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Multimarginal Optimal Transport Maps for
One-dimensional Repulsive Costs

Maria Colombo, Luigi De Pascale, and Simone Di Marino

Abstract. We study a multimarginal optimal transportation problem in one dimension. For a sym-

metric, repulsive cost function, we show that, given a minimizing transport plan, its symmetrization

is induced by a cyclical map, and that the symmetric optimal plan is unique. The class of costs that we

consider includes, in particular, the Coulomb cost, whose optimal transport problem is strictly related

to the strong interaction limit of Density Functional Theory. In this last setting, our result justifies

some qualitative properties of the potentials observed in numerical experiments.

1 Introduction

In some recent papers the authors considered a mathematical model for the strong

interaction limit of the density functional theory (DFT). In particular, in [3], But-

tazzo, De Pascale, and Gori-Giorgi showed that the model for the minimal interac-

tion of N electrons can be formulated in terms of a multimarginal Monge transport

problem. At the same time, in [6], Cotar, Friesecke, and Klüppelberg showed that an

analogous optimal transportation problem describes the semiclassical limit of DFT

in the case of two electrons and provides estimates from below in the general case.

Let c : (R
d)N → R be the Coulomb cost function

(1.1) c(x1, . . . , xN ) =
∑

1≤i< j≤N

1

|xi − x j |
, (x1, . . . , xN ) ∈ (R

d)N ,

let ρ ∈ P(R
d) be a given probability measure on R

d, and let T(ρ) be the set of trans-

port maps

T(ρ) = {T : R
d → R

d Borel : T♯ρ = ρ},
where T♯ρ represents the pushforward measure of the measure ρ through the Borel

map T. We consider the Monge multimarginal problem

(1.2) (M) = inf
{

∫

Rd

c(x,T2(x), . . . ,TN (x)) dµ(x) : T2, . . . ,TN ∈ T(ρ)
}

.

Following the standard theory of optimal transport, we introduce the set of trans-

port plans

Π(ρ) = {γ ∈ P(R
dN ) : πi

♯γ = ρ, i = 1, . . . ,N},
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where πi : (R
d)N → R

d are the projections on the i-th component for i = 1, . . . ,N,

and the Kantorovich multimarginal problem

(1.3) (K) = min
{

∫

(Rd)N

c(x1, . . . , xN )dγ(x1, . . . , xN ) : γ ∈ Π(ρ)
}

,

where, in contrast with (M), we allow the splitting of mass. With every N − 1-

tuple of transport maps T2, . . . ,TN ∈ T(ρ) we associate the transport plan γ =

(Id,T2, . . . ,TN )♯ρ ∈ Π(ρ). We remark that the existence of an optimal transport

plan, namely a minimizer of (K), follows from the lower semicontinuity of the cost,

from the linearity of the cost of a plan γ with respect to γ, and from the fact that the

admissible plans form a tight subset of the set of measures on (R
d)N . Moreover, since

c : (R
d)N → [0,∞] is continuous, one can deduce from the analogous 2-marginal

result obtained by Pratelli [18, Theorem B] that (K) = (M). Indeed, given an optimal

plan γ ∈ Π(ρ) it is enough to apply the 2-marginal result to X = R
d and Y =

(R
d)N−1 with ρ and (π2, . . . , πN )♯γ as marginals to obtain the nontrivial inequality

(M) ≤ (K).

Since the cost function is symmetric, namely

c(x1, . . . , xN ) = c(xσ(1), . . . , xσ(N)), for xi ∈ R
d, σ ∈ SN ,

it is natural to introduce a “symmetric” version (Ksym) of the Kantorovich problem

(K) and a “cyclical” version (Mcycl) of the Monge problem (M). From the physical

point of view, this new formulation includes in the model the fact that the N elec-

trons are indistinguishable. To this end, we denote by SN the set of permutations of

{1, . . . ,N}, and we let

τσ(x1, . . . , xN ) = (xσ(1), . . . , xσ(N)) for x ∈ (R
d)N , σ ∈ SN .

We introduce the set of symmetric transport plans

Πsym(ρ) = {γ ∈ Π(ρ) : (τσ)♯γ = γ ∀σ ∈ SN}

and the problems

(Ksym) = min
{

∫

(Rd)N

c(x1, . . . , xN )dγ(x1, . . . , xN ) : γ ∈ Πsym(ρ)
}

.

(Mcycl) = inf
{

∫

Rd

c
(

x,T(x), . . . ,T(N−1)(x)
)

dµ(x) : T ∈ T(ρ), T(N)
= Id

}

,

where T(i) stands for the i-th composition of T with itself.

Thanks to the symmetry of the cost and to the linearity of the cost of transport

plans, we have easily that (K) = (Ksym). Indeed, it is enough to associate with every

γ ∈ Π(ρ) the symmetric transport plan

γ∗ =
1

N!

∑

σ∈SN

σ♯γ,

which has the same cost as γ. The analogous remark for the Monge problem is not

obvious; however, as proved in [5], in the sharp assumption that ρ is non-atomic we
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have that (K) = (Mcycl). Summarizing the last observations, if ρ is a non-atomic

probability measure, we have that

(1.4) (K) = (M) = (Ksym) = (Mcycl).

We remark that, seeing the nontrivial equality between (M) and (Mcycl), it is natural

to expect as a general principle that an optimal map for (M) exhibits a cyclical struc-

ture when it exists. We also remark that the class of transport plans Πsym(ρ) is the

natural one in which to hope for uniqueness results, as described later.

The problem of existence of optimal transport maps and the description of their

properties is the main aim of optimal transport theory. As regards existence, in the

case of two marginals, it holds under the so called “twist condition” (see [4, 9, 21]).

In particular for the Coulomb cost (1.1) with N = 2 in any dimension, we have

existence of optimal maps. In the multimarginal case, existence has been proved un-

der some local assumptions of the cost in [16], but these assumptions are far from

being satisfied by our cost. Indeed we will see that the optimal transport plans are

absolutely not unique due to the symmetry of the cost, whereas in [16] uniqueness is

a natural consequence of the assumptions on the cost and of the method. In [12]

N. Ghoussoub and A. Moameni provide existence of optimal transport maps for

some particular costs generated by vector fields (see also [11]). In this case, optimal

maps are not unique and show a cyclical structure like the one presented in (Mcycl).

However the structure of the cost function is different from the Coulomb cost, and

correspondingly the strategy of the proofs is different.

In this paper we show the existence of optimal transport maps in the problem

(1.2) in dimension d = 1, providing an explicit construction of the optimal map.

The result was conjectured in [19] by M. Seidl from the physical point of view and

recalled in [3]. Kohn–Sham DFT is used to reduce the computational cost in the

many electrons Schroedinger equation, and it requires us to compute a term called

the exchange-correlation functional. The multimarginal optimal transportation cost

we consider in this paper is an approximation from below of the exchange-correlation

functional in Kohn–Sham DFT. The main result of this paper reduces an optimiza-

tion problem over measures on R
Nd to a problem over measures on R

N and is useful

in deriving numerical methods to evaluate the mentioned approximation. The one-

dimensional result is related to the so called quantum wires. The generalization of

this result to higher dimensions is open. In dimension d = 1, we also show that the

optimal map is unique in the class of symmetric optimal transport plans; this is not

the case in higher dimension, as shown in [17] with a radial probability measure ρ as

marginal.

We state our result in the natural class of repulsive cost functions of the form

(1.5) c(x1, . . . , xN ) =
N
∑

i=1

N
∑

j=i+1

f (xi − x j),

with

f : R → [0,+∞] even.(1.6)

In particular, when f (x) = |x|−1, we obtain the Coulomb cost (1.1). The main result

is the following theorem.
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Theorem 1.1 Let f : R → [0,+∞] be a function that satisfies (1.6) and let c be the

cost (1.5). Let ρ be a non-atomic probability measure on R such that (K) < ∞. Let

−∞ = d0 < d1 < · · · < dN = +∞ be such that

(1.7) ρ([di , di+1]) = 1/N, i = 0, . . . ,N − 1.

Let T : R → R be the unique (up to ρ-null sets) function increasing on each interval

[di , di+1], i = 0, . . . ,N − 1, and such that

T♯(1[di ,di+1]ρ) = 1[di+1,di+2]ρ, i = 0, . . . ,N − 2,

T♯(1[dN−1,dN ]ρ) = 1[d0,d1]ρ.

(1.8)

Then T is an admissible map for (Mcycl) and

(1.9) (K) =

∫

R

c(x,T(x),T(2)(x), . . . ,T(N−1)(x)) dρ.

Moreover, the only symmetric optimal transport plan is the symmetrization of the

plan induced by the map T.

In [3, Section VII C] the particular case when the probability density is uniform

on some interval in R is studied. In this case, indeed, an explicit concave potential

can be built.

The result is based on a careful analysis of the structure of c-cyclically mono-

tone sets (see Definition 2.1). Indeed, the analytic property of minimizing the Kan-

torovich problem (K) implies, through standard results in [15, Lemma 2] (based on

the two marginal theory in [20] and recalled in Proposition 2.2), that the support

of the optimal plan is a c-monotone set. In turn, the c-monotonicity can be read in

terms of a geometric property of the support (see Definition 2.3 and Corollary 2.5). It

follows from the structure of c-cyclically monotone sets that any optimal symmetric

plan induces a splitting of R in N parts (−∞, d1], [d1, d2], . . . , [dN ,∞) with equal

mass. If we look the restriction of the optimal plan to the set {x1 < x2 · · · < xn},

the marginals are exactly the restriction of ρ to the segments, and the plan here is

obtained by mapping each piece in the following one through a monotone map T

according to (1.8).

Remark 1.2 One might wonder if it is possible to give a detailed description of any

optimal plan or any optimal map. Apart from the special case N = 2, we can con-

struct a wild class of optimal cyclical maps. For simplicity, we build our example with

N = 3 and for a uniform density ρ in [0, 1], and the Coulomb cost (the construction

is similar for a generic N, ρ, and a cost of the form (1.5)). Let A0 be any measur-

able subset of [0, 1/3) and let B0 = [0, 1/3) \ A0; then we define A1 = A0 + 1/3,

A2 = A0 + 2/3, and B1 and B2 in a similar way. Then we consider the map

T(x) =



















x + 1/3 if x ∈ A0 ∪ A1,

x − 2/3 if x ∈ A2,

x + 2/3 if x ∈ B0,

x − 1/3 if x ∈ B1 ∪ B2.
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It is easy to see that the pushforward of L|Ai
through T is LAi+1

, and the pushforward

of L|Bi
is L|Bi−1

for i = 0, 1, 2 (where the subscripts are considered modulo 3). So it is

clear that T♯ρ = ρ, T(3)
= Id, and that the associated cost is the minimum possible,

15/2 (see computations in [3, Section VII C]). In conclusion the best uniqueness

result can be obtained in the class of symmetric plans.

Remark 1.3 In a recent paper [7], the authors showed that, given a single particle

distribution ρ, as the number of particles goes to∞, the optimal symmetric plan with

all marginals ρ converges to the solution of a suitable optimal transport problem.

In turn, the solution can be explicitly computed, and it is the independent product

measure all of whose factors are given by ρ.

This result can be easily deduced from Theorem 1.1 in our one dimensional set-

ting. Indeed, in our case the optimal symmetric plan γn is obtained by splitting the

support of ρ in n parts of equal mass and sending each part onto the other n − 1.

As n → ∞, the plans γn weakly converge to the product measure with infinity many

marginals all equal to ρ.

Theorem 1.1 provides an explanation of the numerical results presented, for ex-

ample, in [14, fig. 2] or [13]. More precisely, the qualitative behavior of the Kan-

torovich potential (or of the Kohn–Sham potential which is sometimes very close)

numerically observed in the papers above may be explained. These potentials are im-

portant elements of the theory. A Kantorovich potential is a maximizer for the dual

problem of (1.3) given by

(D) = max
{

∫

R

u(x)dρ(x) : u : R → R is continuous, and for every

x1, . . . , xN ∈ R
d, u(x1) + · · · + u(xN ) ≤

N
∑

i=1

∑

i< j

1

|xi − x j |
}

.

The optimality conditions (complementary slackness) read as follows:

u′(x) = −
N−1
∑

i=1

x − T(i)(x)

|x − T(i)(x)|3 .

In the following example we consider an atom similar to Beryllium with one nucleus

(located in the origin) and 3 electrons. As electron density we consider

ρ =
1√
π

e−x2

dx,

which has the right qualitative behavior. We will show that a Kantorovich po-

tential is concave near the peak of the density (the nucleus) and convex in a re-

gion distant from the nucleus. This is apparently the opposite of the numerical

results in the papers above, but the discrepancy is explained by the fact that in

those papers the authors compute −u (see [14, equation (2.5)]). Consider a ∈ R

such that ρ((−∞,−a]) = ρ([−a, a]) = ρ([a,+∞)) = 1/3 and b ∈ R such

that ρ((−∞,−b]) = ρ([b,+∞)) = 1/6 and let u be a Kantorovich potential. Let
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x1 < x2 ∈ [−a, a], for both points

(1.10)

u′(xi) = − xi − T(xi)

|xi − T(xi)|3
− xi − T(2)(xi)

|xi − T(2)(xi)|3
=

1

|xi − T(xi)|2
− 1

|xi − T(2)(xi)|2
.

By the structure of T and ρ, we have that

x2 − x1 < T(x2) − T(x1) and x2 − x1 < T(2)(x2) − T(2)(x1)

and therefore, since

|x1 − T(x1)| = T(x1) − x2 + x2 − x1 < T(x1) − x2 + T(x2) − T(x1) = |T(x2) − x2|,
we obtain

|x1 − T(x1)| < |x2 − T(x2)| and |x1 − T(2)(x1)| > |x2 − T(2)(x2)|.
Summarizing the inequalities above we obtain from (1.10),

u′(x2) =
1

|x2 − T(x2)|2 − 1

|x2 − T(2)(x2)|2 <
1

|x1 − T(x1)|2 − 1

|x1 − T2(x1)|2
= u′(x1),

which proves that u is concave in [−a, a].

We now prove that u is convex in [b,+∞) and then also in (−∞,−b]. Let x1 <
x2 ∈ [b,+∞), for both points

u′(xi) = − xi − T(xi)

|xi − T(xi)|3
− xi − T(2)(xi)

|xi − T(2)(xi)|3
= − 1

|xi − T(xi)|2
− 1

|xi − T(2)(xi)|2
.

As before, by the structure of T and ρ, we have that

x2 − x1 > T(x2) − T(x1) and x2 − x1 > T(2)(x2) − T(2)(x1),

and therefore

|x1 − T(x1)| < |x2 − T(x2)| and |x1 − T(2)(x1)| > |x2 − T(2)(x2)|.
Summarizing the inequalities above we conclude that u′(x1) < u′(x2), namely the

convexity of u in [b,∞).

2 A Necessary Condition for Optimality

Let γ ∈ Π(ρ) be a transport plan.

Definition 2.1 Let c : R
N → [0,+∞] be a cost function. We say that a set Γ ⊂ R

N

is c-monotone with respect to p ⊆ {1, . . . ,N} if

(2.1) c(x) + c(y) ≤ c(X(x, y, p)) + c(Y (x, y, p)) ∀x, y ∈ Γ,

where X(x, y, p),Y (x, y, p) ∈ R
N are obtained from x and y by exchanging their

coordinates on the complement of p, namely, for i ∈ {1, . . . ,N},

Xi(x, y, p) =

{

xi if i ∈ p,

yi if i /∈ p,
Yi(x, y, p) =

{

yi if i ∈ p,

xi if i /∈ p.

We say that Γ ⊂ R
N is c-monotone if (2.1) holds true for every p ⊆ {1, . . . ,N}.
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The following Proposition ([15, Lemma 2] based on the two marginal theory in

[20]; see also [10]) contains a necessary condition for optimality.

Proposition 2.2 Let c : R
N → [0,+∞] be a continuous cost and let ρ be a probability

measure on R. Let γ ∈ Π(ρ) be an optimal transport plan for problem (1.3) and assume

(K) <∞. Then sptγ is c-monotone.

The idea of the previous proposition is that, if c-monotonicity fails for x and y, it

is possible to rearrange the mass of the optimal plan γ close to x and y constructing

a new plan with inferior cost.

The rest of this section is dedicated to the study of c-monotone sets that exhibit

a particular geometric structure related to our choice of repulsive costs c. It is ex-

pressed in terms of the following definition. Given x ∈ R
N there exists (at least) a

permutation σ ∈ SN such that

xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(N).

We denote by x∗ = (xσ(1), xσ(2), . . . , xσ(N)), and x∗ will be called the increasing re-

arrangement of x.

Definition 2.3 We say that two points x, y ∈ R
N are well ordered if considering

the increasing rearrangements x∗ of x and y∗ of y, either

x∗1 ≤ y∗1 ≤ x∗2 ≤ y∗2 ≤ · · · ≤ x∗N ≤ y∗N or y∗1 ≤ x∗1 ≤ y∗2 ≤ x∗2 ≤ · · · ≤ y∗N ≤ x∗N .

We remark that, since the cost c is symmetric, we have that c(x) = c(x∗) for

every x ∈ R
N . The following proposition relates c-monotonicity to the well ordering

property of couples of points. In particular, it provides a geometric characterization

of c−monotonicity peculiar to the repulsive cost functions.

Proposition 2.4 Let f and c be defined as in Theorem 1.1. Let x, y ∈ R
N .

If x, y are well ordered, then

(2.2) c(x) + c(y) ≤ c
(

X(x, y, p)
)

+ c
(

Y (x, y, p)
)

∀p ⊆ {1, . . . ,N}.

Moreover, if c(x) + c(y) <∞, then x and y are well ordered if and only if

(2.3) c(x) + c(y) = min
{

c
(

X(x, y, p)
)

+ c
(

Y (x, y, p)
)

: p ⊆ {1, . . . ,N}
}

.

Proposition 2.4 has two interesting consequences. First, putting together Propo-

sitions 2.2 and 2.4 we obtain a necessary geometric condition on the support of an

optimal plan for problem (K). Then we deduce that the support of an optimal plan

is disjoint from the diagonals. We state and prove these corollaries here, postponing

the proof of Proposition 2.4 to Section 3.

Corollary 2.5 Let f , c be defined as in Theorem 1.1. Let ρ be a probability measure

on R such that (K) < +∞ and let γ be an optimal plan for problem (K).

Then every x, y ∈ sptγ is well ordered.
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Proof By Proposition 2.2 we have that

c(x) + c(y) = min
{

c
(

X(x, y, p)
)

+ c
(

Y (x, y, p)
)

: p ⊆ {1, . . . ,N}
}

x, y ∈ sptγ.

By Proposition 2.4 we obtain that

(2.4) x, y are well ordered x, y ∈ sptγ ∩ {c <∞}.
Now we want to prove the same for every x, y ∈ sptγ. To this end, we remark that

the property of being well ordered is a closed condition. Indeed, setting

g(x, y) =
[

(x∗1 − y∗1 )+ + · · · + (x∗N − y∗N )+
]

·
[

(y∗1 − x∗1 )+ + · · · + (y∗N − x∗N )+
]

,

we have that g is continuous thanks to the fact that (x, y) 7→ (x∗, y∗) is continuous

and g(x, y) = 0 if and only if x and y are well ordered. By (2.4), every couple of

points in the closure of sptγ ∩ {c < ∞} is well ordered, so we are left to prove

that the closure of sptγ ∩ {c < ∞} is sptγ. This is in turn true, because sptγ is

closed and sptγ ∩ {c < ∞} is a concentration set for γ, since (K) < +∞. Then

γ({c = ∞}) = 0.

Corollary 2.6 Let f , c, and ρ be defined as in Theorem 1.1. Let γ be an optimal

transport plan for the problem (K) with (K) <∞. Then

sptγ ∩ {xi = x j} = ∅ for all i, j ∈ {1, . . . ,N} with i 6= j.

Proof Let us assume by contradiction that there exists x ∈ spt(γ) such that xi =

x j = t for some i 6= j; this means that there exists k ∈ {1, . . . ,N} such that x∗k =

x∗k+1 = t . Now take another point y ∈ spt(γ); by Corollary 2.5 we know that x and y

are well ordered, in particular, either x∗k ≤ y∗k ≤ x∗k+1 or x∗k ≤ y∗k+1 ≤ x∗k+1. In both

cases we have that a coordinate of y is equal to t , so we have that

sptγ ⊆ {x1 = t} ∪ {x2 = t} ∪ · · · ∪ {xN = t}.
Since, by assumption, ρ has no atoms and by the condition on the marginals, we have

that γ({xi = t}) = ρ({t}) = 0. Since the support of a probability measure γ cannot

be contained in a finite union of γ-null sets, we obtain a contradiction.

3 A Geometric Characterization of c-monotonicity

We now focus on the proof of Proposition 2.4. In the following inequalities, the

analysis of equality cases will play a crucial role in understanding c-monotonicity.

We point out that this analysis can be written in a simplified way if one assumes that

all the components of x and y in Proposition 2.4 (and in the following lemmas) are

different real numbers. In the general case, to fully describe equality cases we need a

notion of equality of discrete sets that counts the elements with multiplicity. To this

aim, we give the following definition.

Definition 3.1 Given a vector x = (x1, . . . , xN ) ∈ (R
m)N we define the measure

µx =

N
∑

i=1

δxi
,

which represents the set {x1, . . . , xN} with elements counted with multiplicity.
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Given x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ (R
m)N , we say that two sets

{x1, . . . , xN} and {y1, . . . , yN} counted with multiplicities are equal if the corre-

sponding measures are equal, namely µx = µy . With this notation it is clear that

µ(x,y) = µx + µy , x, y ∈ (R
m)N

and that

(3.1) for every x, x′ ∈ R
N we have µx = µx′ if and only if x∗ = x′∗.

The next lemma can be read as a description of optimal transport plans between

purely atomic measures on R, following the spirit of [2, Proposition 4.5]. Since the

assumptions on our functionφ are different from the ones in [2], we prove the lemma

for the sake of completeness.

Lemma 3.2 Let φ : R → [0,∞] be a convex function, which is strictly convex in its

finiteness domain. Let N ∈ N, and let x1 ≤ · · · ≤ xN and y1 ≤ · · · ≤ yN be two

N-uples of real numbers.

Then

(3.2)
N
∑

i=1

φ(xi − yi) ≤
N
∑

i=1

φ(xi − yσ(i)) ∀σ ∈ SN .

Moreover, if the left-hand side in (3.2) is finite, we have equality in (3.2) for some

σ ∈ Sn if and only if we have the equality of measures

(3.3)
N
∑

i=1

δ(xi ,yi ) =

N
∑

i=1

δ(xi ,yσ(i)).

Proof Step one. If i, j ∈ {1, . . . ,N} are such that

(3.4) xi ≤ x j and yσ( j) ≤ yσ(i),

then we have that

(3.5) φ(xi − yσ( j)) + φ(x j − yσ(i)) ≤ φ(xi − yσ(i)) + φ(x j − yσ( j)).

Moreover, if both the inequalities in (3.4) are strict and the left-hand side in (3.5) is

finite, then the inequality in (3.5) is also strict.

In fact we have that xi − yσ(i) ≤ xi − yσ( j) ≤ x j − yσ( j) (with strict inequalities if

yσ(i) < yσ( j) and xi < x j), and so there exists t ∈ [0, 1] (t ∈ (0, 1) if the inequalities

are strict) such that

xi − yσ( j) = t(xi − yσ(i)) + (1 − t)(x j − yσ( j)).

A brief computation shows that

x j − yσ(i) = (1 − t)(xi − yσ(i)) + t(x j − yσ( j)).

Applying Jensen’s inequality to these points and summing, we get (3.5) (with strict

inequalities if t ∈ (0, 1) and the values in the left-hand side are finite, thanks to the

strict convexity of φ).

Step two. We prove (3.2) and we characterize the equality cases.

We notice that if (3.3) holds true, we have equality in (3.2). Without loss of gen-

erality we can assume that the right-hand side in (3.2) is finite. Let us set Aσ =
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∑N
i=1 φ(xi − yσ(i)). We prove by induction on N that AId ≤ Aσ for every σ ∈ SN with

Aσ < ∞, where Id is the identical permutation, and that if equality holds in (3.2),

then (3.3) holds. For N = 1 there is nothing to prove. Let 1 < N. If σ(1) = 1, we

can eliminate the first term in both sides of the inequality and then use the inductive

hypothesis. Hence,

(3.6) AId ≤ Aτ for all τ ∈ SN such that τ (1) = 1 and Aτ <∞,

with equality if and only if

(3.7)
N
∑

i=1

δ(xi ,yi ) =

N
∑

i=1

δ(xi ,yτ (i)).

Suppose that σ(1) 6= 1, and consider k such that σ(k) = 1. From Step 1 applied to

i = 1 and j = k, noticing that (3.4) is satisfied because x1, . . . , xN and y1, . . . , yN are

ordered, we have that

(3.8) φ(x1 − y1) + φ(xk − yσ(1)) ≤ φ(x1 − yσ(1)) + φ(xk − y1).

There is equality in (3.8) if and only if x1 = xk or yσ(1) = y1, or, in other words, if

and only if

(3.9)
{

(x1, yσ(1)), (xk, y1)
}

=
{

(xk, yσ(1)), (x1, y1)
}

.

If we consider τ ∈ SN defined by τ (1) = 1, τ (k) = σ(1), and τ ( j) = σ( j) for

every j 6= 1, k then (3.8) yields that Aσ ≥ Aτ , but since τ (1) = 1 by (3.6), we get that

AId ≤ Aσ .

Regarding the equality cases, if equality holds true in (3.2) for some σ ∈ SN , then

we have that both (3.7) and (3.9) hold true, which together prove (3.3).

To prove Proposition 2.4 we rewrite the cost function as a sum on l-neighbors and

prove an inequality for fixed l, which is the main core of the proof (Lemma 3.4).

In this way, when exchanging the coordinates to obtain a decreasing variation of

the cost, one has to track the effect on fewer terms. Before stating the results, we

introduce this notation (see Figure 3.1 for two examples with N = 3).

Definition 3.3 Let x ∈ R
N and let x∗1 ≤ x∗2 · · · ≤ x∗N be the coordinates of x∗.

We define the N − l-tuple V l(x) ∈ (R
2)N−l of couples (x∗i , x

∗
i+l) ∈ R

2 with i ∈
{1, . . . ,N − l}, and we associate with V l(x) the measure

µV l(x) =

N−l
∑

i=1

δ(x∗i ,x
∗

i+l
),

which represents the set of l-neighbors counted with multiplicity. We also define

V (x) as the
(

N
2

)

-tuple of V l(x) neighbors as l varies, and we associate with V (x) the

measure

µV (x) :=
N−1
∑

l=1

µV l(x) =

N−1
∑

l=1

N−l
∑

i=1

δ(x∗i ,x
∗

i+l
) =

∑

1≤i< j≤N

δ(x∗i ,x
∗

j ).

We remark that, given f satisfying (1.6) and c defined as (1.5), we have that

c(x) = c(x∗) =

∫

R2

f (z − z′) dµV (x)(z, z′).
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bb bb b b
x1 y1 y2 x2 y3 x3
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b b

b b

b b bb b b
x1 y1 x2 y2 x3 y3

1-neighbors
b b

b b
b b

b b

2-neighbors
b b

b b

Figure 3.1: The figure shows the coordinates of x, y ∈ R
3 in two different situations; in partic-

ular, in the second case the coordinates of x and y are chosen to make x and y well ordered. In

both cases, the sets of 1-neighbors V 1(x) ∪ V 1(y) and 2-neighbors V 2(x) ∪ V 2(y) are repre-

sented, drawing a segment between the endpoints of each couple of neighboring coordinates.

Given a couple of points (x, y) ∈ R
N × R

N , let x∗1 ≤ x∗2 · · · ≤ x∗N be the coordinates

of x∗ , and y∗1 ≤ y∗2 ≤ · · · ≤ y∗N be the coordinates of y∗; we consider the set of

l-neighbors of x and of y, namely

µ(V l(x),V l(y)) = µV l(x) + µV l(y) =

N−l
∑

i=1

δ(x∗i ,x
∗

i+l
) +

N−l
∑

i=1

δ(y∗i ,y
∗

i+l
).

In the same way we have that

µ(V (x),V (y)) =

N−1
∑

l=1

µ(V l(x),V l(y))

and

c(x) + c(y) = c(x∗) + c(y∗) =

∫

R2

f (z − z′) dµ(V (x),V (y))(z, z′)

=

N−1
∑

l=1

∫

R2

f (z − z′) dµ(V l(x),V l(y))(z, z′).

(3.10)

The following lemma represents our fundamental estimate on l-neighbors for

fixed l.

Lemma 3.4 Let f be defined as in Theorem 1.1. Let m,M be positive integers such

that m < M. Let I be a subset of {1, . . . ,M} with m elements and s : I → {1, . . . ,M}
be an injective map such that i ≤ s(i) for all i. Let z1 ≤ z2 ≤ · · · ≤ zM .

Then we have that

(3.11)
m
∑

i=1

f (zi+M−m − zi) ≤
∑

i∈I

f (zs(i) − zi).

Moreover, if the left-hand side in (3.11) is finite, equality holds in (3.11) for some s

if and only if the sets {(zi , zi+M−m)}i∈{1,...,m} and {(zi , zs(i))}i∈{1,...,m} coincide with
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multiplicity, namely

(3.12)
m
∑

i=1

δ(zi ,zi+M−m) =
∑

i∈I

δ(zi ,zs(i)).

Proof It is clear that (3.12) implies equality in (3.11). We assume in the following

that the right-hand side in (3.11) is finite; otherwise, there is nothing to prove.

Step one: from s to its monotone rearrangement. Let us call s(I) the image of I through

s and let s∗ : I → s(I) be the strictly monotone function that maps I onto s(I), which

exists and is unique thanks to the fact that I and s(I) have the same number of ele-

ments. Then we have that

(3.13)
∑

i∈I

f (zs∗(i) − zi) ≤
∑

i∈I

f (zs(i) − zi).

Let φ : R → [0,∞] be defined as

φ(x) =

{

+∞ if x ∈ (−∞, 0),

f (x) if x ∈ [0,∞).

Thanks to Lemma 3.2 applied with N = m, to the ordered m-uples of elements of

(zi)i∈I and (zs∗(i))i∈I , we obtain

(3.14)
∑

i∈I

φ(zs∗(i) − zi) ≤
∑

i∈I

φ(zs(i) − zi) =
∑

i∈I

f (zs(i) − zi),

where the last equality follows from the assumption i ≤ s(i) for every i ∈ I and the

monotonicity of z1, . . . , zM . As a consequence, since the right-hand side in (3.14) is

finite we also obtain that zi ≤ zs∗(i) for every i ∈ I. We can then rewrite (3.14) as

(3.13). Moreover, we have equality in (3.14) if and only if

(3.15)
∑

i∈I

δ(zi ,zs∗(i)) =
∑

i∈I

δ(zi ,zs(i)).

Step two: conclusion. Denote by i1 < i2 < · · · < im the elements of I. Then

(3.16) l ≤ il, s∗(il) ≤ M − m + l, for l ∈ {1, . . . ,m}.
Indeed thanks to the fact that il < il+1 are positive integers for every l = 1, . . . ,m,

it follows easily by induction that l ≤ il for every l = 1, . . . ,m. In the same way from

s∗(il) < s∗(il+1) for every l = 1, . . . ,m it follows, by induction, that il ≤ l + M − m

for every l = 1, . . . ,m.

From (3.16) and (3.13), since zi ≤ zs∗(i) for every i ∈ I and by the monotonicity

of f in [0,+∞), it follows that

(3.17)
m
∑

l=1

f (zl+M−m − zl) ≤
m
∑

l=1

f (zs∗(il) − zil
) =

∑

i∈I

f (zs∗(i) − zi) ≤
∑

i∈I

f (zs(i) − zi).

In particular, since f is strictly decreasing in [0,∞) because it is strictly convex, if

equality holds in (3.17), then we have that zl+M−m = zs∗(il) and zl = zil
for every

l = 1, . . . ,m. If equality holds, then we have that

(3.18)
m
∑

l=1

δ(zl,zl+M−m) =

m
∑

l=1

δ(zil
,zs∗(il )) =

∑

i∈I

δ(zi ,zs∗(i)).
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From (3.15) and (3.18) we obtain that the equality cases in (3.11) are described by

(3.12).

In the following lemma we prove that the set of neighbors V (x) ∪ V (y) of some

x, y ∈ R
N determines uniquely (x, y), in the sense that if the set of neighbors of two

couples of points (x, y) and (x′, y′) coincide, then the two couples coincide up to the

order. Since the statement is of purely combinatorial nature, the reader can skip the

proof of the lemma at a first reading.

Lemma 3.5 Let (x, y), (x′, y′) ∈ R
2N , whose sets of coordinates counted with multi-

plicities are equal, i.e.,

(3.19) µ(x,y) = µ(x′,y′) = µ.

Let us assume that the set of neighbors (counted with multiplicities) is the same for both

the couples, that is,

(3.20) µ(V (x),V (y)) = µ(V (x′),V (y′)).

Then we have that

(3.21) {x∗, y∗} = {x′∗, y′∗}.

Proof We first observe that the relation µ(x,y) = µ(x′,y′) can be written as

N
∑

i=1

δx∗i
+ δy∗i

=

N
∑

i=1

δx′∗i
+ δy′∗i

,

and it also gives us that

(3.22)
N
∑

i=1

δ(x∗i ,x
∗

i ) + δ(y∗i ,y
∗

i ) =

N
∑

i=1

δ(x′∗i ,x′∗i ) + δ(y′∗i ,y′∗i ).

Writing (3.20) and then exchanging the coordinates of R
2 we also obtain

∑

i< j

δ(x∗i ,x
∗

j ) + δ(y∗i ,y
∗

j ) =
∑

i< j

δ(x′∗i ,x′∗j ) + δ(y′∗i ,y′∗j ),(3.23)

∑

j<i

δ(x∗i ,x
∗

j ) + δ(y∗i ,y
∗

j ) =
∑

j<i

δ(x′∗i ,x′∗j ) + δ(y′∗i ,y′∗j ).(3.24)

Now, summing up (3.22), (3.23), and (3.24) we obtain

N
∑

i, j=1

δ(x∗i ,x
∗

j ) + δ(y∗i ,y
∗

j ) =

N
∑

i, j=1

δ(x′∗i ,x′∗j ) + δ(y′∗i ,y′∗j ),

that can be seen as

(3.25) µx ⊗ µx + µy ⊗ µy = µx′ ⊗ µx′ + µy′ ⊗ µy′ ,

where ⊗ represents the tensor product between measures on R. Let φ ∈ Cc(R) and

let us consider the function f : R
2 → R given by f (x, y) = φ(x)φ(y). We test it with

the measure equality (3.25) to infer

(3.26)
(

∫

R

φ dµx

) 2

+
(

∫

R

φ dµy

) 2

=

(

∫

R

φ dµx′

) 2

+
(

∫

R

φ dµy′

) 2

.
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From (3.26) and
∫

R

φ dµx +

∫

R

φ dµy =

∫

R

φ dµx′ +

∫

R

φ dµy′ ,

which in turn follows from (3.19), we obtain with some computations1 that

(

∫

R

φ dµx −
∫

R

φ dµx′

)

·
(

∫

R

φ dµx −
∫

R

φ dµy′

)

= 0.

As a consequence we get that for every φ ∈ Cc(R) either

(3.27)

∫

R

φ dµx =

∫

R

φ dµx′ or

∫

R

φ dµx =

∫

R

φ dµy′ .

We claim that either the first equality or the second equality in (3.27) is true for every

φ ∈ Cc(R), which allows us to conclude by duality that either µx = µx′ or µx = µy′ .

Namely by (3.1) either x∗ = x′∗ or x∗ = y′∗. Thus (3.21) follows thanks to (3.19). To

prove the claim, we notice that if the first equality in (3.27) fails for some φ ∈ Cc(R),

and the second equality in (3.27) fails for ψ ∈ Cc(R), we obtain a contradiction

because the function φ + ψ does not satisfy any of the two conditions in (3.27).

Proof of Proposition 2.4 Let x, y be a couple of well ordered points in R
N ; we de-

note by z1 ≤ z2 ≤ · · · ≤ z2N the cumulative coordinates, so for i = 1, . . . ,N, we

have either
{

x∗i = z2i+1

y∗i = z2i

or

{

y∗i = z2i+1

x∗i = z2i

because they are well ordered. By (3.10), inequality (2.2) is equivalent to

N−1
∑

l=1

∫

R2

f (z − z′) dµ(V l(x),V l(y))(z, z′) ≤
N−1
∑

l=1

∫

R2

f (z − z′) dµ(V l(X),V l(Y ))(z, z′).

This last inequality is true, because we claim that Lemma 3.4 implies that, for every

l = 1, . . . ,N − 1,

(3.28)

∫

R2

f (z − z′) dµ(V l(x),V l(y))(z, z′) ≤
∫

R2

f (z − z′) dµ(V l(X),V l(Y ))(z, z′),

and so, adding up over l, we get the conclusion. To prove the claim, we rewrite (3.28)

in terms of the zi and we see in fact that the left-hand side is simply

∫

R2

f (z − z′) dµ(V l(x),V l(y))(z, z′) =
2l
∑

i=1

f (zi − z2N−2l+i),

while the right-hand side can be described as

(3.29)

∫

R2

f (z − z′) dµ(V l(X),V l(Y ))(z, z′) =
∑

i∈I

f (zi − zs(i)),

1from a2 + b2
= α2 + β2 and a + b = α + β we obtain ab = αβ. Then a(a + b − α − β) = 0,

developing this equality and replacing ab by αβ one gets (a − α)(a − β) = 0.
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where I ⊆ {1, . . . , 2N} is a set with 2l elements and s : I → {1, . . . , 2N} is an

injective function with s(i) > i (s may not be unique).2

Now we can apply Lemma 3.4 to z1, . . . , z2N with M = 2N and m = 2l, I and s

as in (3.29), and we get (3.28). Tracing back the equality cases under the assumption

that the left-hand side in (2.2) is finite, we have equality in (2.2) if and only if we have

equality in (3.28) for every l. In particular, if equality holds in (2.2) by Lemma 3.4,

we have µ(V l(x),V l(y)) = µ(V l(X),V l(Y )) for every l and, summing over l,

µ(V (x),V (y)) = µ(V (X),V (Y )).

Therefore we apply Lemma 3.5 because clearly µ(x,y) = µ(X,Y ), and we get {x∗, y∗} =

{X∗,Y ∗} in case of equality in (2.2).

With this we proved the first part, that is if (x, y) are well ordered then c(x) + c(y)

is a minimizer among the values of c(X) + c(Y ) varying the partition. However the

description of equality cases also lets us conclude the second part. Let us take a couple

x, y that is a minimizer among all partitions, namely satisfies (2.3); we know that

there exists a partition such that X,Y are well ordered, and by the first part, this

couple is also a minimizer. In particular we get c(x) + c(y) = c(X) + c(Y ) and, by the

characterization of equality cases, we conclude that {x∗, y∗} = {X∗,Y ∗}, and so x, y

are also well ordered.

4 Proof of the Main Theorem: Existence, Uniqueness, and
Description

We now enter into the proof of Theorem 1.1; the existence part of the proof also

holds under slightly weaker assumptions on f , as stated in the next remark.

Remark 4.1 If we drop the strict convexity assumption for f on [0,∞), assuming

only convexity, we still have that the minimum in (M) and (K) is realized by the map

described in Theorem 1.1, with a completely analogous proof. In this case, however,

there is no longer uniqueness in the class Πsym(ρ); the lack of uniqueness happens

also, for instance, in the classical 2-marginal case.

We recall here a standard result in optimal transport theory that will be useful in

the last part of the proof of the main theorem.

Lemma 4.2 Let ρ1 and ρ2 be two non-atomic probability measures on R. Let

c(x, y) : R
2 → [0,∞] be a lower semicontinuous convex function of x − y, strictly

convex on its finiteness domain, and let us assume that

(4.1) min
{

∫

R×R

c(x, y) dγ(x, y) : π1
♯γ = ρ1, π

2
♯γ = ρ2

}

< +∞.

Then there exists a unique minimizer γ for problem (4.1); moreover, γ = (Id,T)♯ρ1,

where T is the unique (up to ρ1-null sets) increasing function such that ρ2 = T♯ρ1.

2 For example, if X∗

i = zr(i) and Y∗

i = zt(i) for some strictly increasing functions r, t : {1, . . . ,N} →
{1, . . . , 2N} whose ranges are disjoint, we can take I = {r(1), t(1), . . . , r(N − l), t(N − l)} and define

s : I → {1, . . . , 2N} by s(i) := r(r−1(i) + l) for i ∈ {r(1), . . . , r(N − l)} and s(i) := t(t−1(i) + l) for
i ∈ {t(1), . . . , t(N − l)}.
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Proof Despite quite different assumptions on the cost, the proof goes exactly as in

[1, Theorem 3.1]. For a complete proof, see [8, Theorem 1.4] (in italian).

Proof of Theorem 1.1 Let us consider an optimal plan γ ∈ Π(ρ); we can assume

without loss of generality that γ is symmetric thanks to (1.4). Let O ⊂ R
N be the

subset of ordered N-uples

O = {(x1, . . . , xN ) : x1 < x2 < · · · < xN},

and let γ∗ = γ|O. From Corollary 2.6 the optimal plan γ is concentrated outside the

union of all diagonals D =
⋃

i 6= j{xi = x j}. Since γ is symmetric, we obtain that

(4.2) γ = γ|RN\D =
∑

σ∈SN

γ|τσ(O) =
∑

σ∈SN

(τσ)♯γ|τσ(O) =
∑

σ∈SN

(τσ)♯γ
∗.

Let Γ be the support of γ and Γ
∗
= Γ ∩ O, so that Γ∗ is also the support of γ∗. Let

us define

d+
i = max

x∈Γ∗

xi d−
i = min

x∈Γ∗

xi , ρi = ρ|[d−

i ,d+
i ].

We show some properties of d±
i , namely that

(i) d+
i ≤ d−

i+1 for all i = 1, . . . ,N − 1;

(ii) Γ
∗ ⊆ ∏

i[d−
i , d

+
i ];

(iii) ρ([d−
i , d

+
i ]) = 1/N for all i = 1, . . . ,N;

(iv) (N − 1)!γ∗ is a transport plan whose marginals are exactly ρi , namely

(N − 1)!(πi)♯γ
∗
= ρi for all i = 1, . . . ,N − 1.

We start with assertion (i). Let us fix an index i ∈ {1, . . . ,N − 1}. We know from

Corollary 2.5 that every x, x′ ∈ Γ
∗ are well ordered, but, since they are already or-

dered, we have that either xi ≤ x′i ≤ xi+1 ≤ x′i+1 or x′i ≤ xi ≤ x′i+1 ≤ xi+1. In

both cases we have that xi ≤ x′i+1. We let x, x′ vary in Γ
∗, take the infimum on the

right-hand side and the supremum on the left hand side and we obtain (i).

Assertion (ii) follows directly from the definition of d±.

To prove (iii) we assume to fix the ideas that i = 1, the general case is completely

analogous. First we remark that 1 = γ(R
N ) = N!γ∗(R

N ) and that it follows from

(ii) that

(4.3) spt((τσ)♯γ
∗) = τσ(Γ∗) ⊆

N
∏

i=1

[d−
σ(i), d

+
σ(i)], forσ ∈ SN .

Since ρ is non-atomic and (π1)♯γ = ρ, we have that for every σ ∈ SN ,

(τσ)♯γ
∗
(

{d±
1 } × R

N−1
)

≤ γ
(

{d±
1 } × R

N−1
)

= ρ
(

{d±
1 }

)

= 0.

Therefore by (4.2) we know that

ρ
(

[d−
1 , d

+
1 ]
)

= γ
(

[d−
1 , d

+
1 ] × R

N−1
)

=
∑

σ∈SN

(τσ)♯γ
∗
(

[d−
1 , d

+
1 ] × R

N−1
)

=
∑

σ(1)=1

(τσ)♯γ
∗
(

[d−
1 , d

+
1 ] × R

N−1
)

+
∑

σ(1) 6=1

(τσ)♯γ
∗
(

(d−
1 , d

+
1 ) × R

N−1
)

.

(4.4)
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Recalling (4.3) we have two cases: if σ(1) 6= 1 the set (d−
1 , d

+
1 ) × R

N−1 does not

intersect spt((τσ)♯γ
∗), if σ(1) = 1, we have spt((τσ)♯γ

∗) ⊆ [d−
1 , d

+
1 ] × R

N−1 and so

[d−
1 , d

+
1 ] × R

N−1 has full (τσ)♯γ
∗ measure. In particular, we get

ρ([d−
1 , d

+
1 ]) =

∑

σ(1)=1

(τσ)♯γ
∗(R

N ) = (N − 1)! · γ∗(R
N ) =

1

N

from (4.4), which proves (iii).

Since ρ is a non-atomic probability measure, by (i) and (iii) it follows that the

sets [d−
1 , d

+
1 ], . . . , [d−

n , d
+
n ] are a partition of R up to sets of ρ-measure 0. In order to

fulfill (1.7), we can take di = d+
i for i = 1, . . . ,N − 1, so that ρi = 1[di−1,di ]ρ and

ρ = ρ1 + · · · + ρN .

To prove (iv) we note that

N
∑

i=1

ρi = ρ = (π1)♯γ =
∑

σ∈SN

(π1)♯((τσ)♯γ
∗) =

∑

σ∈SN

πσ(1)
♯ γ∗ = (N − 1)!

N
∑

i=1

πi
♯γ

∗.

Since the measures πi
♯γ

∗ have essentially disjoint supports (in fact we have sptπi
♯γ

∗ ⊆
[d−

i , d
+
i ], we obtain exactly that (N − 1)!πi

♯γ
∗
= ρi , which proves (iv).

We turn now to the proof of (1.9). We introduce the plan associated with T, which

is given by γT = (Id,T, . . . ,T(N−1))♯ρ, and we rewrite its cost using that the cost c is

symmetric, [T(i−1)]♯ρ1 = ρi , and T(N)
= Id:

∫

R

c dγT =

∫

R

c(x,T(x), . . . ,T(N−1)(x)) dρ

=

N
∑

i=1

∫

R

c(x,T(x), . . . ,T(N−1)(x)) dρi

=

N
∑

i=1

∫

R

c(T(i−1)(x),T(i)(x), . . . ,T(i+N−2)(x)) dρ1

= N

∫

R

c(x,T(x), . . . ,T(N−1)(x)) dρ1.

(4.5)

Let us define

γi, j = (N − 1)!(πi , π j)♯γ
∗, 1 ≤ i < j ≤ N,

which is a transport plan between ρi and ρ j by (iv). If we consider

f̄ (x, y) =

{

f (x − y) if x ≥ y,

+∞ otherwise,

we have that c(x1, . . . , xN ) =
∑

i< j f̄ (x j , xi) if (x1, . . . , xn) ∈ O. Now we can write

that

1

N

∫

RN

c dγ = (N − 1)!

∫

O

c dγ∗ =
∑

i< j

∫

O

(N − 1)! f̄ (x j , xi) dγ∗(x1, . . . , xN )

=
∑

i< j

∫

O

f̄ dγi, j .

(4.6)

Since f̄ (x, y) is a strictly convex function of x−y on its finiteness domain, Lemma 4.2

gives us that for every i, j ∈ {1, . . . ,N} there is a unique optimal plan relative to the
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cost f̄ (x, y), given by the unique monotone increasing map that maps ρi to ρ j . We

claim that this monotone map is T( j−i), with T defined as in (1.8). In fact T, by

definition, is an increasing map restricted to the support of every ρi and maps ρi into

ρi+1 cyclically. From this we can deduce that T( j−i) is also monotone restricted to the

support of every ρi and maps ρi into ρ j . So we get that for every i, j ∈ {1, . . . ,N},

(4.7)

∫

f̄ (T(i),T( j)) dρ1 =

∫

f̄ (x,T( j−i)(x)) dρi ≤
∫

f̄ (x, y) dγi, j .

Summing up (4.7) for 1 ≤ j < i ≤ N and thanks to (4.5) and (4.6), we obtain

(4.8)
1

N

∫

c dγT =

∫

c(x,T(x),T(2)(x), . . . ,T(N−1)(x)) dρ1 ≤
1

N

∫

c dγ,

Now, (4.8) shows (1.9); moreover, since γ is optimal, we have equality in (4.7) for ev-

ery j > 1, and so, thanks to the uniqueness in the classical case, we get that γ1, j is con-

centrated on the graph of (Id,T( j−1)) for every j > 1, namely on {y = T( j−1)(x)}.

Hence γ∗ is concentrated on {x j = T( j−1)(x1)} for every j = 2, . . . ,N, and so it is

concentrated on the intersection of these sets, that is, the graph of (T,T2, . . . ,T(N−1))

over x1. Following [1, Proposition 2.1], we get that γ∗ is determined by T:

(N − 1)!γ∗ = (Id,T,T2, . . . ,T(N−1))♯ρ1,

and thus γ is also determined (using (4.2)) and is therefore unique.

References

[1] L. Ambrosio, Lecture notes on optimal transport problems. In: Mathematical aspects of evolving
interfaces (Funchal, 2000), Lecture Notes in Math., 1812, Springer, Berlin, 2003, pp. 1–52.

[2] L. Ambrosio, B. Kirchheim, and A. Pratelli, Existence of optimal transport maps for crystalline norms.
Duke Math. J. 125(2004), no. 2, 207–241. http://dx.doi.org/10.1215/S0012-7094-04-12521-7

[3] G. Buttazzo, L. De Pascale, and P. Gori-Giorgi, Optimal transport formulation of electronic
density-functional theory. Phys. Rev. A 85 (2012), 062502.

[4] T. Champion and L. De Pascale, On the twist condition and c-monotone transport plans. Discrete
Contin. Dyn. Sys. 34(2014), no. 4, 1339–1353. http://dx.doi.org/10.3934/dcds.2014.34.1339

[5] M. Colombo, S. Di Marino, Equality between Monge and Kantorovich multimarginal problems with
Coulomb cost. Ann. Mat. Pura Appl., to appear. http://dx.doi.org/10.1007/s10231-013-0376-0
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