ Ir,s such

that (ι(1), ι(2), . . . , ι(s))
R∼ (ι(j1), ι(j2), . . . , ι(js)). This gives

p1 + · · · + ps = pι(j1) + · · · + pι(js),

and so

(pι(j1) − p1) + (pι(j2) − p2) + · · · + (pι(js) − ps) = 0.

On the other hand, we see easily i ≤ ji and so pι(ji) − pi ≥ 0 for 1 ≤ i ≤ s.

This implies that

p1 = pι(j1), p2 = pι(j2), . . . , ps = pι(js).
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By the assumption, pi < pι(i′) for any i, i′ with 1 ≤ i ≤ s, s+1 ≤ i′ ≤ r. We

have necessarily ji = i for 1 ≤ i ≤ s. This is a contradiction. We conclude

v ≥ q − r + 1. This completes the proof of Proposition 2.10 (i).

The proof of (ii) is similar to the above. Under the assumption of Propo-

sition 2.10 (ii), we have

p1 = pι(i1), p2 = pι(i2), . . . , ps = pι(is),

whence we get (i1, . . . , it−1) = (1, . . . , t−1) and t ≤ ij ≤ s+v for t ≤ j ≤ s.

The proof of Proposition 2.10 is completed.

§3. An application of Borel’s method

Let f be a nonzero meromorphic function on a domain in Cn. For a set

α = (α1, . . . , αn) of nonnegative integers, we set |α| := α1 + · · ·+αn and de-

fine Dαf := (∂|α|f)/(∂α1z1 · · · ∂αnzn). Consider a vector-valued meromor-

phic function F = (f1, . . . , fp) on Cn. For each a ∈ Cn, we denote by Ma the

set of all germs of meromorphic functions at a and, for each κ ≥ 0, by Fκ the

Ma-submodule of Mp
a generated by {DαF := (Dαf1, . . . ,D

αfp) ; |α| ≤ κ}.
Set `F (κ) := rankMaFκ.

Definition 3.1. Assume that meromorphic functions f1, . . . , fp are

linearly independent over C. For p vectors αi := (αi1, . . . , αin) (1 ≤ i ≤ p)

composed of nonnegative integers αij , we call a set α = (α1, α2, . . . , αp) an

admissible set for F = (f1, . . . , fp) if {Dα1
F, . . . ,Dα`F (κ)

F} is a basis of Fκ

for each κ = 1, 2, . . . , κ0 := min{κ′ ; `F (κ′) = p}.

By definition, for an admissible set (α1, α2, . . . , αp) we have

det
(

Dα1
F, . . . ,Dαp

F
)

6≡ 0.

As was shown in [5], we have the following:

Proposition 3.2. ([5, Proposition 4.5]) For arbitrarily given linearly

independent meromorphic functions f1, . . . , fp on Cn, there exists an ad-

missible set α = (α1, . . . , αp) with |α`| ≤ `− 1.

Proposition 3.3. ([5, Proposition 4.9]) Let α = (α1, . . . , αp) be an

admissible set for F = (f1, . . . , fp) and let h be a holomorphic function.

Then,

det
(

Dα1
(hF ), . . . ,Dαp

(hF )
)

= hp det
(

Dα1
F, . . . ,Dαp

F
)

.
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We say that a polynomial Q(. . . ,Xα
j , . . .) in variables . . . ,Xα

j , . . ., where

j = 1, 2, . . . and α = (α1, . . . , αn) with nonnegative integers α`, is of weight

d if

Q̃(t1, t2, . . .) := Q(. . . , t
|α|
j , . . .)

is of degree d as a polynomial in t1, t2, . . . , where a polynomial of weight 0

means a constant function.

Let h1, h2, . . . be finitely many nonzero meromorphic functions on Cn.

By a rational function of weight ≤ d in logarithmic derivatives of hj ’s we

mean a nonzero meromorphic function ϕ on Cn which is represented as

ϕ =
P
(

. . . ,Dαhj/hj , . . .
)

Q
(

. . . ,Dαhj/hj , . . .
)

with polynomialsP (. . . ,Xα
j , . . .) andQ(. . . ,Xα

j , . . .) in variables . . . ,Xα
j , . . .

of weight ≤ d. Particularly, if we can take Q = 1 in the above representation,

ϕ is called a polynomial of weight ≤ d in logarithmic derivatives of hj ’s.

Proposition 3.4. Let h1, h2, . . . , hp and a1, a2, . . . , ap be nonzero

meromorphic functions on Cn such that each ai (1 ≤ i ≤ p) is a ratio-

nal function of weight ≤ d in logarithmic derivatives of hj’s. Assume that

a1h1 + a2h2 + · · · + aphp = 0

for some p ≥ 2. Then, the set {1, 2, . . . , p} of indices has a partition

{1, 2, . . . , p} = J1 ∪J2 ∪ · · · ∪Jk, #Jα ≥ 2 for all α, Jα ∩ Jβ = ∅ for α 6= β

such that, for each α,

(i)
∑

i∈Jα
aihi = 0,

(ii) hi′/hi (i, i′ ∈ Jα) are rational functions in logarithmic derivatives

of hj’s with weights bounded by a constant D(d, p) depending only on d

and p.

For the proof, we first give the following:

Lemma 3.5. If a nonzero meromorphic function a on Cn can be writ-

ten as a polynomial in logarithmic derivatives of hj ’s with weight d, then

Dαa is also written as a polynomial in logarithmic derivatives of hj ’s with

weight ≤ d+ |α|.
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Proof. It suffices to show Lemma 3.5 for the case m := |α| = 1, because

general cases are shown by induction on m. Assume that a is written as

a = P

(

. . . ,
Dαhj

hj
, . . .

)

with a polynomial P (. . . ,Xα
j , . . .) with weight d. Then, for Di = ∂/∂zi

(1 ≤ i ≤ n) we get

Dia =
∑

j,α

∂P

∂Xα
j

Di

(

Dαhj

hj

)

.

On the other hand, it is easily seen that ∂P/∂Xα
j is a polynomial of weight

≤ d−|α| and Di(D
αhj/hj) is represented as a polynomial of weight ≤ |α|+1

in logarithmic derivatives of hj . These give Lemma 3.5.

Proof of Proposition 3.4. This is proved by induction on p. For the case

p = 2, we have nothing to prove, because h1/h2 = −a2/a1. Assume that

p ≥ 3.

We first show that there are some indices i1 := 1, i2, . . . , ip0 , where

p0 ≥ 2, such that hi`/h1 (2 ≤ ` ≤ p0) can be written as a rational func-

tion of logarithmic derivatives of hj ’s whose weight is bounded by a con-

stant depending only on d and p0. To this end, we take a subset J of

Ip := {1, 2, . . . , p} such that #J takes the minimum among all subsets J ′

of Iq satisfying the condition that 1 ∈ J ′ and
∑

i∈J ′ ciaihi = 0 for some

nonzero constants ci ∈ C. Changing indices if necessary, we assume that

J = {1, 2, . . . , p0}, where p0 ≥ 2 because of aihi 6= 0 for each i. By defini-

tion of p0, there are some nonzero constants ci such that

c1a1h1 + c2a2h2 + · · · + cp0ap0hp0 = 0.(3.6)

Moreover, a1h1, a2h2, . . . , ap0−1hp0−1 are linearly independent over C. In

fact, if there is a nonzero vector (d1, . . . , dp0−1) with

d1a1h1 + d2a2h2 + · · · + dp0−1ap0−1hp0−1 = 0,

we can easily construct the identity of the form (3.6) with less than p0

terms, which contradicts the property of J . We set ϕi := ciaihi for 1 ≤
i ≤ p0. By the use of Proposition 3.2, we can choose an admissible set

α = (α1, . . . , αp0−1) with |α| := |α1| + · · · + |αp0−1| ≤ (p0 − 2)(p0 − 1)/2
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for the functions ϕ1, ϕ2, . . . , ϕp0−1, where α1 = (0, . . . , 0). We differentiate

both sides of (3.6) and get

Dα`

ϕ1 + · · · +Dα`

ϕp0 =
Dα`

ϕ1

h1
h1 + · · · + Dα`

ϕp0

hp0

hp0 = 0

for ` = 1, 2, . . . , p0 − 1. We regard these identities as a simultaneous system

of linear equations with unknowns h1, . . . , hp0 , and obtain

(h1 : h2 : · · · : hp0) = (∆1 : −∆2 : · · · : (−1)p0−1∆p0),

where

∆i :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ1

h1
· · · ϕi−1

hi−1

ϕi+1

hi+1
· · · ϕp0

hp0

Dα2
ϕ1

h1
· · · Dα2

ϕi−1

hi−1

Dα2
ϕi+1

hi+1
· · · Dα2

ϕp0
hp0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Dαp0−1

ϕ1

h1
· · · Dαp0−1

ϕi−1

hi−1

Dαp0−1
ϕi+1

hi+1
· · · Dαp0−1

ϕp0
hp0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

On the other hand, as is easily seen, Dα`

ϕi/hi can be represented as a

polynomial in functionsDβai andDβhi/hi with |β| ≤ |α`|. Therefore, by the

use of Lemma 3.5, each ∆i can be represented as a polynomial in logarithmic

derivatives of hj ’s with uniformly bounded weight. These conclude that

each hi/h1 (2 ≤ i ≤ p0) is represented as a rational function of logarithmic

derivatives of hj ’s with uniformly bounded weight. For the case p = p0, we

have Proposition 3.4. In fact, we may take k = 1, J1 = 1 in Proposition 3.4.

In the following, we assume p0 < p.

Now, we set

ã := a1 + a2
h2

h1
+ · · · + ap0

hp0

h1
.

As was shown above, ã is a rational function of logarithmic derivatives of

hj ’s with uniformly bounded weight. On the other hand, the assumption

implies that

ãh1 + ap0+1hp0+1 + · · · + aphp = 0.

If ã = 0, then we easily obtain the desired conclusion by applying the

induction hypothesis for the case ≤ p − 1. On the other hand, for the

case ã 6= 0, we can also apply the induction assumption to get the desired

conclusion, because 1 + (p − p0) < p. Since there are only finitely many
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possible cases where the indices 1, 2, . . . , p0 are chosen, all weights appearing

in the above discussion are bounded by a constant depending only on d

and p. The proof of Proposition 3.4 is completed.

§4. Relations among the pull-backs of hyperplanes

Let f and g be nondegenerate meromorphic maps of Cn into PN (C)

with reduced representations f = (f1 : · · · : fN+1), g = (g1 : · · · : gN+1)

respectively. Here, a reduced representation f = (f1 : · · · : fN+1) means that

fj are holomorphic functions on Cn with dim{f1 = · · · = fN+1 = 0} ≤ n−2.

Let

Hj : aj1w1 + · · · + ajN+1wN+1 = 0 (1 ≤ j ≤ q)

be hyperplanes in general position, where q ≥ 2N + 2. We define meromor-

phic functions hj (1 ≤ j ≤ q) on Cn by

hj :=
aj1g1 + · · · + ajN+1gN+1

aj1f1 + · · · + ajN+1fN+1
.(4.1)

Consider the set I := {1, 2, . . . , q} as in §2 and Iq,N+1 of all combina-

tions of N + 1 elements in I.

Definition 4.2. Two combinations I = (i1, . . . , iN+1) and J =

(j1, . . . , jN+1) ∈ Iq,N+1 are said to be R-related and indicated as I
R∼ J

if we have a representation

hi1hi2 · · · hiN+1

hj1hj2 · · · hjN+1

=
Q1(. . . ,D

αhj/hj , . . .)

Q2(. . . ,Dαhj/hj , . . .)

with polynomials Q1(. . . ,X
α
j , . . .) and Q2(. . . ,X

α
j , . . .) with weights bound-

ed from above by the constant D(0, p) given in Proposition 3.4, where p :=
(

2N+2

N+1

)

.

Obviously, the relation
R∼ is a pre-equivalence relation.

In this situation, we can prove the following:

Proposition 4.3. The relation
R∼ have the property (P2N+2,N+1).
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Proof. Choose arbitrary 2N+2 distinct indices ι(i) among {1, 2, . . . , q},
say ι(1) = 1, ι(2) = 2, . . . , ι(2N + 2) = 2N + 2. By the definition of hj ’s, we

have

ai1g1 + · · · + aiN+1gN+1 − hiai1f1 − · · · − hiaiN+1fN+1 = 0

(1 ≤ i ≤ 2N + 2).

From these 2N + 2 identities eliminating 2N + 2 functions f1, . . . , fN+1, g1,

. . . , gN+1, we get

Ψ := det(ai1, . . . , aiN+1, hiai1, . . . , hiaiN+1 ; 1 ≤ i ≤ 2N + 2) = 0.(4.4)

With each combination I = (i1, i2, . . . , iN+1) (1 ≤ i1 < · · · < iN+1 ≤
2N +2) we associate J = (j1, j2, . . . , jN+1) (1 ≤ j1 < · · · < jN+1 ≤ 2N +2)

such that

{i1, i2, . . . , iN+1, j1, j2, . . . , jN+1} = {1, 2, . . . , 2N + 2},

and set

AI = (−1)i1+···+iN+1+(N+1)(N+2)/2 det(airs ; 1 ≤ r, s ≤ N + 1)

× det(ajrs ; 1 ≤ r, s ≤ N + 1),

where AI 6= 0 because Hj’s are assumed to be in general position. Then, by

the Laplace expansion formula,

Ψ =
∑

I∈I2N+2,N+1

AIhI = 0,

where hI := hi1hi2 · · · hiN+1
for I = (i1, i2, . . . , iN+1). We now apply Propo-

sition 3.4 to show that I2N+2,N+1 is divided as

I2N+2,N+1 = J1 ∪ J2 ∪ · · · ∪ Jk, #Jα ≥ 2 for all α, Jα ∩ Jβ = ∅ for α 6= β

such that, for each α,
∑

I∈Jα
AIhI = 0 and each hI/hI′ (I, I ′ ∈ Jα) is

a rational function in the logarithmic derivatives of hj ’s whose weight is

bounded above by D(0, p). This concludes that, for any given i1, . . . , iN+1

(1 ≤ i1 < · · · < iN+1 ≤ 2N + 2) there exists some other j1, . . . , jN+1

(1 ≤ j1 < · · · < jN+1 ≤ 2N + 2, {i1, . . . , iN+1} 6= {j1, . . . , jN+1}) such that

(i1, i2, . . . , iN+1)
R∼ (j1, j2, . . . , jN+1), because each Jα contains at least two

elements. This completes the proof of Proposition 4.3.
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Proposition 4.5. In the above situation, assume that q = 2N + 2.

Then, one of the following two cases occurs;

(i) There is some positive integer m such that, for 1 ≤ i < i′ ≤ 2N + 2,

(hi′/hi)
m are rational functions in logarithmic derivatives of hj ’s whose

weights divided by m are bounded by a constant depending only on N .

(ii) 2N + 1 functions among h1, . . . , h2N+2 are algebraically dependent.

Proof. We take real numbers p1, p2, . . . , p2N+2 satisfying the conditions

in Proposition 2.4. Changing indices, we assume that

p1 ≤ p2 ≤ · · · ≤ p2N+2.

If p1 = · · · = p2N+2, then we can apply Proposition 2.7 to the torsion-free

abelian group G of all nonzero meromorphic functions on Cn and gj := hj ∈
G (1 ≤ j ≤ 2N + 2) to get the case (i) of Proposition 4.5.

Assume that pi0 < pi0+1 for some i0, where i0 6= N + 1 by Propo-

sition 2.10. Replacing each pi by −pi if necessary, we may assume that

1 ≤ i0 ≤ N . We now observe a combination (j1, . . . , jN+1) ∈ I2N+2,N+1

such that

p1 + p2 + · · · + pN+1 = pj1 + pj2 + · · · + pjN+1
.

Proposition 2.10 implies that

j1 = 1, . . . , ji0 = i0, i0 + 1 ≤ ji0+1 < · · · < jN+1 ≤ 2N + 2.(4.6)

Therefore, the set

J := {J ∈ I2N+2,N+1 ; (1, 2, . . . , N + 1) ∼ J}

consists of combinations satisfying the above condition (4.6), where ∼
means the eqivalence relation defined by Definition 2.2 associated with the

relation
R∼. As a consequence of Proposition 3.4, we have a nontrivial rela-

tion
∑

J=(j1,...,jN+1)∈J

AJhj1 · · · hjN+1

= h1 · · · hi0

(

∑

J=(1,...,i0,ji0+1,...,jN+1)∈J

AJhji0+1 · · · hjN+1

)

= 0

for the nonzero constants AJ . This shows that there is a nontrivial algebraic

relation among hi0+1, hi0+2, . . . , h2N+2.

https://doi.org/10.1017/S0027763000007030 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007030


VALUE DISTRIBUTION THEORY 175

For a nonzero meromorphic function F on Cn and a ∈ C, we define the

divisor νa
F : Cn → Z of F by setting

νa
F (z) := the vanishing order of F − a at each point z ∈ Cn.

We also define ν∞F = ν0
1/F , νF := ν0

F − ν∞F and ν̄ := min(ν, 1). For a

hyperplane

H : a1w1 + · · · + aN+1wN+1 = 0

and a nondegenerate meromorphic map f : Cn → PN (C) with a reduced

representation f = (f1 : · · · : fN+1), we define ν(f,H) := νa1f1+···+aN+1fN+1
.

Choose an admissible set α = (α1, . . . , αN+1) for (f1, . . . , fN+1) and define

the generalized Wronskian Wα
f by

Wα
f := det

(

Dα`

f1,D
α`

f2, . . . ,D
α`

fN+1 ; 1 ≤ ` ≤ N + 1
)

.

Although Wα
f depends on a choice of reduced representations, the divisor

ν0
W α

f
depends only on f .

Proposition 4.7. For a nondegenerate meromorphic map f : Cn →
PN (C) and hyperplanes H1,H2, . . . ,Hq in general position,

q
∑

j=1

(ν(f,Hj) −N)+ ≤ ν0
W α

f
(4.8)

outside a set of dimension ≤ n− 2, where ν+ = max(ν, 0).

Proof. Let A := {f1 = f2 = · · · = fN+1 = 0}. Since dim A ≤ n− 2, it

suffices to show (4.8) at every point a ∈ Cn −A. Since Hj’s are in general

position, we have #S ≤ N for the set S := {j ; ν(f,Hj)(a) > N}. We

may assume S 6= ∅. For, otherwise, (4.8) is obvious. Changing indices and

homogeneous coordinates (w1 : · · · : wN+1) on PN (C), we may assume that

S = {1, 2, . . . , k}, where 1 ≤ k ≤ N and Hj := {wj = 0} for 1 ≤ j ≤ k. For

an admissible set α = (α1, . . . , αN+1), we have

Wα
f =

∑

(i1,...,iN+1)∈SN+1

sgn

(

1 · · · N + 1

i1 · · · iN+1

)

×Dαi1
f1 · · ·Dαik fkD

αik+1
fk+1 · · ·DαiN+1

fN+1,
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where SN+1 denotes all permutations of {1, 2, . . . , N + 1}. Since we may

assume that |α`| ≤ N by Proposition 3.2, ν0
Dαifi

(a) ≥ (ν0
fi

(a)−N)+ outside

the union of all singularities of the analytic sets {fi = 0}, and so we have

νG(a) ≥
k
∑

i=1

(νfi
(a) −N)+ =

q
∑

j=1

(ν(f,Hj)(a) −N)+

outside an analytic set of dimension ≤ n−2 for each G := Dαi1f1 · · ·Dαik fk.

This yields the desired conclusion.

Now, we assume that

min(ν(f,Hj), `0) = min(ν(g,Hj), `0) (1 ≤ j ≤ q)

for a positive number `0.

Take admissible sets α and β for the maps f and g respectively. Then,

we have the following:

Proposition 4.9.

(i)

q
∑

j=1

(`0 −N)ν̄∞hj
≤

q
∑

j=1

(ν(f,Hj) −N)+ ≤ ν0
W α

f
.

(ii)

q
∑

j=1

(`0 −N)ν̄0
hj

≤
q
∑

j=1

(ν(g,Hj) −N)+ ≤ ν0
W β

g

.

Proof. By the assumption, {z ; ν(f,Hj)(z) ≥ `0} = {z ; ν(g,Hj)(z) ≥
`0}, which we denote by A. We have ν0

hj
(z) = ν∞hj

(z) = 0 for each point

z 6∈ A, because ν(f,Hj)(z) = ν(g,Hj)(z). Take a pole a of hj . Then, we

have a ∈ A. Therefore, (`0−N)ν̄∞hj
(a) ≤ (ν(f,Hj)(a)−N)+, which gives the

first inequality of (i). The second inequality of (i) is due to Proposition 4.7.

The proof of the assertion (ii) is similar to the proof of (i).

§5. A degeneracy theorem for two meromorphic maps

In this section, we give the following degeneracy theorem for two mero-

morphic maps into PN (C), which is a restatement of Theorem 1.5.

Theorem 5.1. Let f, g : Cn → PN (C) be nondegenerate meromor-

phic maps and let H1, . . . ,H2N+2 be hyperplanes in general position. For a

sufficiently large integer `0 depending only on N , if

min(ν(f,Hj), `0) = min(ν(g,Hj), `0) (1 ≤ j ≤ 2N + 2),(5.2)

then the map f × g : Cn → PN (C) × PN (C) is algebraically degenerate.
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For the proof of Theorem 5.1, we recall some results from value distri-

bution theory for meromorphic maps into PN (C).

As usual, we set ‖z‖ :=
(
∑n

j=1 |zj |2
)1/2

for z = (z1, . . . , zn) ∈ Cn,

B(r) := {z ; ‖z‖ < r}, S(r) := {z ; ‖z‖ = r} and

dc :=

√
−1

4π
(∂̄ − ∂), v := (ddc‖z‖2)n−1,

σ := dc log ‖z‖2 ∧ (ddc log ‖z‖2)n−1.

For a meromorphic map f : Cn → PN (C) with a reduced representation

f = (f1 : · · · : fN+1), set ‖f‖ :=
(
∑N+1

j=1 |fj |2
)1/2

. We define the order

function of f by

T (r, f) =

∫

S(r)
log ‖f‖σ −

∫

S(1)
log ‖f‖σ,

and the counting function of a divisor ν : Cn → Z by

N(r, ν) :=

∫ r

1

n(t)

t
dt (1 < r < +∞),

where n(t) := t2−2n
∫

|ν|∩B(t) νv for n ≥ 2 and n(t) :=
∑

|z|≤t ν(z) for n = 1.

We have the following Jensen’s formula:

Proposition 5.3. Let ϕ be a nonzero meromorphic function on Cn.

Then,

N(r, νϕ) =

∫

S(r)
log |ϕ|σ −

∫

S(1)
log |ϕ|σ.

For the proof, see [11, p. 248].

Let f : Cn → PN (C) be a meromorphic map, H a hyperplane with

f(Cn) 6⊂ H and m a positive integer or +∞. The (truncated) counting

function of H for f by

Nm(r,H) ≡ Nf
m(r,H) := N(r,min(ν(f,H),m)).

For brevity, we set N(r,H) := Nf
+∞(r,H).

Let ϕ be a nonzero meromorphic function on Cn, which are occationally

regarded as a meromorphic map into P 1(C). The proximity function of ϕ

is defined by

m(r;ϕ) :=

∫

S(r)
log max(|ϕ|,1)σ.
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Take two distinct hyperplanes Hk =
{
∑N+1

j=1 akjwj = 0
}

with f(Cn) 6⊂
Hk (k = 1, 2) and consider a meromorphic function

ϕH1,H2

f :=

∑N+1
j=1 a1jfj

∑N+1
j=1 a2jfj

.

We can easily prove

T
(

r, ϕH1,H2

f

)

= N
(

r, ν∞
ϕ

H1,H2
f

)

+m
(

r;ϕH1,H2

f

)

+O(1)

≤ T (r, f) +O(1).

(5.4)

As usual, by the notation “ ‖ P ” we mean the assertion P holds for all

r ∈ [0,+∞) excluding a Borel subset E of the interval [0,+∞) with
∫

E dr <

+∞. The following so-called logarithmic derivative lemma acts essential

roles in Nevanlinna theory.

Theorem 5.5. For any α = (α1, . . . , αn), we have

‖ m

(

r;
Dα
(

ϕH1,H2

f

)

ϕH1,H2

f

)

= o(T (r, f)).

For the proof, refer to [5] and [9, Lemma 3.11].

Proposition 5.6. Let f : Cn → PN (C) be a nondegenerate mero-

morphic map which is represented as f = (ϕ1 : · · · : ϕN+1) with nonzero

meromorphic functions ϕi on Cn. Take a nonzero holomorphic function h

on Cn such that hϕi are holomorphic for 1 ≤ i ≤ N + 1. Then,

T (r, f) ≤ N(r, ν0
h) +

N+1
∑

j=1

m(r;ϕj) +O(1).

Proof. If we take a reduced representation f = (f1 : · · · : fN+1),

then we can find a nonzero holomorphic function h̃ such that hϕi = h̃fi

(1 ≤ i ≤ N + 1). By the use of Proposition 5.3, we have

T (r, f) ≤ T (r, f) +N(r, ν0
h̃
) =

∫

S(r)
log(|h̃|‖f‖)σ +O(1)
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=

∫

S(r)
log |h|σ +

∫

S(r)
log

(N+1
∑

j=1

|ϕj |2
)1/2

σ +O(1)

≤ N(r, ν0
h) +

N+1
∑

j=1

m(r;ϕj) +O(1).

This gives Proposition 5.6.

Corollary 5.7. ([12]) Let f : Cn → PN (C) be a meromorphic map

with a reduced representation f = (f1 : · · · : fN+1), where we assume

fN+1 6= 0. Then, for ϕi := fi/fN+1 (1 ≤ i ≤ N),

T (r, f) ≤
N
∑

i=1

T (r, ϕi) +O(1).

Proof. For every zero z0 of fN+1 outside {f1 = · · · = fN+1 = 0}, there

is some j0 with fj0(z0) 6= 0, whence ν0
fN+1

≤ ∑N
i=1 ν

∞
ϕi

outside an analytic

set of dimension ≤ n− 2. It follows from Proposition 5.6 and (5.4) that

T (r, f) ≤ N(r, ν0
fN+1

) +
N
∑

i=1

m(r, ϕi) +O(1)

≤
N
∑

i=1

(

N(r, ν∞ϕi
) +m(r;ϕi)

)

+O(1) =

N
∑

i=1

T (r, ϕi) +O(1).

For our purpose, we need another algebraic lemma. Let

Hi : ai1w1 + ai2w2 + · · · + aiN+1wN+1 = 0 (1 ≤ i ≤ 2N + 2)

be hyperplanes in general position. Choose arbitrary 2N + 1 indices among

1, 2, . . . , 2N + 2, say, 1, 2, . . . , 2N + 1, and consider the rational map Φ :

PN (C) × PN (C) → P 2N (C) defined as follows:

For v = (v1 : · · · : vN+1), w = (w1 : · · · : wN+1) ∈ PN (C), we define the

value Φ(w, v) = (u1 : u2 : · · · : u2N+1) ∈ P 2N (C) by

ui :=
ai1w1 + · · · + aiN+1wN+1

ai1v1 + · · · + aiN+1vN+1
(1 ≤ i ≤ 2N + 1).(5.8)

Proposition 5.9. The map Φ is a birational map of PN (C)×PN (C)

onto P 2N (C).
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Proof. By (5.8), we have the identities

ai1uiv1 + · · · + aiN+1uivN+1 = ai1w1 + · · · + aiN+1wN+1 (1 ≤ i ≤ 2N + 1).

We regard these identities as a simultaneous system of linear equations in

unknown variables v1, . . . , vN+1, w1, . . . , wN+1 whose coefficients are func-

tions in u1, . . . , u2N+1. Since we have

rank
(

ai1, . . . , aiN+1, uiai1, . . . , uiaiN+1 ; 1 ≤ i ≤ 2N + 1
)

= 2N + 1,

we can solve these equations and obtain the rational map Ψ : P 2N (C) →
PN (C)×PN(C) such that Ψ ·Φ and Φ ·Ψ are the identity maps. Therefore,

Φ is a birational map.

Now, we go back to the proof of Theorem 5.1. The assumption of The-

orem 5.1 enable us to apply the results given in §4. We have one of the

cases (i) and (ii) as in Proposition 4.5. If the case (ii) occurs, then the map

f × g : Cn → PN (C) × PN (C) is obviously algebraically degenerate by

virtue of Proposition 5.9. Therefore, after suitable changes of indices, we

may assume the following:

(5.10) There is some positive integer m such that, for 1 ≤ i < i′ ≤
q := 2N + 2, (hi/hi′)

m are rational functions in logarithmic derivatives of

hk’s whose weights divided by m are bounded by a constant depending only

on N .

We now choose homogeneous coordinates (w1 : · · · : wN+1) on PN (C)

such that the given hyperplanes are written as

Hi : wi = 0 (1 ≤ i ≤ N + 1)

Hi : ai1w1 + · · · + aiN+1wN+1 = 0 (N + 2 ≤ i ≤ q),

where any minor of the matrix (aij ; N + 2 ≤ i ≤ q, 1 ≤ j ≤ N + 1) of

order ≤ N + 1 does not vanish because Hj’s are in general position. In this

representation, for a matrix

Q := (ai1(h1−hi), ai2(h2−hi), . . . , aiN+1(hN+1−hi) ; N+2 ≤ i ≤ 2N+2),

the identity (4.4) is rewritten as Ψ := detQ = 0. Set r := rankQ, where

r ≤ N . Assume that r < N . Then, any minor of Q of order N van-

ishes identically. Therefore, there is a nontrivial algebraic relation among
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h1, h2, . . . , h2N+1. By substituting hi =
∑

j aijgj/
∑

j aijfj (1 ≤ i ≤ q) into

this relation, we have non-trivial algebraic relations among the functions

f1, f2, . . . , fN+1, g1, g2, . . . , gN+1 by virtue of Proposition 5.9. This shows

that the map f × g : Cn → PN (C) × PN (C) is algebraically degenerate in

this case.

It remains to study the case r = N . To complete the proof for this case,

it suffices to show the following:

Proposition 5.11. There is some `0 depending only on N such that,

for the maps f, g satisfying the condition (5.2), the case

rank
(

aij(hi − hj) ; 1 ≤ i ≤ N + 1, N + 2 ≤ j ≤ 2N + 1
)

= N

is impossible.

Proof. We regard the identities

N+1
∑

j=1

aij(hi − hj)fj = 0 (N + 2 ≤ i ≤ 2N + 1)

as a simultaneous system of equations in unknown variables f1, . . . , fN+1

and solve these to obtain the identity

f = (f1 : f2 : · · · : fN+1) = (Φ1 : Φ2 : · · · : ΦN+1)

outside the set of all poles of Φi (1 ≤ i ≤ N + 1), where each Φi is a

homogeneous polynomial of degree N in variables h1, h2, . . . , h2N+1. We

set Φ̃i := Φi/h
N
2N+1, which are polynomials of degree ≤ N in variables

ϕj := hj/h2N+1 (1 ≤ j ≤ 2N). Using (5.4), we easily have

T (r, Φ̃i) ≤ N

2N
∑

j=1

T (r, ϕj) +O(1) (1 ≤ i ≤ N + 1).

Then, by Corollary 5.7, we have

T (r, f) ≤
N+1
∑

i=1

T (r, Φ̃i) +O(1) ≤ N(N + 1)

2N
∑

j=1

T (r, ϕj) +O(1).

On the other hand, by (5.10), there are some positive integer m and

polynomials Qi
1, Q

i
2 of logarithmic derivatives of hj (1 ≤ j ≤ 2N + 2) such
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that ϕm
i = Qi

1/Q
i
2, where the weights of Qi

k divided by m are bounded by

a constant d1(N) depending only on N . We easily show that T (r, ϕi) =

(1/m)T (r, ϕm
i ) +O(1) and

T (r, ϕm
i ) ≤ T (r,Qi

1) + T (r,Qi
2) +O(1)

≤
2
∑

k=1

(

N(r, ν∞Qi
k

) +m(r;Qi
k)
)

+O(1).

Moreover, by the use of Theorem 5.5 and the fact that all poles of Qi
k are

zeros or poles of some hj and of order at most md1(N), we can find a

constant d2(N) depending only on N such that

‖ T (r, ϕi) ≤ d2(N)

2N+1
∑

j=1

(

N(r, ν̄0
hj

) +N(r, ν̄∞hj
)
)

+ o
(

∑

j

T (r, hj)
)

≤ d2(N)
2N+1
∑

j=1

(

N(r, ν̄0
hj

) +N(r, ν̄∞hj
)
)

+ o(T (r, f) + T (r, g)).

From these facts, we can conclude that there exists a positive constant

d3(N) depending only on N such that

‖ T (r, f) ≤ d3(N)
2N+1
∑

j=1

(

N(r, ν̄0
hj

) +N(r, ν̄∞hj
)
)

+ o(T (r, f) + T (r, g)).

On the other hand, by Proposition 4.9 we have

2N+1
∑

j=1

(`0 −N)
(

N(r, ν̄∞hj
) +N(r, ν̄0

hj
)
)

≤ N(r, ν0
W α

f
) +N(r, ν0

W β
g

)

for some admissible sets α and β. Moreover, since Wα
f is represented as

Wα
f = fN+1

1 χ

with a polynomial χ of logarithmic derivatives of the functions ψj := fj/f1

(2 ≤ j ≤ N + 1), we have

‖ N(r, ν0
W α

f
) =

∫

S(r)
log |Wα

f |σ +O(1)

≤ (N + 1)

∫

S(r)
log ‖f‖σ +m(r;χ) ≤ (N + 1)T (r, f) + o(T (r, f))
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by the use of Proposition 5.3 and Theorem 5.5. Similarly, we have

‖ N(r, ν0
W β

g

) ≤ (N + 1)T (r, g) + o(T (r, g)).

Consequently, we obtain

‖ T (r, f) ≤ d3(N)

`0 −N

2N+1
∑

j=1

(`0 −N)
(

N(r, ν̄∞hj
) +N(r, ν̄0

hj
)
)

≤ d3(N)(N + 1)

`0 −N
(T (r, f) + T (r, g)) + o(T (r, f) + T (r, g)).

By adding this to the similar inequality for g, we get

‖ T (r, f)+T (r, g) ≤ 2d3(N)(N + 1)

`0 −N
(T (r, f)+T (r, g))+o(T (r, f)+T (r, g)).

Divide both sides of this by T (r, f) + T (r, g) and let r tend to +∞ outside

a set of finite measure. Then, we have necessarily

`0 ≤ 2d3(N)(N + 1) +N.

If the number `0 were chosen so as to satisfy the condition

`0 > 2d3(N)(N + 1) +N

from the beginning, this is a contradiction. This shows that the case r = N

is impossible. The proof of Proposition 5.11 is completed.

§6. A uniqueness theorem for meromorphic maps into P 2(C)

In this section, we shall give a proof for the following theorem which is

stated in §1:

Theorem 6.1. There are a positive integer `0 and a proper algebraic

subset V of (P 2(C)∗)7 with the following properties:

For nondegenerate meromorphic maps f, g : Cn → P 2(C) and seven

hyperplanes Hj’s in general position with (H1, . . . ,H7) 6∈ V , if

min(ν(f,Hj), `0) = min(ν(g,Hj), `0),

then f ≡ g.
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Proof. As in §4, we consider the meromorphic functions hj (1 ≤ j ≤ 7)

defined by (4.1) for the given hyperplanes Hj’s in general position and maps

f and g. Let
R∼ be the pre-equivalence relation defined by Definition 4.2,

where q = 7 andN = 2, and take real numbers p1, . . . , p7 with the properties

of Proposition 2.4.

We first study the case where all numbers pj’s except one coincide

with others. Changing indices, we assume that p1 = p2 = · · · = p6. In

this case, there is some positive integer m such that (hi/hi′)
m are rational

functions in logarithmic derivatives of hj ’s with uniformly bounded weights

for 1 ≤ i < i′ ≤ 6. Since Hj’s are assumed to be in general position, we can

choose homogeneous coordinates (w1 : w2 : w3) on P 2(C) such that

Hj : wj = 0 (j = 1, 2, 3),

H4 : w1 + aw2 + bw3 = 0,

H5 : w1 + cw2 + dw3 = 0,

H6 : w1 + w2 + w3 = 0,

where every minor of the matrix





1 a b

1 c d

1 1 1



 of order ≤ 3 does not vanish.

As in the previous section, we set

r := rank





h1 − h4 a(h2 − h4) b(h3 − h4)

h1 − h5 c(h2 − h5) d(h3 − h5)

h1 − h6 h2 − h6 h3 − h6





Here, the case r = 2 is impossible for a sufficiently large `0 because of

Proposition 5.11. Assume that r < 2.

Set kj := hj − h6 (j = 1, 2, . . . , 5). We may assume that (k1, k2, k3) 6=
(0, 0, 0). For, otherwise, h1 = h2 = h3 = h6, whence we have f = g. By

assumption, there are meromorphic functions ϕ and ψ such that

k1 − k4 = ϕk1, a(k2 − k4) = ϕk2, b(k3 − k4) = ϕk3,

k1 − k5 = ψk1, c(k2 − k5) = ψk2, d(k3 − k5) = ψk3.

These implies that

(ϕ− 1)k1 + k4 = 0, (ϕ− a)k2 + ak4 = 0, (ϕ− b)k3 + bk4 = 0,

(ψ − 1)k1 + k5 = 0, (ψ − c)k2 + ck5 = 0, (ψ − d)k3 + dk5 = 0.
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If ϕ = 1, then k4 = k2 = k3 = 0 and hence h2 = h3 = h4 = h6, which gives

f = g. For the case ϕ = a, ϕ = b, ψ = 1, ψ = c or ψ = d, we have also the

same conclusion f = g similarly. Otherwise, we have

k4

k5
=
ϕ− 1

ψ − 1
=
ϕ/a− 1

ψ/c− 1
=
ϕ/b− 1

ψ/d− 1
,

and hence
(1

c
− 1

a

)

ϕψ −
(1

c
− 1
)

ψ +
(1

a
− 1
)

ϕ = 0,

(1

d
− 1

b

)

ϕψ −
(1

d
− 1
)

ψ +
(1

b
− 1
)

ϕ = 0.

These give
(

(1

d
− 1

b

)(1

c
− 1
)

−
(1

c
− 1

a

)(1

d
− 1
)

)

ψ

−
(

(1

d
− 1

b

)(1

a
− 1
)

−
(1

c
− 1

a

)(1

b
− 1
)

)

ϕ = 0,

and we can conclude that ϕ = ψ or

χ :=
1

ad
− 1

bc
+

1

c
− 1

d
+

1

b
− 1

a
= 0.

Therefore, if the given hyperplanes Hj’s satisfy the condition χ 6= 0, then

ϕ = ψ and hence k2 = k3 = k4 = k5, which gives f = g. This shows that

Theorem 6.1 is true in this case.

To see the remaining cases, we may assume that

p1 ≤ p2 ≤ · · · ≤ p7.

Then, by Proposition 2.10 (i) we have p3 = p4 = p5.

Assume that

p1 ≤ p2 < p3 = p4 = p5 < p6 ≤ p7.

Take two indices i, j with 3 ≤ i < j ≤ 5 and choose

ι(1) := 1, ι(2) := 2, ι(3) := i, ι(4) := j, ι(5) := 6, ι(6) := 7,

and consider combinations J := (i1, i2, i3) ∈ I6,3 with

pι(1) + pι(2) + pι(3) = pι(i1) + pι(i2) + pι(i3).
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By Proposition 2.10 (ii), J = (1, 2, 3) or J = (1, 2, 4). Applying Proposi-

tion 3.4 to the products of three functions among hι(1), . . . , hι(6), we get

∑

(i1,i2,i3)∼(1,2,3)

Ai1i2i3hι(i1)hι(i2)hι(i3) = Cih1h2hi + Cjh1h2hj = 0,

where Ci := A123 (6= 0) and Cj := A124 (6= 0) are the constants given in

the proof of Proposition 4.3. Since Proposition 2.10 remains valid if we

replace pj’s by −pj, we can apply the same arguments to combinations

J := (i1, i2, i3) ∈ I6,3 with pι(4) + pι(5) + pι(6) = pι(i1) + pι(i2) + pι(i3). So, we

have

C ′
ihih6h7 + C ′

jhjh6h7 = 0

for C ′
i := A356 and C ′

j := A456. These conclude that

Cihi +Cjhj = C ′
ihi + C ′

jhj = 0,

whence we have hi = hj except the case where CiC
′
j = C ′

iCj . Since we can

choose i, j with 3 ≤ i < j ≤ 5 arbitrarily, we can conclude that h3 = h4 = h5

and hence f = g for ‘generically’ given hyperplanes. Theorem 6.1 is valid

in this case. Therefore, we may assume p2 = p3 or p5 = p6. Replacing pj by

−pj if necessary, we assume that

p1 ≤ p2 ≤ p3 = p4 = p5 = p6 ≤ p7.

Next, we study the case

p1 ≤ p2 < p3 = p4 = p5 = p6 < p7.

Choose i, j, k with 3 ≤ i < j < k ≤ 6 and choose

ι(1) := 1, ι(2) := 2, ι(3) := i, ι(4) := j, ι(5) := k, ι(6) := 7.

By the same arguments as the above, for combinations J := (j1, j2, j3) with

pι(1) + pι(2) + pι(3) = pι(j1) + pι(j2) + pι(j3), we have J = (1, 2, 3), J = (1, 2, 4)

or J = (1, 2, 5). It then follows that there are some nonzero polynomials

Di,Dj ,Dk in the coefficients of the defining equations for Hj’s such that

D1hi +D2hj +D3hk = 0. Moreover, observing combinations J := (j1, j2, j3)

with pι(4) + pι(5) + pι(6) = pι(j1) + pι(j2) + pι(j3), we have J = (3, 4, 6),

J = (4, 5, 6) or J = (3, 5, 6) and so we have D′
1hihj +D′

2hjhk +D′
3hkhi = 0

for nonzero D′
j . This concludes that hi/hk and hj/hk are constants for
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‘generically’ given hyperplanes Hj’s. Since we can choose i, j, k arbitrarily,

all hi/h6 (3 ≤ i ≤ 6) are constants, whence f = g. Theorem 6.1 is true in

this case too.

It remains to study the following two cases;

(a) p1 < p2 = p3 = p4 = p5 = p6 < p7,

(b) p1 ≤ p2 < p3 = p4 = p5 = p6 = p7.

We first study the case (a). For our purpose, take four indices i, j, k, `

with 2 ≤ i < j < k < ` ≤ 6 arbitrarily, and we choose

ι(1) = 1, ι(2) = i, ι(3) = j, ι(4) = k, ι(5) = `, ι(6) = 7.

Consider (i1, i2, i3) and (j1, j2, j3) in I6,3 with

pι(1) + pι(2) + pι(3) = pι(i1) + pι(i2) + pι(ik),

pι(4) + pι(5) + pι(6) = pι(j1) + pι(j2) + pι(jk).

By the same argument as the above, we have two homogeneous linear rela-

tions among ten functions hmm′ := hmhm′ (2 ≤ m < m′ ≤ 6). Since there

are five possible choices of indices i, j, k, ` among 2, . . . , 6, we obtain ten

linear homogeneous relations among ten functions hmm′ ’s. In this situation,

it is not difficult to show that these linear relations are linearly independent

for ‘generically’ chosen hyperplanes Hj’s. This shows that the case (a) is

impossible for ‘generically’ chosen hyperplanes Hj’s, because each hj’s is

nonzero. Theorem 6.1 is true in this case too.

Lastly, we study the case (b). In this case, choosing four indices among

3, 4, . . . , 7, say 3, 4, 5, 6, we choose ι(j) = j (j = 1, 2, . . . , 6) and consider

(i1, i2, i3) with

p1 + p2 + p3 = pi1 + pi2 + pi3 .

Then, we can see easily i1 = 1, i2 = 2 and i3 is equal to 3, 4, 5 or 6, whence

we have a homogeneous linear relation among h3, h4, h5, h6. In this way,

we have five homogeneous linear relations among five functions h3, . . . , h7.

In this case too, we can easily show that these linear relations are linearly

independent for ‘generically’ chosen hyperplanes Hj’s. The case (b) is also

impossible for such hyperplanes. The proof of Theorem 6.1 is completed.
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