DEGOMPOSITION OF REPRESENTATION ALGEBRAS

W. D. WALLIS
(Received 5 December 1967; revised 31 July 1968)

Throughout this paper \mathscr{G} is a finite group and \mathscr{F} is a complete local principal ideal domain of characteristic p, where p divides $|\mathscr{G}|$. The notations of [5] are adopted; moreover we shall denote the isomorphism-class of an $\mathscr{F} \mathscr{G}$-representation module \mathscr{M} by M, the class of $\mathscr{M}_{\boldsymbol{X}}$ by $M_{\boldsymbol{X}}$ and the class of $\mathscr{M}^{\boldsymbol{X}}$ by $M^{\mathscr{Z}}$ for suitable groups \mathscr{K} and \mathscr{R}.

Conlon [2] has shown that $A(\mathscr{G})=A_{\mathscr{X}}^{\prime \prime}(\mathscr{G})$, where the direct sum is taken over the non-conjugate p-subgroups \mathscr{D} of \mathscr{G}, and Green [4] has shown that $A_{\mathscr{X}}^{\prime \prime}(\mathscr{G}) \cong A_{\mathscr{K}}^{\prime \prime}(\mathscr{N})$, where \mathscr{N} is the \mathscr{G}-normalizer of \mathscr{K}.

In this paper we shall assume that \mathscr{H} is a normal p-subgroup of \mathscr{G}, and that \mathscr{R} is a group satisfying

$$
\mathscr{H} \leqq \mathscr{R} \leqq \mathscr{G}
$$

Various preliminaries appear in Section 1. Section 2 is devoted to defining new algebras $A_{\mathscr{T}}$ and $B_{\mathscr{S}}^{\mathscr{g}}(\mathscr{H})$, and deriving a direct decomposition of $A_{\mathscr{H}}$ (Theorem 21). This result is used in Section 3 to get new direct decompositions of $A_{\mathscr{H}}(\mathscr{G})$ and $A_{\mathscr{H}}^{\prime}(\mathscr{G})$. Finally two special cases are discussed in detail.

I would like to express my gratitude to the referee, who corrected a fault in my original proof of (21) and made many helpful suggestions concerning the organization of the paper.

1. Some maps

Suppose $\eta: \mathscr{U} \rightarrow \mathscr{V}$ is a homomorphism of groups. Then we define maps η^{*} and η_{*} as on p. 77 of [1]: if \mathscr{M} is an $\mathscr{F} \mathscr{V}$-representation module then $\mathscr{U} \eta^{*}$ is an $\mathscr{F} \mathscr{U}$-representation module, and if \mathscr{L} is an $\mathscr{F} \mathscr{U}$-representation module then $\mathscr{L}_{\eta_{*}}$ is an $\mathscr{F} \mathscr{V}$-representation module. In particular if $\mathscr{U} \leqq \mathscr{V}$ we shall write $\theta(\mathscr{U}, \mathscr{V})$ for the natural embedding map; as noted in [1],

$$
\begin{aligned}
\mathscr{M} \theta(\mathscr{U}, \mathscr{V})^{*} & =\mathscr{M}_{\mathscr{U}} \\
\mathscr{L} \theta(\mathscr{U}, \mathscr{V})_{*} & =\mathscr{L}^{\boldsymbol{V}}
\end{aligned}
$$

We shall write $\psi_{\mathscr{A}}$ for the natural map from \mathscr{R} to $\mathscr{R} / \mathscr{H}$.
We also write η^{*}, η_{*} for the linear maps

$$
\begin{aligned}
& \eta^{*}: A(\mathscr{V}) \rightarrow A(\mathscr{U}) \\
& \eta_{*}: A(\mathscr{U}) \rightarrow A(\mathscr{V})
\end{aligned}
$$

obtained by defining $M \eta^{*}$ and $L \eta_{*}$ to be the isomorphism-classes of $\mathscr{M} \eta^{*}$ and $\mathscr{L} \eta_{*}$ respectively, and extending by linearity. Then η^{*} is an algebra homomorphism, and

$$
M\left(L \eta_{*}\right)=\left[\left(M \eta^{*}\right) L\right] \eta_{*} .
$$

In particular if $\theta=\theta(\mathscr{U}, \mathscr{V})$ and $\psi_{\mathscr{\mathscr { R }}}$ are as above, then θ^{*} and θ_{*} are the r and t of Green [4], and $\psi_{\mathscr{A}}^{*}: A(\mathscr{R} \mid \mathscr{H}) \rightarrow A(\mathscr{R})$ is injective.

The following results are easy to prove:
Lemma 1. If \mathscr{L} is an $\mathscr{F}(\mathscr{R} / \mathscr{H})$-representation module, then

$$
\mathscr{L} \theta(\mathscr{R}|\mathscr{H}, \mathscr{G}| \mathscr{H})_{*} \psi_{\mathscr{G}}^{*} \cong \mathscr{L} \psi_{\mathscr{R}}^{*} \theta(\mathscr{R}, \mathscr{G})_{*}
$$

Lemma 2.

$$
A_{\mathscr{R} / \mathscr{H}}(\mathscr{G} \mid \mathscr{H}) \psi_{\mathscr{G}}^{*} \subseteq A_{\mathscr{R}}(\mathscr{G})
$$

If \mathscr{I} is the subgroup with one element of a group \mathscr{K}, we shall write $P(\mathscr{K})$ for the projective ideal $A_{\boldsymbol{s}}(\mathscr{K})$. Then we define

$$
\begin{aligned}
P_{\mathscr{H}}(\mathscr{R}) & =P(\mathscr{R} \mid \mathscr{H}) \psi_{\mathscr{R}}^{*} \\
P_{\mathscr{H}}^{\mathscr{G}}(\mathscr{R}) & =P_{\mathscr{H}}(\mathscr{R}) \theta(\mathscr{R}, \mathscr{G})_{*}
\end{aligned}
$$

$P_{\boldsymbol{g}}(\mathscr{R})$ is therefore just $P(\mathscr{R})$; we shall write $P^{\mathscr{G}}(\mathscr{R})$ for $P_{\mathscr{G}}^{\mathscr{G}}(\mathscr{R})$. As a corollary to the definitions, we have

$$
\begin{equation*}
P_{\mathscr{H}}^{\mathscr{G}}(\mathscr{R})=P^{\mathscr{G} \mid \mathscr{H}}(\mathscr{R} \mid \mathscr{H}) \psi_{\mathscr{G}}^{*} \cong P^{\mathscr{G} \mid \mathscr{H}}(\mathscr{R} \mid \mathscr{H}) ; \tag{3}
\end{equation*}
$$

the equality comes from Lemma 1 and the isomorphism holds because $\psi_{\mathscr{g}}^{*}$ is injective.

Theorem 4. $P^{\mathscr{G}}(\mathscr{R})$ is an ideal of $A(\mathscr{G})$.
Proof. $P^{\mathscr{G}}(\mathscr{R})$ is spanned by the $P^{\mathscr{G}}$, where \mathscr{P} ranges through the indecomposable projective $\mathscr{F} \mathscr{R}$-representation modules.

It is sufficient to show that, with such a \mathscr{P} and with \mathscr{Q} an $\mathscr{F} \mathscr{R}$ representation module

$$
P^{\mathscr{G}} Q \in P^{\mathscr{G}}(\mathscr{R}) .
$$

By the Mackey formula (p. 324 of [3]),

$$
P^{\mathscr{G}} Q=\left(P Q_{\mathfrak{R}}\right)^{\mathscr{G}}
$$

Also $P \in P(\mathscr{R})$ and $Q_{\mathscr{R}} \in A(\mathscr{R})$: since $P(\mathscr{R})$ is an ideal of $A(\mathscr{R})$ we know that

$$
P Q_{\mathscr{R}} \in P(\mathscr{R})
$$

whence

$$
\left(P Q_{\mathscr{R}}\right)^{\mathscr{g}} \in P^{\mathscr{G}}(\mathscr{R})
$$

giving the result.

Lemma 5. $\quad \mathscr{F}(\mathscr{R} \mid \mathscr{H}) \psi_{\mathscr{\pi}}^{*} \cong \mathscr{F}_{\boldsymbol{*}} \theta(\mathscr{H}, \mathscr{R})_{*}$.
An $\mathscr{F} \mathscr{R}$-representation module $\mathscr{2}$ will be called \mathscr{H}-trivial if $H q=q$ for all $H \in \mathscr{H}$ and $q \in \mathscr{Q}$; clearly $\mathscr{2}$ is H-trivial if and only if there is an $\mathscr{F}(\mathscr{R} \mid \mathscr{H})$-module \mathscr{P} satisfying

$$
\begin{equation*}
\mathscr{Q} \cong \mathscr{P} \psi_{\mathscr{R}}^{*} ; \tag{6}
\end{equation*}
$$

and if (5) holds then \mathscr{P} is indecomposable if and only if $\mathscr{2}$ is.
Suppose \mathscr{P} and $\mathscr{2}$ are indecomposable modules satisfying (6); write \mathscr{K} for the vertex of 2 . Then \mathscr{K} contains \mathscr{H}, and $\mathscr{K} \mid \mathscr{H}$ is a vertex of \mathscr{R}. So we have

Lemma 7. $P_{\neq}(\mathscr{R})$ has a basis (as a \mathscr{C}-space) consisting of the classes Q of the indecomposable \mathscr{H}-trivial $\mathscr{F} \mathscr{R}$-representation modules \mathscr{Q} which are \mathscr{H}-projective. Hence $P_{\mathscr{H}}^{\mathscr{g}}(\mathscr{R})$ is spanned (as a \mathscr{C}-space) by the classes $Q \theta(\mathscr{R}, \mathscr{G})$ * of the $\mathscr{F} \mathscr{G}$-representation modules induced from these $\mathscr{2}$; these induced modules are clearly also \mathscr{H}-trivial and \mathscr{H}-projective.

If X is any element of \mathscr{G}, write

$$
\gamma_{X, \mathscr{R}}: \mathscr{R}^{X} \rightarrow \mathscr{R}
$$

for the group isomorphism $R^{X} \rightarrow R(R \in \mathscr{R})$. For any $\mathscr{F} \mathscr{R}$-representation module $\mathscr{Q}, \mathscr{2}_{\underset{X}{X}, \mathscr{R}}^{*}$ is the conjugate module $\mathscr{2}^{X}$, and the induced map

$$
\gamma_{X, \mathscr{R}}^{*}: A(\mathscr{R}) \rightarrow A\left(\mathscr{R}^{X}\right)
$$

is a \mathscr{C}-algebra isomorphism. The following properties are easy to check.
(8) $\gamma_{X, s}^{*}$ is the identity map on $A(\mathscr{G})$;
(9) $\gamma_{X \mathscr{H}, \pi / \notin}^{*} \psi_{\mathscr{x}}^{*}=\psi_{\dddot{x}}^{*} \gamma_{X, \mathscr{x}}^{*}$;

$$
\begin{equation*}
\gamma_{X, \mathscr{A}}^{*} \theta\left(\mathscr{R}^{X}, \mathscr{G}\right)_{*}=\theta(\mathscr{R}, \mathscr{G})_{*} \gamma_{X, \mathscr{G}}^{*}=\theta(\mathscr{R}, \mathscr{G})_{*} ; \tag{10}
\end{equation*}
$$

(11) If \mathscr{Q} is an indecomposable $\mathscr{F} \mathscr{R}$-module with vertex \mathscr{K} then $\mathcal{Q}_{\gamma_{X}, \mathbb{Z}}^{*}$ is an indecomposable $\mathscr{F} \mathscr{R}^{x}$-module with vertex \mathscr{K}^{X}.

Lemma 12. If $X \in \mathscr{G}$, then $P_{\mathscr{H}}^{\mathscr{g}}(\mathscr{R})=P_{\mathscr{\not}}^{\mathscr{G}}\left(\mathscr{R}^{X}\right)$.
Proof. Using (11) with \mathscr{R} replaced by $\mathscr{R} \mid \mathscr{H}$ we get

$$
P\left(\mathscr{R}^{X} \mid \mathscr{H}\right)=P(\mathscr{R} \mid \mathscr{H}) \gamma_{X}^{*} \notin, \mathscr{A} \mid \mathscr{H}
$$

so, by definition

$$
\begin{align*}
& P_{\mathscr{H}}^{\boldsymbol{s}}\left(\mathscr{R}^{X}\right)=P(\mathscr{R} \mid \mathscr{H}) \gamma_{X X X}^{*}, \mathscr{A} \mid \mathscr{H} \psi_{\mathscr{X}}^{*} \theta\left(\mathscr{R}^{X}, \mathscr{G}\right)_{*} \\
& =P(\mathscr{R} \mid \mathscr{H}) \psi_{\mathscr{A}}^{*} \gamma_{\mathcal{X}, \mathscr{R}}^{*} \theta\left(\mathscr{R}^{X}, \mathscr{G}\right)_{*} \quad \text { by (9) } \\
& =P\left(\mathscr{R}(\mathscr{H}) \psi_{\mathscr{\mathscr { A }}}^{*} \theta(\mathscr{R}, \mathscr{G})_{*}\right. \tag{10}\\
& =P_{\boldsymbol{x}}^{\mathscr{s}}(\mathscr{R}) \text {. }
\end{align*}
$$

Lemma 13. If \mathscr{R} and \mathscr{S} are subgroups of \mathscr{G}, both containing \mathscr{H}, then

$$
P_{\mathscr{H}}^{\mathscr{s}}(\mathscr{R}) P_{\mathscr{H}}^{\mathscr{G}}(\mathscr{S}) \subseteq \sum_{X \in \mathscr{G}} P_{\mathscr{H}}^{\mathscr{y}}\left(\mathscr{R}^{X} \cap \mathscr{S}\right)
$$

Proof. Suppose $\mathscr{2}$ is an $\mathscr{F} \mathscr{R}$-module and \mathscr{T} an $\mathscr{F} \mathscr{S}$-module. Then, from Mackey's 'tensor product' theorem ([3], p. 325),

$$
\begin{align*}
\mathscr{Q} \theta(\mathscr{R}, \mathscr{G})_{*} & \otimes \mathscr{T} \theta(\mathscr{S}, \mathscr{G})_{*} \\
& \cong \oplus_{X}^{\oplus}\left(\left(\mathscr{R}^{X}\right)_{\mathscr{R} \times \mathscr{S}} \otimes(\mathscr{T})_{\mathscr{R}^{x} \cap \mathscr{S}}\right) \theta\left(\mathscr{R}^{X} \cap \mathscr{S}, \mathscr{G}\right)_{*} \tag{14}
\end{align*}
$$

where X runs through a complete set of $(\mathscr{R}, \mathscr{S})$-double coset representatives in \mathscr{G}. In particular, if \mathscr{Q} and \mathscr{T} are both \mathscr{H}-projective and \mathscr{H}-trivial, then each tensor product appearing on the right in (14) will also be an \mathscr{H} projective, \mathscr{H}-trivial $\mathscr{F}\left(\mathscr{R}^{X} \cap \mathscr{S}\right)$-module.

Lemma 13 now comes directly from Lemma 7.
Lemma 15. If $\mathscr{R}^{\prime} \leqq_{\mathscr{G}} \mathscr{R}$, then $P_{\mathscr{H}}^{\mathscr{S}}\left(\mathscr{R}^{\prime}\right) \subseteq P_{\mathscr{\mathscr { H }}}^{\mathscr{\mathscr { A }}}(\mathscr{R})$.
Proof. From Lemma 12 we can assume $\mathscr{R}^{\prime} \leqq \mathscr{R}$. If \mathscr{Q} is an indecomposable projective $\mathscr{F}\left(\mathscr{R}^{\prime} \mid \mathscr{H}\right)$-representation module, $\mathscr{Q}^{\mathscr{G} / \mathscr{A}}$ is projective, so

$$
Q^{\mathscr{Q} / *} \in P(\mathscr{R} / \mathscr{H})
$$

whence

$$
Q^{\mathscr{A} / \boldsymbol{x}} \theta(\mathscr{R}|\mathscr{H}, \mathscr{G}| \mathscr{H})_{*} \in P^{\mathscr{G} / \mathscr{H}}(\mathscr{R} \mid \mathscr{H})
$$

The left hand side is $Q^{\mathscr{P} / \mathscr{x}}$, which is $Q \theta\left(\mathscr{R}^{\prime}|\mathscr{H}, \mathscr{G}| \mathscr{H}\right)_{*} ; Q$ could have been any basis element for $P\left(\mathscr{R}^{\prime} \mid \mathscr{H}\right)$, so

$$
P^{\mathscr{G} / \mathscr{H}}(\mathscr{R} \mid \mathscr{H}) \subseteq P^{\mathscr{F} / \mathscr{}}(\mathscr{R} \mid \mathscr{H})
$$

and from (3)

$$
P_{\mathscr{H}}^{\mathscr{G}}\left(\mathscr{R}^{\prime}\right) \subseteq P_{\mathscr{*}}^{\mathscr{G}}(\mathscr{R}) .
$$

2. The algebras $A_{\mathscr{R}}$ and $B_{\mathscr{S}}^{\mathscr{g}}(\mathscr{H})$.

If \mathscr{Q} is an indecomposable projective $\mathscr{F}(\mathscr{R} / \mathscr{H})$-representation module then $\mathscr{2} \theta(\mathscr{R}|\mathscr{H}, \mathscr{G}| \mathscr{H})_{*}$ is projective, and belongs to $P(\mathscr{G} \mid \mathscr{H})$. So
 Since $P(\mathscr{G} \mid \mathscr{H})$ is a finite direct sum,

$$
P(\mathscr{G} \mid \mathscr{H}) \cong \oplus C
$$

we must have

$$
P^{\mathscr{G} / \mathscr{X}}(\mathscr{R} / \mathscr{H}) \cong \oplus \mathscr{C}
$$

for some finite number of summands. $P^{\mathscr{G} / \mathscr{H}}(\mathscr{R} / \mathscr{H})$ is non-empty, so it has an identity element; by (3), $P_{\mathscr{H}}^{\mathscr{P}}(\mathscr{R})$ must also have an identity element, which we will write as $I_{\mathscr{R}}$.

Now define

$$
A_{\mathscr{\mathscr { }}}=A_{\boldsymbol{x}}{ }^{(\mathscr{G}) I_{\mathscr{x}}} .
$$

From Lemma 12 we have, for any $X \in \mathscr{G}$,

$$
\begin{align*}
I_{\mathfrak{X}} & =I_{\mathscr{R}^{x}} \tag{16}\\
A_{\mathfrak{X}} & =A_{\mathfrak{X}} \tag{17}
\end{align*}
$$

Lemma 18. If $\mathscr{R}^{\prime} \leqq_{\mathscr{g}} \mathscr{R}$ then $A_{\mathfrak{R}^{\prime}} \mid A_{\mathscr{R}}$.
Proof. From Lemma 15 we see $I_{\mathscr{R}^{\prime}} \in P_{\neq}^{\mathscr{S}}(\mathscr{R})$, and $I_{\mathscr{R}^{\prime}}$ is idempotent. So there is an orthogonal decomposition

$$
I_{\mathscr{R}}=I_{\mathfrak{R}^{\prime}}+\left(I_{\mathscr{R}}-I_{\mathfrak{R}^{\prime}}\right)
$$

which yields

$$
A_{\mathscr{R}}=A_{\mathscr{R}^{\prime}} \oplus A_{\mathscr{H}}(\mathscr{G})\left(I_{\mathscr{X}}-I_{\mathfrak{R}}\right) .
$$

From Lemma 13 we also get
Lemma 19. If \mathscr{R} and \mathscr{S} are subgroups of \mathscr{G}, both containing \mathscr{H}, then

$$
A_{\mathscr{X}} A_{\mathscr{S}} \subseteq \sum_{X \in \mathscr{S}} A_{\mathscr{F}} \cap \cap \mathscr{\mathscr { C }}
$$

For convenience, write $\pi(\mathscr{R})$ to denote some complete set of groups \mathscr{S} which are distinct to within \mathscr{G}-conjugacy and satisfy

$$
\mathscr{H} \leqq \mathscr{S} \leqq \mathscr{R},
$$

and $\pi^{\prime}(\mathscr{R})$ to denote $\pi(\mathscr{R}) \backslash\{\mathscr{R}\}$.
We define $A_{\mathscr{t}}^{\prime}$ to be $\sum A_{\mathscr{R}^{\prime}}$, where \sum means algebra sum over $\mathscr{R}^{\prime} \in \pi^{\prime}(\mathscr{R})$. From Lemma 18, $A_{\mathscr{Z}}^{\prime}$ is a finite sum of direct summands of $A_{\mathfrak{g}}$, so

$$
A_{\mathscr{x}}^{\prime} \mid A_{\mathfrak{x}}
$$

consequently there is an algebra $B_{\mathscr{R}}^{\mathscr{g}}(\mathscr{H})$ defined by

$$
A_{\mathscr{H}}=A_{\mathscr{R}}^{\prime} \oplus B_{\mathscr{R}}^{\mathscr{H}}(\mathscr{H})
$$

which satisfies

$$
B_{\mathscr{H}}^{\mathscr{H}}(\mathscr{H}) \cong A_{\mathfrak{Z}} / A_{\mathscr{Z}^{\prime}}
$$

In particular

$$
\begin{equation*}
B_{\mathcal{H}}^{\mathscr{S}}(\mathscr{H})=A_{\mathscr{H}} \tag{20}
\end{equation*}
$$

Theorem 21. $A_{\mathscr{A}}=\oplus B_{\mathscr{S}}^{\mathscr{G}}(\mathscr{H})$, where \oplus is algebra direct sum over $\mathscr{S} \in \pi(\mathscr{R})$.

Proof. We proceed by induction on \mathscr{R}. From (20) the theorem holds when \mathscr{R} is replaced by \mathscr{H}. Suppose that whenever $\mathscr{H} \leqq \mathscr{K}<\mathscr{R}$,

$$
A_{\mathscr{X}}=\underset{\mathscr{S} \in \pi(\mathscr{X})}{\oplus} B_{\mathscr{\mathscr { S }}}^{\mathscr{\mathscr { S }}(\mathscr{H}) ;, ~ ; ~}
$$

This yields

$$
\begin{aligned}
A_{\mathscr{H}}^{\prime} & =\sum_{\mathscr{K} \in \pi^{\prime}(\mathscr{X})} \underset{\mathscr{S} \in \pi(\mathscr{K})}{ } B_{\mathscr{Y}}^{\mathscr{G}}(\mathscr{H}) \\
& =\sum_{\mathscr{S} \in \pi^{\prime}(\mathscr{H})} B_{\mathscr{\mathscr { H }}}^{\mathscr{\mathscr { H }}(\mathscr{H}) ;}
\end{aligned}
$$

using the definition of $B_{\mathscr{\Re}}^{\mathscr{G}}(\mathscr{H})$,

To prove that the sum in (22) is direct, we must show that for any $\mathscr{X} \in \pi(\mathscr{R}), B_{\mathscr{P}}^{\mathscr{g}}(\mathscr{H})$ has zero intersection with $\sum B_{\mathscr{S}}^{\mathscr{g}}(\mathscr{H})$, the sum being over $\mathscr{S} \in \pi(\mathscr{R}) \backslash\{\mathscr{X}\}$. Now as each $B_{\mathscr{S}}^{\mathscr{G}}(\mathscr{H})$ is an ideal direct summand of $A_{\mathscr{S}}$, it is (by (18)) an ideal direct summand of $A_{\mathscr{R}}$, and has an identity element; from this it is easy to see that all we must prove is that

$$
\begin{equation*}
B=B_{\mathscr{X}}^{\mathscr{g}}(\mathscr{H}) \cap B_{\mathscr{y}}^{\mathscr{g}}(\mathscr{H}) \neq 0 \tag{23}
\end{equation*}
$$

is impossible for $\mathscr{X}, \mathscr{Y} \in \pi(\mathscr{R})$ unless $\mathscr{X}=\mathscr{Y}$.
Suppose \mathscr{X} and \mathscr{Y} are members of $\pi(\mathscr{R})$ which satisfy (23). Then the identity element E of B is non-zero; and

$$
E=E_{x} E_{y}
$$

where E_{x} and $E_{a y}$ are the identity elements of $B_{\mathscr{Y}}^{\mathscr{G}}(\mathscr{H})$ and $B_{\mathscr{Y}}^{\mathscr{G}}(\mathscr{H})$ respectively. Hence

$$
E \in A_{\mathscr{X}} A_{\mathscr{Y}} \subseteq \sum_{X \in \mathscr{G}} A_{\mathscr{X} X \cap \mathscr{Y}}
$$

(using Lemma 19). If $\mathscr{Y} \mathbb{E}_{\mathscr{G}} \mathscr{X}$, then each $\mathscr{X}^{X} \cap \mathscr{Y}$ is a proper subgroup of \mathscr{Y}, so $E \in A_{y y}^{\prime}$; but this means

$$
E=E E_{\mathscr{y}} \in A_{\mathscr{y}}^{\prime} B_{\mathscr{y}}^{\mathscr{g}}(\mathscr{H})=0
$$

which is impossible. So $\mathscr{X} \geqq_{\mathscr{G}} \mathscr{Y}$, and similarly $\mathscr{Y} \geqq_{\mathscr{G}} \mathscr{X}$; therefore \mathscr{X} and \mathscr{Y} are \mathscr{G}-congugate and (by the definition of $\pi(\mathscr{R})) \mathscr{X}=\mathscr{Y}$.

This shows that the sum in (22) is direct, so we have the theorem.

3. The decomposition of $A_{\mathscr{H}}(\mathscr{G})$

From theorem 3.17 of [2], $I_{\mathscr{G}}$ is the identity element of $A_{\mathscr{*}}(\mathscr{G})$; so

$$
\begin{equation*}
A_{\mathscr{g}}=A_{\mathscr{H}}(\mathscr{G}) ; \tag{24}
\end{equation*}
$$

applying this to Theorem 21 we have
Theorem 25.

$$
A_{\mathscr{H}}(\mathscr{G})=\underset{\mathscr{S} \in \pi(\mathscr{G})}{\oplus} B_{\mathscr{\mathscr { C }}}^{\mathscr{\mathscr { C }}(\mathscr{H})}
$$

To compare our decomposition (25) with Conlon's decomposition

$$
\begin{equation*}
A_{\mathscr{H}}(\mathscr{G}) \underset{\mathscr{H} \in \boldsymbol{\alpha}(\mathscr{H})}{\oplus} A_{\mathscr{X}}^{\prime \prime}(\mathscr{G}) \tag{26}
\end{equation*}
$$

(where $\alpha(\mathscr{H})$ is a complete set of non- \mathscr{G}-conjugate subgroups of \mathscr{H}) in [2], it is convenient to observe that any such decomposition determines, and is determined by, an orthogonal idempotent decomposition of $I_{\mathscr{G}}$; (25) comes from

$$
I_{\mathscr{g}}=\sum_{\mathscr{S} \in \pi(\mathscr{s})} E_{\mathscr{S}}
$$

whereas (26) could be written

$$
I_{\mathscr{G}}=\sum_{\mathscr{X} \in \alpha(\mathscr{H})} F_{\mathscr{K}} .
$$

Then we obtain a refinement

$$
\begin{aligned}
I_{\mathscr{B}} & =\sum_{\mathscr{S}, \mathscr{X}} E_{\mathscr{P}} F_{\mathscr{X}} \\
A_{\mathscr{H}}(\mathscr{G}) & =\bigoplus_{\mathscr{S}, \mathscr{H}} A_{\mathscr{H}}(\mathscr{G}) E_{\mathscr{P}} F_{\mathscr{H}},
\end{aligned}
$$

which could also be written as

Suppose \mathscr{D} is any group. Then (see [2] and [4]) there are \mathscr{C}-algebra isomorphisms

$$
A(\mathscr{D}) \cong A_{\mathscr{H}}(\mathscr{D}) \cong A_{\mathscr{H}}(\mathscr{G})
$$

where \mathscr{H} is the Sylow p-subgroup of \mathscr{D} and \mathscr{G} is the \mathscr{D}-normalizer of \mathscr{H}. Therefore (27) gives a decomposition of $A(\mathscr{D})$ in the general case, to within isomorphism.

4. Special cases of $B_{\mathscr{H}}^{\mathscr{G}}(\mathscr{H})$

We shall consider the structure of $B_{\mathscr{S}}^{\mathscr{\mathscr { C }}}(\mathscr{H})$ in two special cases.
First consider $\mathscr{S}=\mathscr{H} . P(\mathscr{H} \mid \mathscr{H})$ consists of the \mathscr{C}-multiples of F, where F is the isomorphism-class of the module \mathscr{F}, so $P_{\mathscr{*}}^{\mathscr{H}}(\mathscr{H})$ consists of the \mathscr{C}-multiples of $F_{\mathscr{H}} \theta(\mathscr{H}, \mathscr{G})_{*}$; and since $F^{2}=F$ and $I_{\mathscr{H}}$ is to be idempotent,

$$
I_{\nsim}=[\mathscr{G}: \mathscr{H}]^{-1}\left(F_{\mathscr{H}}\right)^{\mathscr{S}} .
$$

A calculation yields
(28) A_{\neq}is spanned by the module-classes of the form N^{3}, where N is a basis element of $A(\mathscr{H})$.

Moreover $I_{\mathscr{*}}$ is the idempotent I of proposition 3 of [1], and by that result $A_{\mathscr{*}}$ is isomorphic to $A(\mathscr{H})$ if every indecomposable $\mathscr{F} \mathscr{H}$-representation module is \mathscr{G}-stable.

The second special case occurs when \mathscr{R} is a subnormal p-extension of another group \mathscr{P}, where $\mathscr{H} \leqq \mathscr{S}$. If \mathscr{P} is a projective indecomposable $\mathscr{F}(\mathscr{S} \mid \mathscr{H})$-representation module then $\mathscr{P} \mathscr{H} \not \mathscr{H}$ is indecomposable. So any element of $P(\mathscr{R} / \mathscr{H})$ can be written

$$
L \theta(\mathscr{S}|\mathscr{H}, \mathscr{R}| \mathscr{H})_{*}
$$

for some $L \in P(\mathscr{P} \mid \mathscr{H})$, and the typical element of $P_{\mathscr{H}}^{\mathscr{H}}(\mathscr{R})$ is

$$
\begin{aligned}
& L \theta(\mathscr{S}|\mathscr{H}, \mathscr{R}| \mathscr{H})_{*} \theta(\mathscr{R}|\mathscr{H}, \mathscr{G}| \mathscr{H})_{*} \psi_{\mathscr{G}}^{*} \\
& =L \theta(\mathscr{S}|\mathscr{H}, \mathscr{G}| \mathscr{H})_{*} \psi_{\mathscr{G}}^{*} \\
& \quad \in P_{*}^{\mathscr{S}}(\mathscr{S}) .
\end{aligned}
$$

This means $P_{\mathscr{*}}^{\mathscr{S}}(\mathscr{R}) \subseteq P_{\mathscr{\mathscr { H }}}^{\mathscr{S}}(\mathscr{S})$; but the reverse inclusion also holds, so
 have $A_{\mathscr{R}}=A_{\mathscr{R}}^{\prime}$, so

$$
\begin{equation*}
B_{\mathscr{R}}^{\mathscr{S}}(\mathscr{H})=0 \tag{29}
\end{equation*}
$$

In particular suppose \mathscr{R} is a p-group. Then
Theorem 30. If \mathscr{R} is a p-group properly containing $\mathscr{H}, B_{\mathscr{R}}^{\mathscr{H}}(\mathscr{H})=0$.

References

[1] S. B. Conlon, 'The modular representation algebra of groups with Sylow 2-subgroup $Z_{2} \times Z_{2}{ }^{\prime}, J$. Aust. Math. Soc. 6 (1966), 76-88.
[2] S. B. Conlon, 'Relative components of representations', J. of Algebva 8 (1968), 478-501.
[3] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras (Interscience, New York, 1962).
[4] J. A. Green, 'A transfer theorem for modular representations', J. of Algebra 1 (1964), 73-84.
[5] W. D. Wallis 'Factor ideals of some representation algebras' J. Aust. Math. Soc. 9 (1969), 109-123.

La Trobe University
Bundoora, Victoria

