ON DEPENDENCE IN MATROIDS

D.J.A. Welsh

In this note we study dependence in matroids as an
exercise in combinational algebra. Because the work seems
to have little connection with graph theory we will not use
Tutte's approach (1) which uses dual concepts. To define a
matroid we use Edmunds (2).

A matroid is a finite set S together with a family M of
independent subsets of S such that (1) every subset of an
independent set is independent. (2) For every subset A of S
all maximal independent subsets of A have the same cardinality,
called the rank r(A) of A. ACS is a dependent subset of

(S, M) if A is not independent.

An element x is dependent on a set Y if

r(x+Y) = r(Y).

A base is a maximal independent set of (S, M). Clearly every
element of S is dependent on a base of (S, M).

If x,y are members of S we write

X ~vy
if x is dependent on y. Itis easy to see that ~ is an equivalence
relation on the set S. Let now B be any fixed base of (S, M).
For any x ¢S define D(x,B) = D(x) to be the subset A of B
such that x is dependent on A but on no proper subset of A.

THEOREM 1. D(x) is uniquely defined.

Proof. When {x} 1is a dependent set then D(x) is the
null set. When xg¢ B then D(x) = x. When x¢ B theorem 1
is a particular case of Lemma 3 of Edmunds and Fulkerson (3).

Let B = (bi'bz’ ...b ). Let f be the mapping of S into
r

the set of r-tuples of zeros and ones defined by
f(x) = (xi,x )

2 r
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where x, = 1 if bisD(x) and = 0 otherwise.

By theorem 1, £(.) is a well defined function. Clearly
f(x) is the zero vector if and only if {x} is dependent. Less
obvious is

THEOREM 2. If both x and y are independent elements
but x~y then f(x) and f(y) are identical.

Proof: Itis sufficient to prove that
D(x) = Dfy).
Let D(x) = A so that
(1) r(A+x) = |A]

Now r(x+y + A) > r(A). Suppose r(x+y+ A) = r(A) +1.
Then the maximal independent subset of x + y + A containing
x would have cardinality r(A) + 1. This implies that either

a) (x + A) is independent
or
b) (x+vyv + A - c) is independent for some c ¢ A,

a) would imply r(x + A) = |A| + 1 contradicting (1), and

b) would imply (x,y) is independent, contradicting the
dependence of x on y. Hence r(x+y + A) =r(A).

Hence r(y + A) €& r(A) and thus D(y) C D(x). Interchanging
x and y in the argument above we get the required result.

We may now define an 'inner product' on the elements
of the matroid (S, M) by letting

T
<x,y> = Z Xy

where (Xi’X 'Xr) = f(x)

20

(Y,l:YZ, ---Yr) f(y)

Two elements x,y of S are said to be orthogonal if

<x,y> = 0
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LEMMA 1. Distinct elements of the base B are orthogonal.

LEMMA 2. If x is orthogonalto y and z is dependent
on x then z is orthogonal to y.

Proof: By theorem 2, D(z) = D(x). x orthogonal to y

implies

D(x) N D(y) = ¢
and thus

D(z) N D(y) = ¢
which implies <z,y> = 0.

A set A of elements of S is an orthogonal set if any two
distinct members of A are mutually orthogonal.

LEMMA 3. Any subset of the fixed base B is
an orthogonal set.

The proof of this lemma is trivial but we also have the
stronger result.

THEOREM 3. If A is any orthogonal set in a matroid
and A does not contain any dependent singletons then A is
an independent set.

This is analogous to the theorem that non-zero orthogonal
vectors in a Euclidean vector space are linearly independent.
The converse of this is, as expected, untrue (see the example
in the conclusion).

To those familiar with (1) and (4) itis apparent that
when x § B, x + D(x) is the fundamental circuit of the
matroid determined by B and the element x. Fundamental
circuits are extremely important in the theory of binary
matroids (Tutte (1)). It is clear that theorem 3 has a corollary:

If C(x), Cly),...C(w) are disjoint fundamental circuits of a
matroid determined by a fixed B and elements x,y,...w
then x,y,...w is an independent set of the matroid.
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Proof of Theorem 3. Let A = {ai, Ay oo, an} and let

2
ANB =¢. Let D(ai) = A Suppose A is a dependent set.

Then by Whitney (4) it contains a circuit (minimal dependent
set). Without loss of generality let this circuit be

1 =
A {a1,a2,...ak}.

Now by definition a, + A1 is a circuit. Hence by a fundamental

property of circuits (Whitney (4)),

Al =
1 a2+ +a.k+A'1

must contain a circuit C1° C1 must contain a subset of

{az. . .ak} since A1 is a subset of B and hence is independent.

Let <C1 = a.2 + C'i' But az + AZ is a circuit and hence

A' = C' +A
2 1 2

must contain a circuit CZ. Again C2 must contain an element

of {a3...ak} . Letitbe a,. Then a, + A, a circuit implies

that A3' =a, t...ta A, contains a circuit. Repeating the

above k times we eventually arrive at the contradiction that

either a subset of A'1 + A2 + ... Ak is a circuit or that the null

set is a circuit.

This proves the theorem when A () B = ¢. Suppose now
that A= A' +B'CB, and A'() B =¢. Let A be dependent.
Then A again contains a circuit C which must contain

elements of A'. Let C=ai+a2+... ak+D where D is

a subset of B' and hence of B. Using the above argument on

the set ay.- .ak, it is easy to see that we again get contradiction

that a subset of B contains a circuit.

This completes the proof of the whole theorem. Theorem
3 can also be proved constructively by finding a base of the
matroid containing the orthogonal set A.
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Conclusion. Although most of the above is prompted by
results in ordinary vector space theory this 'vector
representation' is in no way an attempt to imbed a matroid in a
vector space in such a way as to preserve dependence relations.
This is an extremely difficult unsolved problem. For example:
Let (S,M) be the matroid

S = {1,2,3,4,5)

with bases all subsets of three elements which contain the
element {1} . Let the fixed base B be {1,2,3}. Then the
'vector representations' of the elements 4,5 as defined above
are both (0,1, 1) whereas (4,5) is an independent set in the
matroid. However the following conjectures seem likely to

be true and give interesting problems in combinational matroid
theory.

Problem 4. Let A be any independent set. The span
of A is the set of elements dependent on A, (see Edmunds (2)).
Let x be an element of (S, M) which is orthogonal to every
element of A, Then x is orthogonal to every element in the
span of A.

Problem 2. Let B be the fixed base defining the vector

representation. Let B' = (c1, Coreees Cr) be any other base of

(S, M), and let (C'i' c ., C, ) be the vector representation
— i ir

2"’
of c,. Then the matrix C = {c,j} is a unimodular matrix.
i - i
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