Proceedings of the Edinburgh Mathematical Society (2001) 44, 241-248 ©

A NON-EXTENDABLE BOUNDED LINEAR MAP BETWEEN C^* -ALGEBRAS

NARUTAKA OZAWA

Texas A&M University, College Station, TX77843, USA and University of Tokyo, Komaba, 153-8914, Japan (ozawa@math.tamu.edu)

(Received 10 September 1999)

Abstract We present an example of a C^* -subalgebra A of $\mathbb{B}(H)$ and a bounded linear map from A to $\mathbb{B}(K)$ which does not admit any bounded linear extension. This generalizes the result of Robertson and gives the answer to a problem raised by Pisier. Using the same idea, we compute the exactness constants of some Q-spaces. This solves a problem raised by Oikhberg. We also construct a Q-space which is not locally reflexive.

Keywords: bounded linear extensions; non-exact Q-spaces

AMS 2000 Mathematics subject classification: Primary 46L05 Secondary 46L07

1. A non-extendable bounded linear map

Definition 1.1. Let X be a closed subspace of a Banach space Y. We say X is complemented in Y if there is a bounded linear projection from Y onto X. We say X is weakly complemented in Y if there is a bounded linear map T from Y to X^{**} such that $T|_X = \iota_X$, where ι_X is the canonical inclusion map of X into X^{**} .

Let A be a C^* -algebra. If there is a faithful *-representation $A \subset \mathbb{B}(H)$ such that A is (weakly) complemented in $\mathbb{B}(H)$, then it follows from the injectivity of $\mathbb{B}(H)$ that for any faithful *-representation $A \subset \mathbb{B}(K)$, A is (weakly) complemented in $\mathbb{B}(K)$. A C^* -algebra A has the weak expectation property (WEP) [13] if for every faithful *-representation $A \subset \mathbb{B}(H)$, there is a complete contraction $T \colon \mathbb{B}(H) \to A^{**}$ such that $T|_A = \iota_A$.

Lemma 1.2. Let A be a C^* -algebra and let $A \subset \mathbb{B}(H)$ be the universal representation, i.e. $\overline{A}^{\text{ultraweak}} = A^{**}$. If A is weakly complemented in $\mathbb{B}(H)$ and is locally reflexive, then A^{**} is complemented in $\mathbb{B}(H)$.

Proof. Let $T: \mathbb{B}(H) \to A^{**}$ be a bounded linear map such that $T|_A = \operatorname{id}_A$. Let I be a set of all pairs i = (E, F) consisting of finite-dimensional subspaces E of A^{**} and F of $\mathbb{B}(H)_*$. I is then directedly ordered by inclusions. Fix i = (E, F) in I. Since A is locally reflexive, there is a map $S_i: E \to A$ with $\|S_i\|_{cb} \leq 1 + (1/\dim(E))$ such that

 $\langle S_i(e), f \rangle = \langle e, f \rangle$ for all $e \in E$ and $f \in F$. Since $\mathbb{B}(H)$ is injective, we can extend S_i to $\overline{S}_i \colon \mathbb{B}(H) \to \mathbb{B}(H)$ with $\|\overline{S}_i\|_{cb} \leqslant \|S_i\|_{cb}$. Define $T_i \colon \mathbb{B}(H) \to A^{**}$ by $T_i = T \circ \overline{S}_i$. We then have $\limsup \|T_i\| \leqslant \|T\|$ and $\lim \langle T_i(e), f \rangle = \langle e, f \rangle$ for all $e \in A^{**}$ and $f \in \mathbb{B}(H)_*$. Let $\tilde{T} \colon \mathbb{B}(H) \to A^{**}$ be a cluster point of the net $\{T_i\}_i$ in the point-ultraweak topology. \tilde{T} is then the desired bounded linear projection.

Next we use results due to De Cannière and Haagerup and due to Kirchberg. Let $C^*_{\lambda}(\mathbb{F}_n)$ be the reduced group C^* -algebra of the free group \mathbb{F}_n with n generators $(n \ge 2)$. Then, by [3], $C^*_{\lambda}(\mathbb{F}_n)$ has the complete metric approximation property. Thus, $C^*_{\lambda}(\mathbb{F}_n)$ is exact and a fortiori is locally reflexive [12]. By [11], there are a C^* -algebra B with the WEP and a surjective *-homomorphism π from B onto $C^*_{\lambda}(\mathbb{F}_n)$. Since $C^*_{\lambda}(\mathbb{F}_n)$ has the metric approximation property, there is a contractive linear lifting $\varphi \colon C^*_{\lambda}(\mathbb{F}_n) \to B$, i.e. $\pi \circ \varphi = \operatorname{id}_{C^*_{\lambda}(\mathbb{F}_n)}$. (There is even a unital k-positive lifting for each $k \in \mathbb{N}$ (see [20]).) We need one more ingredient due to Haagerup and Pisier. Let $\operatorname{VN}(\mathbb{F}_n)$ be the group von Neumann algebra of the free group \mathbb{F}_n with n generators $(n \ge 2)$ and let $VN(\mathbb{F}_n) \subset \mathbb{B}(K)$ be any faithful *-representation. $\operatorname{VN}(\mathbb{F}_n)$ is then not complemented in $\mathbb{B}(K)$ (see Corollary 4.9 in [8]).

Lemma 1.3. Let $C^*_{\lambda}(\mathbb{F}_n) \subset \mathbb{B}(H)$ be any faithful *-representation. Then $C^*_{\lambda}(\mathbb{F}_n)$ is not weakly complemented in $\mathbb{B}(H)$.

Proof. If $C^*_{\lambda}(\mathbb{F}_n)$ is weakly complemented in $\mathbb{B}(H)$, then by Lemma 1.2 and the preceding remarks, $C^*_{\lambda}(\mathbb{F}_n)^{**}$ is complemented in $\mathbb{B}(K)$ for any faithful *-representation $C^*_{\lambda}(\mathbb{F}_n)^{**} \subset \mathbb{B}(K)$. Since the group von Neumann algebra $\mathrm{VN}(\mathbb{F}_n)$ is complemented in $C^*_{\lambda}(\mathbb{F}_n)^{**}$, a fortiori it is complemented in $\mathbb{B}(K)$. This contradicts Corollary 4.9 in [8]. \Box

Theorem 1.4. Let $C^*_{\lambda}(\mathbb{F}_n) \subset \mathbb{B}(H)$ be a faithful *-representation. Let $B \subset \mathbb{B}(K)$ be a C^* -subalgebra with the WEP and π be a surjective *-homomorphism from B onto $C^*_{\lambda}(\mathbb{F}_n)$. If $\varphi: C^*_{\lambda}(\mathbb{F}_n) \to B$ is a bounded linear lifting of π , then there is no bounded linear extension $\bar{\varphi}: \mathbb{B}(H) \to \mathbb{B}(K)$ of φ .

Proof. Suppose that there is a bounded linear extension $\bar{\varphi} \colon \mathbb{B}(H) \to \mathbb{B}(K)$ of φ . Since B has the WEP, there is a bounded linear map $\psi \colon \mathbb{B}(K) \to B^{**}$ such that $\psi|_B = \iota_B$. Let us define $T \colon \mathbb{B}(H) \to C^*_{\lambda}(\mathbb{F}_n)^{**}$ by $T = \pi^{**} \circ \psi \circ \bar{\varphi}$. T is then a bounded linear map and $T|_{C^*_{\lambda}(\mathbb{F}_n)} = \iota_{C^*_{\lambda}(\mathbb{F}_n)}$. This contradicts Lemma 1.3.

Remark 1.5. Since $C_{\lambda}^{*}(\mathbb{F}_{n})$ is weakly complemented in $VN(\mathbb{F}_{n})$ (see the proof of Lemma 7.6 in [11]), there is a bounded linear map from $VN(\mathbb{F}_{n})$ to $\mathbb{B}(K)$ without bounded linear extension to $\mathbb{B}(\ell_{2}(\mathbb{F}_{n}))$.

Problem 1.6. Let A be a C^* -subalgebra of $\mathbb{B}(H)$ and assume that any bounded linear map from A to $\mathbb{B}(H)$ extends to a bounded linear map on $\mathbb{B}(H)$. Is A weakly complemented in $\mathbb{B}(H)$?

2. Computing exactness constants of some Q-spaces

We will compute the exactness constant of some Q-spaces. A Q-space is a quotient operator space of a minimal operator space. By the duality between maximal and minimal operator spaces, a dual operator space of a subspace of a maximal operator space is a Q-space. See [1] and [2] for details.

Let E be a finite-dimensional operator space. For any C^* -algebra B and any closed twosided ideal J in B, there is a canonical isomorphism $T_E: (E \otimes B)/(E \otimes J) \to E \otimes (B/J)$, where \otimes means the minimal tensor product. Let C be a constant. We say E is Cexact if $||T_E^{-1}|| \leq C$ for all choices of B and J. By the canonical isometric identification $E \otimes X = CB(E^*, X)$ for an operator space X (see [2, 4]), E is C-exact if any complete contraction from the dual operator space E^* to any quotient C^* -algebra B/J has a lifting with cb-norm $\leq C$. For an infinite-dimensional operator space X, we say X is C-exact if every finite-dimensional operator subspace of X is C-exact and we say X is exact if it is C-exact for some constant C. The exactness constant ex(X) of X is defined by $ex(X) = \inf\{C : X \text{ is } C\text{-exact}\}$. See [17] for details.

Define an operator space $E_n \subset \mathbb{M}_n \oplus \mathbb{M}_n \subset \mathbb{M}_{2n}$ by $E_n = \operatorname{span} \{e_{k1} \oplus e_{1k} : k = 1, 2, \ldots, n\}$, where $\{e_{jk}\}$ is a standard matrix unit in \mathbb{M}_n . By Proposition 1.3 in [8], there are two maps $w : E_n \to C^*_{\lambda}(\mathbb{F}_n)$ and $v : C^*_{\lambda}(\mathbb{F}_n) \to E_n$ such that $v \circ w = \operatorname{id}_{E_n}$ and $\|v\|_{cb} \leq 2$, $\|w\|_{cb} \leq 1$. By Lemma 4.2 in [8], any projection P from \mathbb{M}_{2n} onto E_n has cb-norm $\geq \frac{1}{2}(1+\sqrt{n})$. By Smith's lemma (Theorem 2.1 in [21]), we have $\|P\|_{cb} = \|P\|_{2n}$ for any map $P : \mathbb{M}_{2n} \to E_n$. Hence, by a standard averaging argument (see [8, 20]), we have $\|P\| \geq \frac{1}{2}(1+\sqrt{n})$ for any projection P from $\mathbb{M}_{2n}(\mathbb{M}_{2n})$ onto $\mathbb{M}_{2n}(E_n)$. On the other hand, by Remark 4.3 in [8], there is a projection Q from $\mathbb{M}_{2n}(\mathbb{M}_{2n})$ onto $\mathbb{M}_{2n}(E_n)$ with $\|Q\| = \frac{1}{2}(1+\sqrt{n})$. See [8] for details.

Theorem 2.1. We equip $\mathbb{M}_{2n}(E_n)$ with a new operator space structure induced by the canonical embedding into $\max(\mathbb{M}_{2n}(\mathbb{M}_{2n}))$ and denote the resultant operator space by F_n , i.e. $F_n = \mathbb{M}_{2n}(E_n)$ as a Banach space and $F_n \subset \max(\mathbb{M}_{2n}(\mathbb{M}_{2n}))$ as an operator space. F_n^* is then a $4n^3$ -dimensional Q-space such that

$$\frac{1}{4}(1+\sqrt{n}) \leq \exp(F_n^*) \leq \|\operatorname{id}\colon \min(F_n^*) \to F_n^*\|_{\operatorname{cb}} \leq \frac{1}{2}(1+\sqrt{n}).$$

Proof. We note that the formal identity $J: F_n \to \mathbb{M}_{2n}(E_n)$ is completely contractive. Let v and w be as in the preceding remarks and let $\tilde{w}: F_n \to \mathbb{M}_{2n}(C^*_{\lambda}(\mathbb{F}_n))$ be a complete contraction defined by $\tilde{w} = (\mathrm{id}_{\mathbb{M}_{2n}} \otimes w) \circ J$. By [11], there are a C^* -algebra B with the WEP and a surjective *-homomorphism π from B onto $\mathbb{M}_{2n}(C^*_{\lambda}(\mathbb{F}_n))$. Suppose that F^*_n is C-exact. By definition, there is a lifting $\varphi: F_n \to B$ of \tilde{w} with $\|\varphi\|_{\mathrm{cb}} \leq C$. Since B has the WEP, φ extends to $\bar{\varphi}: \max(\mathbb{M}_{2n}(\mathbb{M}_{2n})) \to B^{**}$ with $\|\bar{\varphi}\|_{\mathrm{cb}} \leq C$. Let us define $P: \mathbb{M}_{2n}(\mathbb{M}_{2n}) \to \mathbb{M}_{2n}(E_n)$ by $P = (\mathrm{id}_{\mathbb{M}_{2n}} \otimes v)^{**} \circ \pi^{**} \circ \bar{\varphi}$. P is then a projection with $\|P\| \leq 2C$. Thus, we have $C \geq \frac{1}{4}(1 + \sqrt{n})$. This proves the first inequality. Since $\mathrm{ex}(\min(F^*_n)) = 1$, we have the second inequality.

Next, let Q be a projection as in the preceding remarks. We then have

$$\| \operatorname{id}: F_n \to \max(F_n) \|_{\operatorname{cb}} \leq \|Q: \max(\mathbb{M}_{2n}(\mathbb{M}_{2n})) \to \max(F_n) \|_{\operatorname{cb}} = \|Q\| = \frac{1}{2}(1 + \sqrt{n}).$$

Taking the dual of this identity map, we obtain the third inequality.

Since an ℓ_{∞} -sum of Q-spaces is also a Q-space, we obtain the next corollary.

Corollary 2.2. There is a *Q*-space which is not exact.

Problem 2.3. What is the asymptotic behaviour of the constant

 $\sup\{\exp(E): E \text{ an } n \text{-dimensional } Q \text{-space}\}$

as n tends to infinity?

3. A Q-space which is not locally reflexive

Definition 3.1. Let $C \ge 1$ be a constant. We say an operator space X is C-locally reflexive if for any finite-dimensional subspaces $E \subset X^{**}$ and $F \subset X^*$ and any $\varepsilon > 0$, there is a map $\varphi \colon E \to X$ with $\|\varphi\|_{cb} < C + \varepsilon$ such that $\langle \varphi(e), f \rangle = \langle e, f \rangle$ for all $e \in E$ and $f \in F$. We say an operator space X is locally reflexive if X is C-locally reflexive for some constant C.

We note that a C^* -algebra is 1-locally reflexive if it is locally reflexive and that a subspace of a C-locally reflexive operator space is also C-locally reflexive. See [5] for details. Now, let us construct a Q-space which is not locally reflexive. First, we need a lemma due to Oikhberg. Let us recall that the cb version of the Banach-Mazur distance between two completely isomorphic operator spaces X and Y is defined by

 $d_{\rm cb}(X,Y) = \inf\{\|\varphi\|_{\rm cb} \|\varphi^{-1}\|_{\rm cb} : \varphi \text{ a completely bounded isomorphism from } X \text{ onto } Y\}.$

Put $d_{\rm cb}(X,Y) = \infty$ if X and Y are not completely isomorphic.

Lemma 3.2 (Lemma 3.4 from [15]). For every C' > 0, there is a finite-dimensional subspace $F \subset \max(\mathbb{B}(H))$ such that $d_{cb}(F,G) > C'$ for all n and $G \subset \max(\mathbb{M}_n)$.

Taking the dual of the inclusion $F \subset \max(\mathbb{B}(H))$ we obtain a complete metric surjection $q: \min(S_1) \to E$, where $E = F^*$. By the above lemma and a small perturbation argument, we obtain the following lemma.

Lemma 3.3. For every C' > 0 there is a finite-rank complete metric surjection $q: \min(S_1) \to E$ such that $d_{cb}(E, F/(\ker q \cap F)) > C'$ for all finite-dimensional subspaces $F \subset \min(S_1)$.

We now prove the following lemma.

Lemma 3.4. For every C > 0 there is a Q-space which is not C-locally reflexive.

Proof. Fix C' > C and take a finite-rank complete metric surjection $q: \min(S_1) \to E$ as in Lemma 3.3. Let $\{F_n\}$ be an increasing sequence of finite-dimensional subspaces of $\min(S_1)$ such that $\bigcup F_n = \min(S_1)$ and $q(F_1) = E$. Let $E_n = F_n/(\ker q \cap F_n)$ and let $\varphi_n: E_n \to E$ be the complete contraction induced by $q|_{F_n}: F_n \to E$. By Lemma 3.3, we

have $\|\varphi_n^{-1}\|_{cb} > C'$ for all n. On the other hand, it can be seen that $\lim_{n\to\infty} \|\varphi_n^{-1}\|_k = 1$ for all $k \in \mathbb{N}$. Finally, let X be an operator space defined by

$$X = \left\{ (x_n) \in \left(\prod E_n \right)_{\ell_{\infty}} : \lim_{n \to \infty} \varphi_n(x_n) \text{ exists in } E \right\}.$$

Since all the E_n are Q-spaces, X is also a Q-space. We will show that X is not C-locally reflexive. There is a natural map $\varphi \colon X \to E$ defined by $\varphi((x_n)) = \lim \varphi_n(x_n)$. For each n, define $\psi_n \colon E \to X$ by

$$\psi_n(x) = (0, \dots, 0, \varphi_n^{-1}(x), \varphi_{n+1}^{-1}(x), \dots)$$

Since $\varphi_m^{-1} \circ \varphi_n \colon E_n \to E_m$ is completely contractive for all $m \ge n$, we have

$$\lim_{n \to \infty} \|\psi_n\|_k = \lim_{n \to \infty} \|\varphi_n^{-1}\|_k = 1$$

for all $k \in \mathbb{N}$. Let $\psi: E \to X^{**}$ be a cluster point of the sequence $\{\psi_n\}_n$ in the pointweak^{*} topology. Then, by the previous argument, we have $\|\psi\|_{cb} \leq 1$. Since $\varphi \circ \psi_n = \mathrm{id}_E$ for all n, we have $\varphi^{**} \circ \psi = \mathrm{id}_E$. Now, suppose that X is C-locally reflexive. Since $\varphi: X \to E$ is of finite rank, applying the local reflexivity to the complete contraction $\psi: E \to X^{**}$, we obtain a map $\theta: E \to X$ with $\|\theta\|_{cb} < C'$ such that $\varphi \circ \theta = \mathrm{id}_E$. Let $\theta_n: E \to E_n$ be the 'nth coordinate' of θ . Then, by the definition of φ , we have

$$\lim_{n \to \infty} \varphi_n \circ \theta_n(x) = x$$

for all $x \in E$. Since E is finite dimensional, we have

$$\limsup_{n \to \infty} \|\varphi_n^{-1}\|_{\rm cb} \leqslant \limsup_{n \to \infty} (\|\theta_n\|_{\rm cb} + \dim(E)\|\varphi_n^{-1} - \theta_n\|) \leqslant \|\theta\|_{\rm cb} < C'.$$

This contradicts the choice of E.

https://doi.org/10.1017/S0013091599000978 Published online by Cambridge University Press

Theorem 3.5. There is a *Q*-space which is not locally reflexive.

Proof. For each *n*, there is a Q-space X_n which is not *n*-locally reflexive by Lemma 3.4. Define a Q-space Y by $Y = (\bigoplus X_n)_{c_0}$. It is easy to see that Y is not locally reflexive. \Box

Problem 3.6. In the proof of Lemma 3.4, it can be seen that $ex(X) = sup ex(E_n)$. Can we control this value?

4. Crude representability and local reflexivity

Let $(\bigoplus X_n)_{\ell_1}$ be the ℓ_1 -direct sum of a sequence $\{X_n\}$ of operator spaces. We equip $(\bigoplus X_n)_{\ell_1}$ with the natural operator space structure (see pp. 34–36 in [18]). $(\bigoplus X_n)_{\ell_1}$ is then an operator space with the following properties. If $\varphi_n \colon X_n \to \mathbb{B}(H)$ is a complete contraction for all n, then $\varphi \colon (\bigoplus X_n)_{\ell_1} \ni (x_n) \mapsto \sum \varphi_n(x_n) \in \mathbb{B}(H)$ is a complete contraction. We have a completely isometric identity $(\bigoplus X_n)_{\ell_1}^* = (\prod X_n^*)_{\ell_\infty}$; and if $Y_n \subset X_n$ for all n, then we have $(\bigoplus Y_n)_{\ell_1} \subset (\bigoplus X_n)_{\ell_1}$ completely isometrically. When $X_n = X$ for all n, we simply denote $(\bigoplus X_n)_{\ell_1}$ by $\ell_1(X)$.

Lemma 4.1. Let X be a separable operator space and let $\{E_n\}$ be an increasing sequence of finite-dimensional subspaces of X such that $\overline{\bigcup E_n} = X$. If $Y = (\bigoplus E_n)_{\ell_1}$ is C-locally reflexive, then so is X.

Proof. We follow the construction due to Johnson [9]. Let $q: Y \to X$ be a complete metric surjection defined by $q((x_n)) = \sum_{n=1}^{\infty} x_n$. Fix a free ultrafilter \mathcal{U} on \mathbb{N} and define a map $r: Y^* \to X^*$ by

$$\langle r(f), x \rangle = \lim_{\mathcal{H}} \langle f_n, x \rangle$$

for all $f = (f_n) \in Y^* = (\prod E_n^*)_{\ell_{\infty}}$ and $x \in \bigcup E_n$. Then, r is a well-defined complete contraction and $r \circ q^* = \operatorname{id}_{X^*}$. To prove that X is C-locally reflexive, we give ourselves finite-dimensional subspaces $E \subset X^{**}$ and $F \subset X^*$ and $\varepsilon > 0$. Let $\tilde{E} = r^*(E) \subset Y^{**}$ and let $\tilde{F} = q^*(F) \subset Y^*$. Since Y is C-locally reflexive, there is a map $\varphi \colon \tilde{E} \to Y$ with $\|\varphi\|_{\operatorname{cb}} \leqslant C + \varepsilon$ such that $\langle \varphi(\tilde{e}), \tilde{f} \rangle = \langle \tilde{e}, \tilde{f} \rangle$ for all $\tilde{e} \in \tilde{E}$ and $\tilde{f} \in \tilde{F}$. Now, define $\psi \colon E \to X$ by $\psi = q \circ \varphi \circ (r^*|_E)$. Then, we have $\|\psi\|_{\operatorname{cb}} \leqslant C + \varepsilon$ and

$$\begin{split} \langle \psi(e), f \rangle &= \langle \varphi(r^*(e)), q^*(f) \rangle \\ &= \langle r^*(e), q^*(f) \rangle \\ &= \langle e, r \circ q^*(f) \rangle \\ &= \langle e, f \rangle \end{split}$$

for all $e \in E$ and $f \in F$. This completes the proof.

Lemma 4.2 (Theorem 4.3 in [7]). An operator space X is locally reflexive if every separable subspace of X is locally reflexive.

Proof. The 'isometric' version of this lemma has been proved in [7]. Observe that the assumption implies that there is a constant C so that every separable subspace of X is C-locally reflexive. Now the proof of C-local reflexivity of X is almost same as the proof of Theorem 4.3 in [7].

Let Z and X be operator spaces. We say X is crudely representable in Z if there is a constant C such that for any finite-dimensional subspace E of X, there is a subspace F of Z with $d_{\rm cb}(F, E) < C$.

Theorem 4.3. Let Z be an operator space such that Z contains a completely isomorphic copy of $\ell_1(Z)$. Assume that Z is locally reflexive. If X is an operator space which is crudely representable in Z, then X is locally reflexive.

Proof. By Lemma 4.2, we may assume that X is separable. Take an increasing sequence $\{E_n\}$ of finite-dimensional subspaces of X with $\bigcup E_n = X$. Since X is crudely representable in $Z, Y = (\bigoplus E_n)_{\ell_1}$ can be embedded into $\ell_1(Z)$ completely isomorphically. Since a subspace of locally reflexive operator space is also locally reflexive, by Lemma 4.1, we are done.

Remark 4.4. In [10], Junge has proved that the operator space S_1 of trace class operators satisfies the assumption of Theorem 4.3 and the consequence is already known [6]. There is a locally reflexive operator space X such that $\ell_1(X)$ is not locally reflexive. Indeed, if V is a separable operator space which is not locally reflexive and $\{E_n\}$ is an increasing sequence of finite-dimensional subspaces with $\bigcup E_n = V$, then $X = (\bigoplus E_n)_{c_0}$ is locally reflexive, but $\ell_1(X)$ is not locally reflexive. This answers a question raised by Le Merdy (personal communication). There is an ' ℓ_{∞} -version' of Theorem 4.3 (use Lusky's construction [14] at Lemma 4.1), but it seems that for only few operator spaces $X, \ell_{\infty}(X)$ is locally reflexive.

Problem 4.5. Are exact operator spaces necessarily locally reflexive?

It has been shown in Corollary 4.8 in [7] that every 1-exact operator space is 1-locally reflexive.

Acknowledgements. The author is supported by JSPS. The author thanks Professor Gilles Pisier for introducing him to the problem and for a stimulating conversation.

References

- 1. D. BLECHER, The standard dual of an operator space, Pacific J. Math. 153 (1992), 15–30.
- 2. D. BLECHER AND V. PAULSEN, Tensor products of operator spaces, J. Funct. Analysis **99** (1991), 262–292.
- 3. J. DE CANNIÈRE AND U. HAAGERUP, Multipliers of the Fourier algebras of some Lie groups and their discrete subgroups, *Am. J. Math.* **107** (1985), 455–500.
- 4. E. EFFROS AND Z.-J. RUAN, A new approach to operator spaces, *Can. Math. Bull.* **34** (1991), 329–337.
- E. EFFROS AND Z.-J. RUAN, Mapping spaces and liftings for operator spaces, *Proc. Lond. Math. Soc.* 69 (1994), 171–197.
- 6. E. EFFROS, M. JUNGE AND Z.-J. RUAN, Integral mappings and the principle of local reflexivity for non-commutative L^1 -spaces, Ann. Math. (2) **151** (2000), 59–92.
- 7. E. EFFROS, N. OZAWA AND Z.-J. RUAN, On injectivity and nuclearity for operator spaces, *Duke Math. J.*, in press.
- U. HAAGERUP AND G. PISIER, Bounded linear operators between C*-algebras, Duke Math. J. 71 (1993), 889–925.
- 9. W. B. JOHNSON, A complementary universal conjugate Banach space and its relation to the approximation problem, *Israel J. Math.* **13** (1972), 301–310.
- M. JUNGE, Factorization theory for spaces of operators (Habilitationsschrift, Universität Kiel, 1996).
- E. KIRCHBERG, On non-semisplit extensions, tensor products and exactness of group C^{*}-algebras, *Invent. Math.* **112** (1993), 449–489.
- E. KIRCHBERG, On subalgebras of the CAR-algebra, J. Funct. Analysis 129 (1995), 35– 63.
- 13. C. LANCE, On nuclear C^{*}-algebras, J. Funct. Analysis **12** (1973), 157–176.
- 14. W. LUSKY, A note on Banach spaces containing c_0 or C_{∞} , J. Funct. Analysis **62** (1985), 1–7.
- 15. T. OIKHBERG, Subspaces of maximal operator spaces, preprint.
- G. PISIER, Remarks on complemented subspaces of von Neumann algebras, Proc. R. Soc. Edinb. A 121 (1992), 1–4.

- 17. G. PISIER, Exact operator spaces, in Recent Advances in Operator Algebras, Orléans 1992, Astérisque Soc. Math. France 232 (1995), 159–186.
- 18. G. PISIER, Non-commutative vector valued L_p -spaces and completely *p*-summing maps, Astérisque Soc. Math. France 247 (1998), vi + 131 pp.
- A. G. ROBERTSON, A non-extendible positive map on the reduced C*-algebra of a free group, Bull. Lond. Math. Soc. 18 (1986), 389–391.
- A. G. ROBERTSON AND R. SMITH, Lifting and extension of maps on C*-algebras, J. Operat. Theory 21 (1989), 117–131.
- R. SMITH, Completely bounded maps between C*-algebras, J. Lond. Math. Soc. 27 (1983), 157–166.