DECOMPOSITION OF REPRESENTATION ALGEBRAS

W. D. WALLIS

(Received 5 December 1967; revised 31 July 1968)

Throughout this paper \mathscr{G} is a finite group and \mathscr{F} is a complete local principal ideal domain of characteristic p, where p divides $|\mathscr{G}|$. The notations of [5] are adopted; moreover we shall denote the isomorphism-class of an $\mathscr{F}\mathscr{G}$ -representation module \mathscr{M} by M, the class of $\mathscr{M}_{\mathscr{K}}$ by $M_{\mathscr{K}}$ and the class of $\mathscr{M}^{\mathscr{A}}$ by $M^{\mathscr{B}}$ for suitable groups \mathscr{K} and \mathscr{R} .

Conlon [2] has shown that $A(\mathscr{G}) = A''_{\mathscr{K}}(\mathscr{G})$, where the direct sum is taken over the non-conjugate *p*-subgroups \mathscr{D} of \mathscr{G} , and Green [4] has shown that $A''_{\mathscr{K}}(\mathscr{G}) \cong A''_{\mathscr{K}}(\mathscr{N})$, where \mathscr{N} is the \mathscr{G} -normalizer of \mathscr{K} .

In this paper we shall assume that \mathscr{H} is a normal *p*-subgroup of \mathscr{G} , and that \mathscr{R} is a group satisfying

$$\mathscr{H} \leqq \mathscr{R} \leqq \mathscr{G}.$$

Various preliminaries appear in Section 1. Section 2 is devoted to defining new algebras $A_{\mathscr{R}}$ and $B^{\mathscr{G}}_{\mathscr{P}}(\mathscr{H})$, and deriving a direct decomposition of $A_{\mathscr{R}}$ (Theorem 21). This result is used in Section 3 to get new direct decompositions of $A_{\mathscr{H}}(\mathscr{G})$ and $A'_{\mathscr{H}}(\mathscr{G})$. Finally two special cases are discussed in detail.

I would like to express my gratitude to the referee, who corrected a fault in my original proof of (21) and made many helpful suggestions concerning the organization of the paper.

1. Some maps

Suppose $\eta: \mathcal{U} \to \mathscr{V}$ is a homomorphism of groups. Then we define maps η^* and η_* as on p. 77 of [1]: if \mathscr{M} is an $\mathscr{F}\mathscr{V}$ -representation module then $\mathscr{M}\eta^*$ is an $\mathscr{F}\mathscr{U}$ -representation module, and if \mathscr{L} is an $\mathscr{F}\mathscr{U}$ -representation module then $\mathscr{L}\eta_*$ is an $\mathscr{F}\mathscr{V}$ -representation module. In particular if $\mathscr{U} \subseteq \mathscr{V}$ we shall write $\theta(\mathscr{U}, \mathscr{V})$ for the natural embedding map; as noted in [1],

$$\begin{split} \mathscr{M}\theta(\mathscr{U},\mathscr{V})^* &= \mathscr{M}_{\mathscr{U}}, \\ \mathscr{L}\theta(\mathscr{U},\mathscr{V})_* &= \mathscr{L}^{\mathscr{V}}. \end{split}$$

We shall write $\psi_{\mathscr{R}}$ for the natural map from \mathscr{R} to \mathscr{R}/\mathscr{H} .

We also write η^* , η_* for the linear maps

$$\eta^* : A(\mathscr{V}) \to A(\mathscr{U})$$
$$\eta_* : A(\mathscr{U}) \to A(\mathscr{V})$$

obtained by defining $M\eta^*$ and $L\eta_*$ to be the isomorphism-classes of $\mathcal{M}\eta^*$ and $\mathcal{L}\eta_*$ respectively, and extending by linearity. Then η^* is an algebra homomorphism, and

$$M(L\eta_*) = [(M\eta^*)L]\eta_*.$$

In particular if $\theta = \theta(\mathcal{U}, \mathcal{V})$ and $\psi_{\mathfrak{R}}$ are as above, then θ^* and θ_* are the r and t of Green [4], and $\psi_{\mathfrak{R}}^* : A(\mathfrak{R}/\mathfrak{H}) \to A(\mathfrak{R})$ is injective.

The following results are easy to prove:

LEMMA 1. If \mathscr{L} is an $\mathscr{F}(\mathscr{R}|\mathscr{H})$ -representation module, then $\mathscr{L}\theta(\mathscr{R}|\mathscr{H}, \mathscr{G}|\mathscr{H})_*\psi_{\mathscr{G}}^* \cong \mathscr{L}\psi_{\mathscr{R}}^*\theta(\mathscr{R}, \mathscr{G})_*.$

Lemma 2. $A_{\mathscr{R}/\mathscr{H}}(\mathscr{G}/\mathscr{H})\psi_{\mathscr{G}}^* \subseteq A_{\mathscr{R}}(\mathscr{G}).$

If \mathscr{I} is the subgroup with one element of a group \mathscr{K} , we shall write $P(\mathscr{K})$ for the projective ideal $A_{\mathscr{I}}(\mathscr{K})$. Then we define

$$\begin{split} P_{\mathscr{H}}(\mathscr{R}) &= P(\mathscr{R}|\mathscr{H})\psi_{\mathscr{R}}^{*} \\ P_{\mathscr{H}}^{\mathscr{G}}(\mathscr{R}) &= P_{\mathscr{H}}(\mathscr{R})\theta(\mathscr{R},\mathscr{G})_{*} \end{split}$$

 $P_{\mathfrak{s}}(\mathscr{R})$ is therefore just $P(\mathscr{R})$; we shall write $P^{\mathfrak{s}}(\mathscr{R})$ for $P_{\mathfrak{s}}^{\mathfrak{s}}(\mathscr{R})$. As a corollary to the definitions, we have

(3)
$$P^{\mathfrak{g}}_{\mathfrak{K}}(\mathfrak{R}) = P^{\mathfrak{g}/\mathfrak{K}}(\mathfrak{R}/\mathfrak{H})\psi^{\ast}_{\mathfrak{g}} \cong P^{\mathfrak{g}/\mathfrak{K}}(\mathfrak{R}/\mathfrak{H});$$

the equality comes from Lemma 1 and the isomorphism holds because ψ_{g}^{*} is injective.

THEOREM 4. $P^{\mathscr{G}}(\mathscr{R})$ is an ideal of $A(\mathscr{G})$.

PROOF. $P^{\mathscr{G}}(\mathscr{R})$ is spanned by the $P^{\mathscr{G}}$, where \mathscr{P} ranges through the indecomposable projective \mathscr{FR} -representation modules.

It is sufficient to show that, with such a \mathscr{P} and with \mathscr{Q} an \mathscr{FR} -representation module

$$P^{\mathscr{G}}Q \in P^{\mathscr{G}}(\mathscr{R}).$$

By the Mackey formula (p. 324 of [3]),

$$P^{\mathfrak{g}}Q = (PQ_{\mathfrak{R}})^{\mathfrak{g}}.$$

Also $P \in P(\mathcal{R})$ and $Q_{\mathcal{R}} \in A(\mathcal{R})$: since $P(\mathcal{R})$ is an ideal of $A(\mathcal{R})$ we know that

$$PQ_{\mathcal{R}} \in P(\mathcal{R})$$

whence

$$(PQ_{\mathcal{R}})^{\mathcal{G}} \in P^{\mathcal{G}}(\mathcal{R}),$$

giving the result.

Decomposition of representation algebras

LEMMA 5. $\mathscr{F}(\mathscr{R}/\mathscr{H})\psi_{\mathscr{R}}^* \cong \mathscr{F}_{\mathscr{H}}\theta(\mathscr{H},\mathscr{R})_*.$

An \mathscr{FR} -representation module \mathscr{Q} will be called \mathscr{H} -trivial if Hq = q for all $H \in \mathscr{H}$ and $q \in \mathscr{Q}$; clearly \mathscr{Q} is H-trivial if and only if there is an $\mathscr{F}(\mathscr{R}|\mathscr{H})$ -module \mathscr{P} satisfying

(6)
$$\mathscr{Q} \cong \mathscr{P}\psi_{\mathscr{R}}^*;$$

and if (5) holds then \mathcal{P} is indecomposable if and only if \mathcal{Q} is.

Suppose \mathscr{P} and \mathscr{Q} are indecomposable modules satisfying (6); write \mathscr{K} for the vertex of \mathscr{Q} . Then \mathscr{K} contains \mathscr{H} , and \mathscr{K}/\mathscr{H} is a vertex of \mathscr{R} . So we have

LEMMA 7. $P_{\mathcal{H}}(\mathcal{R})$ has a basis (as a C-space) consisting of the classes Q of the indecomposable *H*-trivial *FR*-representation modules 2 which are *H*-projective. Hence $P_{\mathcal{H}}^{g}(\mathcal{R})$ is spanned (as a C-space) by the classes $Q\theta(\mathcal{R}, \mathcal{G})_{*}$ of the *FG*-representation modules induced from these 2; these induced modules are clearly also *H*-trivial and *H*-projective.

If X is any element of \mathscr{G} , write

$$\gamma_{X,\mathfrak{R}}: \mathcal{R}^X \to \mathcal{R}$$

for the group isomorphism $R^X \to R(R \in \mathscr{R})$. For any \mathscr{FR} -representation module $\mathscr{Q}, \mathscr{Q}\gamma^*_{X,\mathscr{R}}$ is the conjugate module \mathscr{Q}^X , and the induced map

$$\gamma_{X,\mathscr{R}}^{*}: A(\mathscr{R}) \to A(\mathscr{R}^{X})$$

is a C-algebra isomorphism. The following properties are easy to check.

- (8) $\gamma_{X,\mathscr{G}}^*$ is the identity map on $A(\mathscr{G})$;
- (9) $\gamma^*_{X_{\mathscr{H}}, \mathscr{R}/\mathscr{H}} \psi^*_{\mathscr{R}} = \psi^*_{\mathscr{R}} \gamma^*_{X, \mathscr{R}};$
- (10) $\gamma_{X,\mathscr{R}}^* \theta(\mathscr{R}^X, \mathscr{G})_* = \theta(\mathscr{R}, \mathscr{G})_* \gamma_{X,\mathscr{G}}^* = \theta(\mathscr{R}, \mathscr{G})_*;$
- (11) If 2 is an indecomposable \mathcal{FR} -module with vertex \mathcal{K} then $2\gamma_{X,\mathcal{R}}^*$ is an indecomposable \mathcal{FR}^X -module with vertex \mathcal{K}^X .

LEMMA 12. If $X \in \mathscr{G}$, then $P^{\mathscr{G}}_{\mathscr{H}}(\mathscr{R}) = P^{\mathscr{G}}_{\mathscr{H}}(\mathscr{R}^{X})$.

PROOF. Using (11) with \mathscr{R} replaced by \mathscr{R}/\mathscr{H} we get

$$P(\mathcal{R}^X|\mathscr{H}) = P(\mathcal{R}|\mathscr{H})\gamma^*_{X\mathcal{R},\mathcal{R}|\mathcal{H}}$$

so, by definition

$$=P^{\mathfrak{g}}_{\mathfrak{H}}(\mathfrak{R}).$$

LEMMA 13. If R and S are subgroups of G, both containing H, then

$$P^{\mathfrak{g}}_{\mathscr{X}}(\mathscr{R})P^{\mathfrak{g}}_{\mathscr{X}}(\mathscr{S}) \subseteq \sum_{X \in \mathfrak{g}} P^{\mathfrak{g}}_{\mathscr{X}}(\mathscr{R}^{X} \cap \mathscr{S}).$$

PROOF. Suppose \mathcal{Q} is an $\mathcal{F}\mathcal{R}$ -module and \mathcal{T} an $\mathcal{F}\mathcal{S}$ -module. Then, from Mackey's 'tensor product' theorem ([3], p. 325),

(14)
$$\begin{array}{c} \mathcal{L}\theta(\mathscr{R},\mathscr{G})_{*}\otimes\mathscr{T}\theta(\mathscr{S},\mathscr{G})_{*}\\ \cong \bigoplus_{X} \left((\mathscr{R}^{X})_{\mathscr{R}^{X}\cap\mathscr{G}}\otimes(\mathscr{T})_{\mathscr{R}^{X}\cap\mathscr{G}}\right)\theta(\mathscr{R}^{X}\cap\mathscr{S},\mathscr{G})_{*} \end{array}$$

where X runs through a complete set of $(\mathcal{R}, \mathcal{S})$ -double coset representatives in \mathcal{G} . In particular, if \mathcal{Q} and \mathcal{T} are both \mathcal{H} -projective and \mathcal{H} -trivial, then each tensor product appearing on the right in (14) will also be an \mathcal{H} projective, \mathcal{H} -trivial $\mathcal{F}(\mathcal{R}^X \cap \mathcal{S})$ -module.

Lemma 13 now comes directly from Lemma 7.

LEMMA 15. If $\mathscr{R}' \leq_{\mathscr{G}} \mathscr{R}$, then $P^{\mathscr{G}}_{\mathscr{R}}(\mathscr{R}') \subseteq P^{\mathscr{G}}_{\mathscr{R}}(\mathscr{R})$.

PROOF. From Lemma 12 we can assume $\mathscr{R}' \leq \mathscr{R}$. If \mathscr{Q} is an indecomposable projective $\mathscr{F}(\mathscr{R}'|\mathscr{H})$ -representation module, $\mathscr{Q}^{\mathscr{R}/\mathscr{R}}$ is projective, so

$$Q^{\mathfrak{R}/\mathfrak{K}} \in P(\mathfrak{R}/\mathfrak{K})$$

whence

$$Q^{\mathfrak{A}/\mathfrak{K}} \, \theta(\mathfrak{R}/\mathfrak{H}, \, \mathfrak{G}/\mathfrak{H})_{\mathfrak{X}} \in P^{\mathfrak{g}/\mathfrak{K}}(\mathfrak{R}/\mathfrak{H}).$$

The left hand side is $Q^{\mathscr{G}/\mathscr{H}}$, which is $Q\theta(\mathscr{R}'|\mathscr{H}, \mathscr{G}|\mathscr{H})_*$; Q could have been any basis element for $P(\mathscr{R}'|\mathscr{H})$, so

 $P^{\mathfrak{s}/\mathfrak{K}}(\mathfrak{R}'|\mathfrak{H}) \subseteq P^{\mathfrak{s}/\mathfrak{K}}(\mathfrak{R}|\mathfrak{H}),$

and from (3)

 $P^{\mathfrak{g}}_{\mathfrak{X}}(\mathfrak{R}') \subseteq P^{\mathfrak{g}}_{\mathfrak{X}}(\mathfrak{R}).$

2. The algebras $A_{\mathscr{R}}$ and $B_{\mathscr{G}}^{\mathscr{G}}(\mathscr{H})$.

If \mathscr{Q} is an indecomposable projective $\mathscr{F}(\mathscr{R}|\mathscr{H})$ -representation module then $\mathscr{Q}\theta(\mathscr{R}|\mathscr{H}, \mathscr{G}|\mathscr{H})_*$ is projective, and belongs to $P(\mathscr{G}|\mathscr{H})$. So $P^{\mathscr{G}|\mathscr{H}}(\mathscr{R}|\mathscr{H})$ is a subalgebra of $P(\mathscr{G}|\mathscr{H})$; by Theorem 4 it must be an ideal. Since $P(\mathscr{G}|\mathscr{H})$ is a finite direct sum,

we must have

 $P^{g/\mathscr{H}}(\mathscr{R}/\mathscr{H})\cong \oplus \mathscr{C}$

 $P(\mathcal{G}|\mathcal{H}) \cong \oplus C$

for some finite number of summands. $P^{\mathfrak{g}/\mathfrak{K}}(\mathfrak{R}/\mathfrak{K})$ is non-empty, so it has an identity element; by (3), $P^{\mathfrak{g}}_{\mathfrak{K}}(\mathfrak{R})$ must also have an identity element, which we will write as $I_{\mathfrak{R}}$.

Now define

$$A_{\mathfrak{R}} = A_{\mathfrak{K}}(\mathscr{G})I_{\mathfrak{R}}.$$

From Lemma 12 we have, for any $X \in \mathcal{G}$,

$$I_{\mathfrak{g}} = I_{\mathfrak{g}\mathfrak{x}},$$

$$A_{\mathfrak{R}} = A_{\mathfrak{R}^{\mathfrak{X}}}.$$

LEMMA 18. If $\mathscr{R}' \leq_{\mathscr{G}} \mathscr{R}$ then $A_{\mathscr{R}'}|A_{\mathscr{R}}$.

PROOF. From Lemma 15 we see $I_{\mathscr{R}'} \in P^{\mathscr{G}}_{\mathscr{R}}(\mathscr{R})$, and $I_{\mathscr{R}'}$ is idempotent. So there is an orthogonal decomposition

$$I_{\mathbf{g}} = I_{\mathbf{g}'} + (I_{\mathbf{g}} - I_{\mathbf{g}'})$$

which yields

$$A_{\mathfrak{A}} = A_{\mathfrak{A}'} \oplus A_{\mathfrak{A}}(\mathscr{G})(I_{\mathfrak{A}} - I_{\mathfrak{A}'}).$$

From Lemma 13 we also get

LEMMA 19. If R and S are subgroups of G, both containing H, then

$$A_{\mathscr{R}}A_{\mathscr{G}} \subseteq \sum_{X \in \mathscr{G}} A_{\mathscr{R}^X \cap \mathscr{G}}$$

For convenience, write $\pi(\mathscr{R})$ to denote some complete set of groups \mathscr{S} which are distinct to within \mathscr{G} -conjugacy and satisfy

 $\mathscr{H} \leq \mathscr{S} \leq \mathscr{R},$

and $\pi'(\mathscr{R})$ to denote $\pi(\mathscr{R}) \setminus \{\mathscr{R}\}$.

We define $A'_{\mathfrak{A}}$ to be $\sum A_{\mathfrak{A}'}$, where \sum means algebra sum over $\mathfrak{R}' \in \pi'(\mathfrak{R})$. From Lemma 18, $A'_{\mathfrak{R}}$ is a finite sum of direct summands of $A_{\mathfrak{R}}$, so

 $A'_{\mathfrak{R}}|A_{\mathfrak{R}};$

consequently there is an algebra $B^{\mathfrak{g}}_{\mathfrak{K}}(\mathscr{H})$ defined by

$$A_{\mathfrak{A}} = A'_{\mathfrak{A}} \oplus B^{\mathfrak{g}}_{\mathfrak{A}}(\mathscr{H})$$

which satisfies

 $B^{\boldsymbol{g}}_{\boldsymbol{\mathcal{R}}}(\boldsymbol{\mathcal{H}}) \cong A_{\boldsymbol{\mathcal{R}}}/A_{\boldsymbol{\mathcal{R}}'}.$

 $B^{\boldsymbol{g}}_{\boldsymbol{\mathscr{H}}}(\boldsymbol{\mathscr{H}}) = A_{\boldsymbol{\mathscr{H}}}.$

In particular

(20)

THEOREM 21.
$$A_{\mathfrak{A}} = \bigoplus B^{\mathfrak{g}}_{\mathscr{S}}(\mathscr{H})$$
, where \bigoplus is algebra direct sum over $\mathscr{S} \in \pi(\mathscr{R})$.

PROOF. We proceed by induction on \mathscr{R} . From (20) the theorem holds when \mathscr{R} is replaced by \mathscr{H} . Suppose that whenever $\mathscr{H} \leq \mathscr{H} < \mathscr{R}$,

$$A_{\mathscr{K}} = \bigoplus_{\mathscr{G} \in \pi(\mathscr{K})} B^{\mathscr{G}}_{\mathscr{G}}(\mathscr{H});$$

This yields

$$A'_{\mathscr{R}} = \sum_{\mathscr{K} \in \pi'(\mathscr{R})} \bigoplus_{\mathscr{G} \in \pi(\mathscr{K})} B^{\mathscr{G}}_{\mathscr{G}}(\mathscr{H})$$
$$= \sum_{\mathscr{G} \in \pi'(\mathscr{R})} B^{\mathscr{G}}_{\mathscr{G}}(\mathscr{H});$$

using the definition of $B^{g}_{\mathcal{R}}(\mathcal{H})$,

(22)
$$A_{\mathscr{R}} = \sum_{\mathscr{G} \in \pi(\mathscr{R})} B^{\mathscr{G}}_{\mathscr{G}}(\mathscr{H}).$$

To prove that the sum in (22) is direct, we must show that for any $\mathscr{X} \in \pi(\mathscr{R}), B^{\mathscr{G}}_{\mathscr{X}}(\mathscr{H})$ has zero intersection with $\sum B^{\mathscr{G}}_{\mathscr{S}}(\mathscr{H})$, the sum being over $\mathscr{S} \in \pi(\mathscr{R}) \setminus \{\mathscr{X}\}$. Now as each $B^{\mathscr{G}}_{\mathscr{S}}(\mathscr{H})$ is an ideal direct summand of $A_{\mathscr{G}}$, it is (by (18)) an ideal direct summand of $A_{\mathscr{R}}$, and has an identity element; from this it is easy to see that all we must prove is that

(23)
$$B = B_{\mathfrak{X}}^{\mathfrak{g}}(\mathscr{H}) \cap B_{\mathfrak{Y}}^{\mathfrak{g}}(\mathscr{H}) \neq 0$$

is impossible for $\mathscr{X}, \mathscr{Y} \in \pi(\mathscr{R})$ unless $\mathscr{X} = \mathscr{Y}$.

Suppose \mathscr{X} and \mathscr{Y} are members of $\pi(\mathscr{R})$ which satisfy (23). Then the identity element E of B is non-zero; and

$$E = E_{\mathbf{x}} E_{\mathbf{y}},$$

where E_x and E_y are the identity elements of $B_x^g(\mathcal{H})$ and $B_y^g(\mathcal{H})$ respectively. Hence

$$E \in A_{\mathbf{x}}A_{\mathbf{y}} \subseteq \sum_{\mathbf{X} \in \mathbf{y}} A_{\mathbf{x}^{\mathbf{X}} \cap \mathbf{y}}$$

(using Lemma 19). If $\mathscr{Y} \leq_{\mathscr{G}} \mathscr{X}$, then each $\mathscr{X}^{\mathfrak{X}} \cap \mathscr{Y}$ is a *proper* subgroup of \mathscr{Y} , so $E \in A'_{\mathscr{Y}}$; but this means

$$E = EE_{\mathscr{Y}} \in A'_{\mathscr{Y}}B^{\mathscr{Y}}_{\mathscr{Y}}(\mathscr{H}) = 0$$

which is impossible. So $\mathscr{X} \geq_{\mathscr{G}} \mathscr{Y}$, and similarly $\mathscr{Y} \geq_{\mathscr{G}} \mathscr{X}$; therefore \mathscr{X} and \mathscr{Y} are \mathscr{G} -congugate and (by the definition of $\pi(\mathscr{R})$) $\mathscr{X} = \mathscr{Y}$.

This shows that the sum in (22) is direct, so we have the theorem.

3. The decomposition of $A_{\mathscr{H}}(\mathscr{G})$

From theorem 3.17 of [2], $I_{\mathcal{G}}$ is the identity element of $A_{\mathcal{H}}(\mathcal{G})$; so (24) $A_{\mathcal{H}} = A_{\mathcal{H}}(\mathcal{G})$;

applying this to Theorem 21 we have

Theorem 25.
$$A_{\mathscr{H}}(\mathscr{G}) = \bigoplus_{\mathscr{G} \in \pi(\mathscr{G})} B_{\mathscr{G}}^{\mathscr{G}}(\mathscr{H}).$$

To compare our decomposition (25) with Conlon's decomposition

Decomposition of representation algebras

(26)
$$A_{\mathscr{H}}(\mathscr{G}) \bigoplus_{\mathscr{K} \in \alpha(\mathscr{H})} A_{\mathscr{K}}''(\mathscr{G})$$

(where $\alpha(\mathscr{H})$ is a complete set of non- \mathscr{G} -conjugate subgroups of \mathscr{H}) in [2], it is convenient to observe that any such decomposition determines, and is determined by, an orthogonal idempotent decomposition of $I_{\mathscr{G}}$; (25) comes from

$$I_{\mathcal{G}} = \sum_{\mathscr{S} \in \pi(\mathscr{G})} E_{\mathscr{S}},$$

whereas (26) could be written

[7]

$$I_{\mathbf{g}} = \sum_{\mathbf{x} \in \alpha(\mathbf{x})} F_{\mathbf{x}}.$$

Then we obtain a refinement

$$I_{\mathcal{G}} = \sum_{\mathcal{G}, \mathcal{K}} E_{\mathcal{G}} F_{\mathcal{K}}$$
$$A_{\mathcal{H}}(\mathcal{G}) = \bigoplus_{\mathcal{G}, \mathcal{K}} A_{\mathcal{H}}(\mathcal{G}) E_{\mathcal{G}} F_{\mathcal{K}},$$

which could also be written as

(27)
$$A_{\mathscr{H}}(\mathscr{G}) = \bigoplus_{\mathscr{G}, \mathscr{K}} \{A''_{\mathscr{K}}(\mathscr{G}) \cap B^{\mathscr{G}}_{\mathscr{G}}(\mathscr{H})\}.$$

Suppose \mathscr{D} is any group. Then (see [2] and [4]) there are \mathscr{C} -algebra isomorphisms

$$A(\mathcal{D}) \cong A_{\mathscr{H}}(\mathcal{D}) \cong A_{\mathscr{H}}(\mathcal{G}),$$

where \mathscr{H} is the Sylow *p*-subgroup of \mathscr{D} and \mathscr{G} is the \mathscr{D} -normalizer of \mathscr{H} . Therefore (27) gives a decomposition of $A(\mathscr{D})$ in the general case, to within isomorphism.

4. Special cases of $B^{\mathfrak{g}}_{\mathfrak{G}}(\mathscr{H})$

We shall consider the structure of $B^{\mathfrak{g}}_{\mathfrak{C}}(\mathscr{H})$ in two special cases.

First consider $\mathscr{S} = \mathscr{H}$. $P(\mathscr{H}|\mathscr{H})$ consists of the C-multiples of F, where F is the isomorphism-class of the module \mathscr{F} , so $P_{\mathscr{H}}^{\mathfrak{g}}(\mathscr{H})$ consists of the C-multiples of $F_{\mathscr{H}}\theta(\mathscr{H}, \mathscr{G})_{\ast}$; and since $F^2 = F$ and $I_{\mathscr{H}}$ is to be idempotent,

$$I_{\mathscr{H}} = [\mathscr{G} : \mathscr{H}]^{-1} (F_{\mathscr{H}})^{\mathscr{G}}.$$

A calculation yields

(28) $A_{\mathscr{H}}$ is spanned by the module-classes of the form $N^{\mathscr{G}}$, where N is a basis element of $A(\mathscr{H})$.

Moreover $I_{\mathscr{H}}$ is the idempotent I of proposition 3 of [1], and by that result $A_{\mathscr{H}}$ is isomorphic to $A(\mathscr{H})$ if every indecomposable $\mathscr{F}\mathscr{H}$ -representation module is \mathscr{G} -stable.

The second special case occurs when \mathscr{R} is a subnormal *p*-extension of another group \mathscr{S} , where $\mathscr{H} \leq \mathscr{S}$. If \mathscr{P} is a projective indecomposable $\mathscr{F}(\mathscr{S}|\mathscr{H})$ -representation module then $\mathscr{P}^{\mathscr{A}|\mathscr{H}}$ is indecomposable. So any element of $P(\mathscr{R}|\mathscr{H})$ can be written

$$L\theta(\mathscr{S}|\mathscr{H}, \mathscr{R}|\mathscr{H})_*$$

for some $L \in P(\mathscr{G}|\mathscr{H})$, and the typical element of $P^{\mathfrak{g}}_{\mathfrak{H}}(\mathscr{R})$ is

$$\begin{split} L\theta(\mathscr{S}|\mathscr{H}, \mathscr{R}|\mathscr{H})_*\theta(\mathscr{R}|\mathscr{H}, \mathscr{G}|\mathscr{H})_*\psi_{\mathscr{G}}^* \\ &= L\theta(\mathscr{S}|\mathscr{H}, \mathscr{G}|\mathscr{H})_*\psi_{\mathscr{G}}^* \\ &\in P_{\mathscr{H}}^{\mathscr{G}}(\mathscr{S}). \end{split}$$

This means $P_{\mathscr{X}}^{\mathscr{G}}(\mathscr{R}) \subseteq P_{\mathscr{X}}^{\mathscr{G}}(\mathscr{S})$; but the reverse inclusion also holds, so $P_{\mathscr{X}}^{\mathscr{G}}(\mathscr{R}) = P_{\mathscr{X}}^{\mathscr{G}}(\mathscr{S})$, whence $I_{\mathscr{R}} = I_{\mathscr{S}}$ and $A_{\mathscr{R}} = A_{\mathscr{S}}$. Since $A_{\mathscr{S}} \subseteq A'_{\mathscr{R}}$, we have $A_{\mathscr{R}} = A'_{\mathscr{R}}$, so

$$B^{\mathfrak{g}}_{\mathfrak{R}}(\mathscr{H}) = 0.$$

In particular suppose \mathscr{R} is a p-group. Then

THEOREM 30. If \mathscr{R} is a p-group properly containing \mathscr{H} , $B^{\mathscr{G}}_{\mathscr{R}}(\mathscr{H}) = 0$.

References

- [1] S. B. Conlon, 'The modular representation algebra of groups with Sylow 2-subgroup $Z_2 \times Z_2$ ', J. Aust. Math. Soc. 6 (1966), 76–88.
- [2] S. B. Conlon, 'Relative components of representations', J. of Algebra 8 (1968), 478-501.
- [3] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras (Interscience, New York, 1962).
- [4] J. A. Green, 'A transfer theorem for modular representations', J. of Algebra 1 (1964), 73-84.
- [5] W. D. Wallis 'Factor ideals of some representation algebras' J. Aust. Math. Soc. 9 (1969), 109-123.

La Trobe University Bundoora, Victoria