corrigendum to the paper

ANNIHILATORS AND THE CS-CONDITION

by W. K. NICHOLSON and M. F. YOUSIF

Proposition 3.1 of the paper Annihilators and the CS-condition, *Glasgow Math. J.* 40 (1998), 213–222, is incorrect as stated, and consequently the note added in proof is incorrect. Hence the question of Faith and Menal whether every strongly right Johns ring is quasi-Frobenius remains open. The problem is that the assumption that the left socle S_1 and the right socle S_r are equal is not established. All we know is that $S_i \subseteq S_r = r(J) = l(J)$ by [8, Lemma 2.2]. We can prove the following result.

THEOREM. The following conditions are equivalent for ring R for which the matrix ring $M_2(R)$ is right Johns.

(b) kR simple, $k \in R$, implies that Rk is simple.

(c) R is semilocal.

(d) $S_r \subseteq S_l$ (so $S_r = S_t$).

(e) R is left Kasch.

(f) R is quasi-Frobenius.

Proof. If $M_2(R)$ is right Johns, it is not difficult to see that R is right Johns. Moreover, R is left 2-injective by [15, Theorem 4.2] because $M_2(R)$ is left P-injective.

(a) \Rightarrow (b). This is by [16, Theorem. 1.14].

(b) \Rightarrow (c). Since R is right noetherian, $S_r = k_1 R \oplus \cdots \oplus k_n R$ where the $k_i R$ are simple. By [8, Lemma 2.2] we have $J = l(S_r) = l(k_1) \cap \cdots \cap l(k_n)$, and we are done because each Rk_2 is simple by (b).

(c) \Rightarrow (d). If R is semilocal, then $r(J) = S_l$ and so (d) follows because $S_r = r(J)$ by [8, Lemma 2.2].

(d) \Rightarrow (a). *R* is left mininjective because it is left P-injective (being right Johns). Hence, if *Rk* is a minimal left ideal of *R*, then *kR* is a minimal right ideal of *R* by [16, Theorem 1.14]. This means $J \subseteq r(k)$, so $Rk \subseteq lr(k) \subseteq l(J) = S_r$, by [8, Lemma 2.2]. Hence $lr(k) \subseteq S_l$ by (d), so lr(k) is a semisimple left *R*-module containing *Rk*. Thus it suffices to show that $Rk \subseteq e^{ss} lr(k)$. Suppose that $0 \neq y \in lr(k)$. Observe first that $r(k) \subseteq r(y) \neq R$, whence r(k) = r(y) and lr(k) = lr(y). Now suppose to the contrary that $Rk \cap Ry = 0$. Then $R = r(Rk \cap Ry) - r(k) + r(y)$ because *R* is left 2-injective. This implies that 0 = l/r(k) + r(y) = lr(k), a contradiction.

(c) \Rightarrow (e). *R* is right mininjective because (c) \Rightarrow (a), and it is left mininjective by hypothesis. As *R* is right Kasch, let $k_1R, \dots, k_nR, k_i \in R$, be a complete set of representatives of the simple right modules. Then [16, Theorem 1.14) shows that each Rk_i is simple (by right mininjectivity), and that $Rk_i \cong Rk_j$ implies $k_iR \cong k_jR$ (by left mininjectivity), whence i=j. Since R is semilocal, Rk_1, \dots, Rk_n are a complete set of representatives of the simple left modules, proving (e).

Glasgow Math. J. 40 (1998) 475-476.

⁽a) R is right mininjective.

CORRIGENDUM

(e) \Rightarrow (a). Because R is left 2-injective, it is right P-injective by [15, Lemma 2.2], and (a) follows.

(c) \Rightarrow (f). Clearly (f) \Rightarrow (c). Conversely, as *R* is right noetherian and *J* is nilpotent (by [8, Lemma 2.2]), *R* is right artinian by Hopkins' Theorem. But *R* is right mininjective because (c) \Rightarrow (a), and *R* is left mininjective by hypothesis, so that *R* is quasi-Frobenius by [16, Corollary 4.8].

W. K. NICHOLSON DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALGARY CALGARY CANADA 72N 1N4 M. F. Yousif Department of Mathematics Ohio State University Lima Ohio 45804 U.S.A.

476