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Abstract We present an example of a C∗-subalgebra A of B(H) and a bounded linear map from A to
B(K) which does not admit any bounded linear extension. This generalizes the result of Robertson and
gives the answer to a problem raised by Pisier. Using the same idea, we compute the exactness constants
of some Q-spaces. This solves a problem raised by Oikhberg. We also construct a Q-space which is not
locally reflexive.
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1. A non-extendable bounded linear map

Definition 1.1. Let X be a closed subspace of a Banach space Y . We say X is
complemented in Y if there is a bounded linear projection from Y onto X. We say X is
weakly complemented in Y if there is a bounded linear map T from Y to X∗∗ such that
T |X = ιX , where ιX is the canonical inclusion map of X into X∗∗.

Let A be a C∗-algebra. If there is a faithful ∗-representation A ⊂ B(H) such that A is
(weakly) complemented in B(H), then it follows from the injectivity of B(H) that for any
faithful ∗-representation A ⊂ B(K), A is (weakly) complemented in B(K). A C∗-algebra
A has the weak expectation property (WEP) [13] if for every faithful ∗-representation
A ⊂ B(H), there is a complete contraction T : B(H)→ A∗∗ such that T |A = ιA.

Lemma 1.2. Let A be a C∗-algebra and let A ⊂ B(H) be the universal representation,
i.e. Aultraweak = A∗∗. If A is weakly complemented in B(H) and is locally reflexive, then
A∗∗ is complemented in B(H).

Proof. Let T : B(H) → A∗∗ be a bounded linear map such that T |A = idA. Let I
be a set of all pairs i = (E,F ) consisting of finite-dimensional subspaces E of A∗∗ and
F of B(H)∗. I is then directedly ordered by inclusions. Fix i = (E,F ) in I. Since A is
locally reflexive, there is a map Si : E → A with ‖Si‖cb 6 1 + (1/dim(E)) such that
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〈Si(e), f〉 = 〈e, f〉 for all e ∈ E and f ∈ F . Since B(H) is injective, we can extend Si to
S̄i : B(H) → B(H) with ‖S̄i‖cb 6 ‖Si‖cb. Define Ti : B(H) → A∗∗ by Ti = T ◦ S̄i. We
then have lim sup ‖Ti‖ 6 ‖T‖ and lim〈Ti(e), f〉 = 〈e, f〉 for all e ∈ A∗∗ and f ∈ B(H)∗.
Let T̃ : B(H)→ A∗∗ be a cluster point of the net {Ti}i in the point-ultraweak topology.
T̃ is then the desired bounded linear projection. �

Next we use results due to De Cannière and Haagerup and due to Kirchberg. Let
C∗λ(Fn) be the reduced group C∗-algebra of the free group Fn with n generators (n > 2).
Then, by [3], C∗λ(Fn) has the complete metric approximation property. Thus, C∗λ(Fn)
is exact and a fortiori is locally reflexive [12]. By [11], there are a C∗-algebra B with
the WEP and a surjective ∗-homomorphism π from B onto C∗λ(Fn). Since C∗λ(Fn) has
the metric approximation property, there is a contractive linear lifting ϕ : C∗λ(Fn)→ B,
i.e. π ◦ ϕ = idC∗λ(Fn). (There is even a unital k-positive lifting for each k ∈ N (see
[20]).) We need one more ingredient due to Haagerup and Pisier. Let VN(Fn) be the
group von Neumann algebra of the free group Fn with n generators (n > 2) and let
V N(Fn) ⊂ B(K) be any faithful ∗-representation. VN(Fn) is then not complemented in
B(K) (see Corollary 4.9 in [8]).

Lemma 1.3. Let C∗λ(Fn) ⊂ B(H) be any faithful ∗-representation. Then C∗λ(Fn) is
not weakly complemented in B(H).

Proof. If C∗λ(Fn) is weakly complemented in B(H), then by Lemma 1.2 and the
preceding remarks, C∗λ(Fn)∗∗ is complemented in B(K) for any faithful ∗-representation
C∗λ(Fn)∗∗ ⊂ B(K). Since the group von Neumann algebra VN(Fn) is complemented in
C∗λ(Fn)∗∗, a fortiori it is complemented in B(K). This contradicts Corollary 4.9 in [8]. �

Theorem 1.4. Let C∗λ(Fn) ⊂ B(H) be a faithful ∗-representation. Let B ⊂ B(K)
be a C∗-subalgebra with the WEP and π be a surjective ∗-homomorphism from B onto
C∗λ(Fn). If ϕ : C∗λ(Fn) → B is a bounded linear lifting of π, then there is no bounded
linear extension ϕ̄ : B(H)→ B(K) of ϕ.

Proof. Suppose that there is a bounded linear extension ϕ̄ : B(H)→ B(K) of ϕ. Since
B has the WEP, there is a bounded linear map ψ : B(K)→ B∗∗ such that ψ|B = ιB . Let
us define T : B(H)→ C∗λ(Fn)∗∗ by T = π∗∗ ◦ ψ ◦ ϕ̄. T is then a bounded linear map and
T |C∗λ(Fn) = ιC∗λ(Fn). This contradicts Lemma 1.3. �

Remark 1.5. Since C∗λ(Fn) is weakly complemented in VN(Fn) (see the proof of
Lemma 7.6 in [11]), there is a bounded linear map from VN(Fn) to B(K) without bounded
linear extension to B(`2(Fn)).

Problem 1.6. Let A be a C∗-subalgebra of B(H) and assume that any bounded
linear map from A to B(H) extends to a bounded linear map on B(H). Is A weakly
complemented in B(H)?
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2. Computing exactness constants of some Q-spaces

We will compute the exactness constant of some Q-spaces. A Q-space is a quotient
operator space of a minimal operator space. By the duality between maximal and minimal
operator spaces, a dual operator space of a subspace of a maximal operator space is a
Q-space. See [1] and [2] for details.

Let E be a finite-dimensional operator space. For any C∗-algebra B and any closed two-
sided ideal J in B, there is a canonical isomorphism TE : (E⊗B)/(E⊗J)→ E⊗ (B/J),
where ⊗ means the minimal tensor product. Let C be a constant. We say E is C-
exact if ‖T−1

E ‖ 6 C for all choices of B and J . By the canonical isometric identification
E ⊗X = CB(E∗, X) for an operator space X (see [2,4]), E is C-exact if any complete
contraction from the dual operator space E∗ to any quotient C∗-algebra B/J has a lifting
with cb-norm 6 C. For an infinite-dimensional operator space X, we say X is C-exact
if every finite-dimensional operator subspace of X is C-exact and we say X is exact if
it is C-exact for some constant C. The exactness constant ex(X) of X is defined by
ex(X) = inf{C : X is C-exact}. See [17] for details.

Define an operator space En ⊂ Mn ⊕ Mn ⊂ M2n by En = span {ek1 ⊕ e1k : k =
1, 2, . . . , n}, where {ejk} is a standard matrix unit in Mn. By Proposition 1.3 in [8],
there are two maps w : En → C∗λ(Fn) and v : C∗λ(Fn) → En such that v ◦ w = idEn and
‖v‖cb 6 2, ‖w‖cb 6 1. By Lemma 4.2 in [8], any projection P from M2n onto En has
cb-norm > 1

2 (1 +
√
n). By Smith’s lemma (Theorem 2.1 in [21]), we have ‖P‖cb = ‖P‖2n

for any map P : M2n → En. Hence, by a standard averaging argument (see [8,20]), we
have ‖P‖ > 1

2 (1 +
√
n) for any projection P fromM2n(M2n) ontoM2n(En). On the other

hand, by Remark 4.3 in [8], there is a projection Q from M2n(M2n) onto M2n(En) with
‖Q‖ = 1

2 (1 +
√
n). See [8] for details.

Theorem 2.1. We equip M2n(En) with a new operator space structure induced by
the canonical embedding into max(M2n(M2n)) and denote the resultant operator space
by Fn, i.e. Fn = M2n(En) as a Banach space and Fn ⊂ max(M2n(M2n)) as an operator
space. F ∗n is then a 4n3-dimensional Q-space such that

1
4 (1 +

√
n) 6 ex(F ∗n) 6 ‖ id : min(F ∗n)→ F ∗n‖cb 6 1

2 (1 +
√
n).

Proof. We note that the formal identity J : Fn →M2n(En) is completely contractive.
Let v and w be as in the preceding remarks and let w̃ : Fn →M2n(C∗λ(Fn)) be a complete
contraction defined by w̃ = (idM2n ⊗w) ◦ J . By [11], there are a C∗-algebra B with the
WEP and a surjective ∗-homomorphism π from B onto M2n(C∗λ(Fn)). Suppose that F ∗n
is C-exact. By definition, there is a lifting ϕ : Fn → B of w̃ with ‖ϕ‖cb 6 C. Since
B has the WEP, ϕ extends to ϕ̄ : max(M2n(M2n)) → B∗∗ with ‖ϕ̄‖cb 6 C. Let us
define P : M2n(M2n) → M2n(En) by P = (idM2n ⊗v)∗∗ ◦ π∗∗ ◦ ϕ̄. P is then a projection
with ‖P‖ 6 2C. Thus, we have C > 1

4 (1 +
√
n). This proves the first inequality. Since

ex(min(F ∗n)) = 1, we have the second inequality.
Next, let Q be a projection as in the preceding remarks. We then have

‖ id : Fn → max(Fn)‖cb 6 ‖Q : max(M2n(M2n))→ max(Fn)‖cb = ‖Q‖ = 1
2 (1 +

√
n).
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Taking the dual of this identity map, we obtain the third inequality. �

Since an `∞-sum of Q-spaces is also a Q-space, we obtain the next corollary.

Corollary 2.2. There is a Q-space which is not exact.

Problem 2.3. What is the asymptotic behaviour of the constant

sup{ex(E) : E an n-dimensional Q-space}

as n tends to infinity?

3. A Q-space which is not locally reflexive

Definition 3.1. Let C > 1 be a constant. We say an operator space X is C-locally
reflexive if for any finite-dimensional subspaces E ⊂ X∗∗ and F ⊂ X∗ and any ε > 0,
there is a map ϕ : E → X with ‖ϕ‖cb < C + ε such that 〈ϕ(e), f〉 = 〈e, f〉 for all e ∈ E
and f ∈ F . We say an operator space X is locally reflexive if X is C-locally reflexive for
some constant C.

We note that a C∗-algebra is 1-locally reflexive if it is locally reflexive and that a
subspace of a C-locally reflexive operator space is also C-locally reflexive. See [5] for
details. Now, let us construct a Q-space which is not locally reflexive. First, we need a
lemma due to Oikhberg. Let us recall that the cb version of the Banach–Mazur distance
between two completely isomorphic operator spaces X and Y is defined by

dcb(X,Y ) = inf{‖ϕ‖cb‖ϕ−1‖cb : ϕ a completely bounded isomorphism from X onto Y }.

Put dcb(X,Y ) =∞ if X and Y are not completely isomorphic.

Lemma 3.2 (Lemma 3.4 from [15]). For every C ′ > 0, there is a finite-dimensional
subspace F ⊂ max(B(H)) such that dcb(F,G) > C ′ for all n and G ⊂ max(Mn).

Taking the dual of the inclusion F ⊂ max(B(H)) we obtain a complete metric surjec-
tion q : min(S1) → E, where E = F ∗. By the above lemma and a small perturbation
argument, we obtain the following lemma.

Lemma 3.3. For every C ′ > 0 there is a finite-rank complete metric surjection
q : min(S1) → E such that dcb(E,F/(ker q ∩ F )) > C ′ for all finite-dimensional sub-
spaces F ⊂ min(S1).

We now prove the following lemma.

Lemma 3.4. For every C > 0 there is a Q-space which is not C-locally reflexive.

Proof. Fix C ′ > C and take a finite-rank complete metric surjection q : min(S1)→ E

as in Lemma 3.3. Let {Fn} be an increasing sequence of finite-dimensional subspaces of
min(S1) such that

⋃
Fn = min(S1) and q(F1) = E. Let En = Fn/(ker q ∩ Fn) and let

ϕn : En → E be the complete contraction induced by q|Fn : Fn → E. By Lemma 3.3, we
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have ‖ϕ−1
n ‖cb > C ′ for all n. On the other hand, it can be seen that limn→∞ ‖ϕ−1

n ‖k = 1
for all k ∈ N. Finally, let X be an operator space defined by

X =
{

(xn) ∈
(∏

En

)
`∞

: lim
n→∞ϕn(xn) exists in E

}
.

Since all the En are Q-spaces, X is also a Q-space. We will show that X is not C-locally
reflexive. There is a natural map ϕ : X → E defined by ϕ((xn)) = limϕn(xn). For each
n, define ψn : E → X by

ψn(x) = (0, . . . , 0, ϕ−1
n (x), ϕ−1

n+1(x), . . . ).

Since ϕ−1
m ◦ ϕn : En → Em is completely contractive for all m > n, we have

lim
n→∞ ‖ψn‖k = lim

n→∞ ‖ϕ
−1
n ‖k = 1

for all k ∈ N. Let ψ : E → X∗∗ be a cluster point of the sequence {ψn}n in the point-
weak∗ topology. Then, by the previous argument, we have ‖ψ‖cb 6 1. Since ϕ◦ψn = idE
for all n, we have ϕ∗∗ ◦ ψ = idE . Now, suppose that X is C-locally reflexive. Since
ϕ : X → E is of finite rank, applying the local reflexivity to the complete contraction
ψ : E → X∗∗, we obtain a map θ : E → X with ‖θ‖cb < C ′ such that ϕ ◦ θ = idE . Let
θn : E → En be the ‘nth coordinate’ of θ. Then, by the definition of ϕ, we have

lim
n→∞ϕn ◦ θn(x) = x

for all x ∈ E. Since E is finite dimensional, we have

lim sup
n→∞

‖ϕ−1
n ‖cb 6 lim sup

n→∞
(‖θn‖cb + dim(E)‖ϕ−1

n − θn‖) 6 ‖θ‖cb < C ′.

This contradicts the choice of E. �

Theorem 3.5. There is a Q-space which is not locally reflexive.

Proof. For each n, there is a Q-spaceXn which is not n-locally reflexive by Lemma 3.4.
Define a Q-space Y by Y = (

⊕
Xn)c0 . It is easy to see that Y is not locally reflexive. �

Problem 3.6. In the proof of Lemma 3.4, it can be seen that ex(X) = sup ex(En).
Can we control this value?

4. Crude representability and local reflexivity

Let (
⊕
Xn)`1 be the `1-direct sum of a sequence {Xn} of operator spaces. We equip

(
⊕
Xn)`1 with the natural operator space structure (see pp. 34–36 in [18]). (

⊕
Xn)`1 is

then an operator space with the following properties. If ϕn : Xn → B(H) is a complete
contraction for all n, then ϕ : (

⊕
Xn)`1 3 (xn) 7→∑

ϕn(xn) ∈ B(H) is a complete con-
traction. We have a completely isometric identity (

⊕
Xn)∗`1 = (

∏
X∗n)`∞ ; and if Yn ⊂ Xn

for all n, then we have (
⊕
Yn)`1 ⊂ (

⊕
Xn)`1 completely isometrically. When Xn = X

for all n, we simply denote (
⊕
Xn)`1 by `1(X).
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Lemma 4.1. Let X be a separable operator space and let {En} be an increasing
sequence of finite-dimensional subspaces of X such that

⋃
En = X. If Y = (

⊕
En)`1 is

C-locally reflexive, then so is X.

Proof. We follow the construction due to Johnson [9]. Let q : Y → X be a complete
metric surjection defined by q((xn)) =

∑∞
n=1 xn. Fix a free ultrafilter U on N and define

a map r : Y ∗ → X∗ by
〈r(f), x〉 = lim

U
〈fn, x〉

for all f = (fn) ∈ Y ∗ = (
∏
E∗n)`∞ and x ∈ ⋃En. Then, r is a well-defined complete con-

traction and r ◦ q∗ = idX∗ . To prove that X is C-locally reflexive, we give ourselves
finite-dimensional subspaces E ⊂ X∗∗ and F ⊂ X∗ and ε > 0. Let Ẽ = r∗(E) ⊂ Y ∗∗
and let F̃ = q∗(F ) ⊂ Y ∗. Since Y is C-locally reflexive, there is a map ϕ : Ẽ → Y with
‖ϕ‖cb 6 C+ε such that 〈ϕ(ẽ), f̃〉 = 〈ẽ, f̃〉 for all ẽ ∈ Ẽ and f̃ ∈ F̃ . Now, define ψ : E → X

by ψ = q ◦ ϕ ◦ (r∗|E). Then, we have ‖ψ‖cb 6 C + ε and

〈ψ(e), f〉 = 〈ϕ(r∗(e)), q∗(f)〉
= 〈r∗(e), q∗(f)〉
= 〈e, r ◦ q∗(f)〉
= 〈e, f〉

for all e ∈ E and f ∈ F . This completes the proof. �

Lemma 4.2 (Theorem 4.3 in [7]). An operator space X is locally reflexive if every
separable subspace of X is locally reflexive.

Proof. The ‘isometric’ version of this lemma has been proved in [7]. Observe that the
assumption implies that there is a constant C so that every separable subspace of X is
C-locally reflexive. Now the proof of C-local reflexivity of X is almost same as the proof
of Theorem 4.3 in [7]. �

Let Z and X be operator spaces. We say X is crudely representable in Z if there is a
constant C such that for any finite-dimensional subspace E of X, there is a subspace F
of Z with dcb(F,E) < C.

Theorem 4.3. Let Z be an operator space such that Z contains a completely isomor-
phic copy of `1(Z). Assume that Z is locally reflexive. If X is an operator space which is
crudely representable in Z, then X is locally reflexive.

Proof. By Lemma 4.2, we may assume that X is separable. Take an increasing
sequence {En} of finite-dimensional subspaces of X with

⋃
En = X. Since X is crudely

representable in Z, Y = (
⊕
En)`1 can be embedded into `1(Z) completely isomorphi-

cally. Since a subspace of locally reflexive operator space is also locally reflexive, by
Lemma 4.1, we are done. �
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Remark 4.4. In [10], Junge has proved that the operator space S1 of trace class
operators satisfies the assumption of Theorem 4.3 and the consequence is already known
[6]. There is a locally reflexive operator space X such that `1(X) is not locally reflexive.
Indeed, if V is a separable operator space which is not locally reflexive and {En} is an
increasing sequence of finite-dimensional subspaces with

⋃
En = V , then X = (

⊕
En)c0

is locally reflexive, but `1(X) is not locally reflexive. This answers a question raised
by Le Merdy (personal communication). There is an ‘`∞-version’ of Theorem 4.3 (use
Lusky’s construction [14] at Lemma 4.1), but it seems that for only few operator spaces
X, `∞(X) is locally reflexive.

Problem 4.5. Are exact operator spaces necessarily locally reflexive?

It has been shown in Corollary 4.8 in [7] that every 1-exact operator space is 1-locally
reflexive.
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