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In th i s note we study dependence in m a t r o i d s a s an 
e x e r c i s e in c o m b i n a t i o n a l a l g e b r a . B e c a u s e the work s e e m s 
to have l i t t le connec t ion with g r a p h t h e o r y we wi l l not u s e 
T u t t e f s a p p r o a c h (1) which u s e s dua l c o n c e p t s . To define a 
m a t r o i d we u s e Edmunds (2). 

A m a t r o i d i s a f ini te se t S toge the r with a f ami ly M of 
independen t s u b s e t s of S such tha t (1) e v e r y s u b s e t of an 
independen t s e t i s independent - (2) F o r e v e r y subse t A of S 
a l l m a x i m a l independen t s u b s e t s of A have the s a m e c a r d i n a l i t y , 
ca l led the r a n k r(A) of A. A C S i s a dependent s u b s e t of 
(S, M) if A i s not i ndependen t . 

An e l e m e n t x i s dependent on a s e t Y if 

r (x + Y) = r ( Y ) . 

A b a s e i s a m a x i m a l independen t s e t of (S, M ) . C l e a r l y e v e r y 
e l e m e n t of S i s dependen t on a b a s e of (S, M). 

If x, y a r e m e m b e r s of S we w r i t e 

x ^ y 

if x i s dependen t on y. It i s e a sy to s ee that ~ i s an equ iva lence 
r e l a t i o n on the s e t S. Let now B be any fixed b a s e of (S, M) . 
F o r any x e S define D(x, B) = D(x) to be the s u b s e t A of B 
such that x i s dependent on A but on no p r o p e r s u b s e t of A. 

THEOREM 1. D(x) i s uniquely defined. 

P roof . When {x} i s a dependent se t then D(x) i s the 
nul l s e t . When x a B then D(x) = x. When x ^ B t h e o r e m 1 
i s a p a r t i c u l a r c a s e of L e m m a 3 of E d m u n d s and F u l k e r s o n (3). 

Le t B = (b . b . . . . b ). Let f be the mapp ing of S into 
1 2 r 

the s e t of r - t u p l e s of z e r o s and ones defined by 

f(x) = (x1> x , . . . x r ) 
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where x. = 1 if b. 8 D(x) and = 0 otherwise, 
l l 

By theorem 1, f(. ) is a well defined function. Clearly 
f(x) is the zero vector if and only if {x} is dependent. Less 
obvious is 

THEOREM 2. If both x and y are independent elements 
but x ~ y then f(x) and f(y) are identical . 

Proof; It is sufficient to prove that 

D(x) = D(y). 

Let D(x) = A so that 

(1) r(A + x) = |A | 

Now r(x + y + A) > r(A). Suppose r(x + y + A) = r ( A ) + l . 
Then the maximal independent subset of x + y + A containing 
x would have cardinality r(A) + 1. This implies that either 

a) (x + A) is independent 
or 

b) (x + y + A - c) is independent for some c e A. 

a) would imply r(x + A) = | A | + 1 contradicting (1), and 
b) would imply (x, y) is independent, contradicting the 
dependence of x on y. Hence r(x + y + A) = r(A). 
Hence r(y 4- A) ^ r(A) and thus D(y) C D(x). Interchanging 
x and y in the argument above we get the required resu l t . 

We may now define an ' inner product1 on the elements 
of the matroid (S, M) by letting 

r 
<x, y> = 2 x.y. 

i = l 

where (x. , x . . . . x ) = f(x) 
1 Z r 

( y l ' y 2 ' " # y r ) = f ( y ) 

Two elements x, y of S a re said to be orthogonal if 

<x, y> = 0 
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LEMMA 1. Distinct elements of the base B a re orthogonal. 

LEMMA 2. If x is orthogonal to y and z is dependent 
on x then z is orthogonal to y. 

Proof: By theorem 2, D(z) = D(x). x orthogonal to y 
implies 

D(x) H D(y) = 0 

and thus 

D(z) 0 D(y) = 0 

which implies <z, y> = 0. 

A set A of elements of S is an orthogonal set if any two 
distinct members of A are mutually orthogonal. 

LEMMA 3. Any subset of the fixed base B is 
an orthogonal set . 

The proof of this lemma is tr ivial but we also have the 
stronger resu l t . 

THEOREM 3. If A is any orthogonal set in a matroid 
and A does not contain any dependent singletons then A is 
an independent set . 

This is analogous to the theorem that non-zero orthogonal 
vectors in a Euclidean vector space are linearly independent. 
The converse of this i s , as expected, untrue (see the example 
in the conclusion). 

To those familiar with (1) and (4) it is apparent that 
when x ^ B , x + D(x) is the fundamental circuit of the 
matroid determined by B and the element x. Fundamental 
circuits a re extremely important in the theory of binary 
matroids (Tutte (1)). It is clear that theorem 3 has a corollary: 

If C(x), C(y), . . . C(w) are disjoint fundamental circuits of a 
matroid determined by a fixed B and elements x, y, . . . w 
then x, y, . . . w is an independent set of the matroid. 
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Proof of Theorem 3. Let A = {a , , a » . . . , a ) and let 

A O B = 0. Let D(a.) = A., Suppose A is a dependent set . 

Then by Whitney (4) it contains a circuit (minimal dependent 
set) . Without loss of generality let this circuit be 

A1 = {a^, a^, . . . a } . 

Now by definition a + A is a circui t . Hence by a fundamental 

proper ty of c ircui ts (Whitney (4)), 

A' = a + . . . + a., + AJ 1 2 k 1 

mus t contain a circui t C . C mus t contain a subset of 
1 1 

{a^. . . an } since At is a subset of B and hence is independent. 
2 k 1 

Let C = a + C1 . But a + A^ is a circuit and hence 
1 2 1 2 2 

A' = C» + A 
2 1 2 

mus t contain a circui t C . Again C must contain an element 

of {a . . . a } . Let it be a . Then a + A a circui t implies 
3 k 3 5 5 

that A J = a + . . . + a, + A^ contains a c i rcui t . Repeating the 
3 4 k 3 

above k t imes we eventually a r r ive at the contradiction that 
L + A 
1 2 either a subset of A. + A_ + . . . A^ is a circuit or that the null 

set is a c i rcui t . 

This proves the theorem when A D B = 0 . Suppose now 
that A = A1 + B ! C B , and A! O B = 0. Let A be dependent. 
Then A again contains a circuit C which mus t contain 
elements of A1. Let C = a j + a ^ + . . . an + D where D is 

1 2 k 
a subset of B1 and hence of B . Using the above argument on 
the set a, . . . a , it is easy to see that 

1 k 
that a subset of B contains a c i rcui t . 

the set a . . . a , it is easy to see that we again get contradiction 

This completes the proof of the whole theorem. Theorem 
3 can also be proved constructively by finding a base of the 
matroid containing the orthogonal set A. 
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Conclusion. Although most of the above is prompted by-
resul t s in ordinary vector space theory this 'vector 
representat ion1 is in no way an attempt to imbed a matroid in a 
vector space in such a way as to p rese rve dependence re la t ions . 
This i s an extremely difficult unsolved problem. For example: 
Let (S, M) be the matroid 

S = { 1 / 2 , 3 , 4 , 5 } 

with bases all subsets of three elements which contain the 
element {1} . Let the fixed base B be {1, 2, 3} . Then the 
'vector representa t ions ' of the elements 4, 5 as defined above 
are both (0, 1, 1) whereas (4, 5) is an independent set in the 
matroid . However the following conjectures seem likely to 
be true and give interesting problems in combinational matroid 
theory. 

Problem 1. Let A be any independent set . The span 
of A is the set of elements dependent on A, (see Edmunds (2)). 
Let x be an element of (S, M) which is orthogonal to every 
element of A. Then x is orthogonal to every element in the 
span of A. 

Problem 2. Let B be the fixed base defining the vector 
representat ion. Let B ' H (c , c , . . . , c ) be any other base of 

1 2 r 
(S, M), and let (c. t, c . . . . , c ) be the vector representat ion 

— i l i2 î r 
of c. . Then the mat r ix C ~ (c . . ) is a unimodular ma t r ix . 

i — iJJ 
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