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Abstract

The aim of this paper is to study the stochastic monotonicity and continuity properties
of the extinction time of Bellman–Harris branching processes depending on their
reproduction laws. Moreover, we show their applications in an epidemiological context,
obtaining an optimal criterion to establish the proportion of susceptible individuals in a
given population that must be vaccinated in order to eliminate an infectious disease. First
the spread of infection is modelled by a Bellman–Harris branching process. Finally, we
provide a simulation-based method to determine the optimal vaccination policies.
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1. Introduction

The Bellman–Harris branching process (BHBP) is a continuous-time model, which has been
widely studied in the stochastic processes theory (see, for example, Chapter 4 of [3] for details).
Moreover, from a practical outlook, it has been used to describe the evolution of populations
over time in different situations, including, for example, to solve many problems related to cell
populations (see, for example, [4], [5], [12], [17], [19], [26], and [27]).

It is well known that a BHBP becomes extinct or explodes to infinity depending on the mean
value of its reproduction law. This property is inherited from its embedding Galton–Watson
process (EGWP), leading us to the classification of subcritical, critical, and supercritical cases.
Then, the extinction happens almost surely (a.s.) in the subcritical and critical cases, and has a
positive probability in the supercritical case (obviously under the corresponding conditions to
avoid trivial cases). However, the time necessary for the extinction of a BHBP cannot be deduced
from its EGWP. This time is a random variable (RV) which depends on the continuous-time
structure of the BHBP on its own. Even though the study of the extinction time is very interesting
from both theoretical and practical view points, it has not been considered deeply enough (see,
for example, [1], [10], [14], and [23]). In this paper we deal with this problem, investigating
the dependence of the extinction time of a BHBP on its reproduction law. Moreover, we apply
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Bellman–Harris branching processes 59

the obtained results in an epidemiological context. Actually, the problem of how to model
the evolution of an infectious disease is very important and widely considered in the recent
literature (see, for example, [8], [11], [15], [21], and [23]). However, in only a few papers (see,
for example, [2], [7], [10], and [22]) has the waiting time to the extinction of the disease been
used as a main tool to determine a vaccination policy. This is mainly because there are not
enough results on this RV. In this work we propose a new approach to this topic.

The paper is organized as follows. In Section 2 we study some properties of the distribution
function of the extinction time of a BHBP, mainly those related to stochastic monotonicity
and continuity depending on its reproduction law. Then, in Section 3 we apply this study
to investigate the behaviour of the extinction time of an infectious disease, depending on
the proportion of immune individuals in the population. We consider diseases which follow
an SIR (susceptible-infected-removed) scheme. It is well known that branching processes
adequately fit this scheme (see [2] and [6]). So, first, we model the spread of infection by
a BHBP. Then we study its extinction time distribution and propose an optimal vaccination
level to immunize individuals in the population, based on the quantiles of such distributions.
To guarantee the applicability of these results, we propose a simulation-based method which
allows us to calculate the optimal proportion of susceptible individuals to be vaccinated. We
also provide an illustrative example. Finally, to ease the reading, the proofs are presented in
Section 4.

2. Properties of the extinction time

In this section we study some properties related to the extinction time of BHBPs. First
we obtain results for a BHBP with fixed reproduction law, which is referenced in terms of
its probability generating function (PGF). Then, we study the properties of the extinction
time of BHBPs with different reproduction laws, but with the same distribution of life length.
Specifically, we establish stochastic monotonicity and continuity properties depending on the
reproduction law.

To this aim, we denote by Tf the extinction time of a BHBP, {Zt }t≥0, initiated at time 0 by a
single individual, with reproduction law given by its PGF f (·) and life length with distribution
function (DF) G(·) such that G(0+) = 0, i.e. there is a null probability of instantaneous death.
Mathematically, we have

Tf = inf{t ≥ 0 : Zt = 0},
where Zt denotes the number of individuals in the population at time t . Intuitively, Tf is the
maximal time that the population survives when the PGF of the reproduction law is f (·).

Fix the PGF f (·). We denote by vf (·) the DF of the extinction time Tf , i.e.

vf (t) = P(Tf ≤ t), t ∈ R.

Since G(0+) = 0, then vf (0) = 0. Furthermore, using the methods given in [3, Theorem IV.2.1,
p. 139], it is easy to deduce that vf (·) is the unique bounded function that satisfies the integral
equation

vf (t) =
⎧⎨
⎩

0, t < 0,∫ t

0
f (vf (t − s)) dG(s), t ≥ 0.

(2.1)

Moreover, let qf be the extinction probability of a BHBP started with one ancestor and with
reproduction law given by the PGF f (·). It is clear that qf = P(Tf < ∞), and it is also well
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known that qf = 1 if and only if mf ≤ 1, where mf denotes the reproduction mean associated
to f (·). So that, for such a PGF f (·) with mf > 1, vf (·) is the DF of a nonproper RV because
P(Tf < ∞) < 1. In any case, it follows that

ṽf (t) = P(Tf ≤ t | Tf < ∞) = vf (t)

qf

, t ≥ 0, (2.2)

and, from (2.1), it is easy to show that ṽf (·) also satisfies the equation

ṽf (t) =
∫ t

0
g(̃vf (t − s)) dG(s), t ≥ 0,

where g(s) = q−1
f f (qf s) is a PGF such that mg < 1, that is, ṽf (t) = vg(t) for all t ∈ R.

Therefore, without loss of generality, from now on, in many situations we can consider a PGF
f (·) such that the extinction time Tf is a proper RV, i.e. mf ≤ 1.

The DF vf (·) inherits some properties of the DF G(·) as follows. Both of them have support
on the nonnegative real numbers. Moreover, if the DF of the life length G(·) is discrete, then
the DF of the extinction time vf (·) is also discrete. For the absolutely continuous case, we
obtain the analogous result.

Proposition 2.1. If G(·) is an absolutely continuous DF then vf (·) is also an absolutely
continuous DF.

The DF vf (·) is determined implicitly from (2.1). However, it is useful to obtain procedures
which allow us to know or at least to approximate the value of this function at each point t .
To this end, we introduce the functional operator Hf (·), defined on any function u(·) from the
nonnegative real numbers R+ to the closed interval [0, 1]:

Hf (u)(t) =
∫ t

0
f (u(t − s)) dG(s), t ≥ 0.

Also, for all n ≥ 1, we denote by Hn
f (·) the nth composition of the operator Hf (·), that is,

Hn+1
f (u)(·) = Hf (Hn

f (u))(·), n = 1, 2, . . . , and H 1
f (u)(·) = Hf (u)(·). Using this notation,

from (2.1) we find that vf (·) is the unique bounded function satisfying the fixed-point equation
u(·) = Hf (u)(·). We also derive the following result.

Theorem 2.1. If f (·) is a PGF then, for each function h : R+ → [0, 1], it is verified that

vf (t) = lim
n→∞ Hn

f (h)(t), t ≥ 0. (2.3)

This result, besides giving us a way to approximate the DF vf (·) at each point, provides
a useful tool to investigate the behaviour of the extinction times for BHBPs with different
reproduction laws and the same life-length distribution. So, next we consider the behaviour of
vf (·) depending on f (·), when G(·) is fixed.

Theorem 2.2. Let f (·) and g(·) be PGFs. If f (s) ≤ g(s) for all 0 ≤ s ≤ 1 then vf (t) ≤ vg(t)

for all t ≥ 0.

Remark 2.1. It is not hard to show that if the reproduction law given by f (·) is stochastically
greater than that given by g(·) then f (s) ≤ g(s) for all 0 ≤ s ≤ 1. But, in general, the vice
versa statement is not true.
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From the previous theorem we deduce that the condition f (s) ≤ g(s) for all 0 ≤ s ≤ 1
implies that the extinction time of the BHBP with PGF f (·) is stochastically greater than that
of the BHBP with PGF g(·), i.e. the monotonicity property of the PGFs is inherited by the DF
of the extinction time.

Now we show in the following result that minor changes in the PGF f (·) generates minor
changes in the extinction time.

Theorem 2.3. Let f (·) be a PGF such that mf < 1. For each ε > 0, there exists δ =
δ(ε, f ) > 0 such that if g(·) is a PGF satisfying

sup
0≤s≤1

|f (s) − g(s)| ≤ δ

then
sup

0≤t<∞
|vf (t) − vg(t)| ≤ ε.

Remark 2.2. (i) It is important to point out that, given a PGF, it is possible to find another
arbitrarily close PGF. Actually, for fixed f (·) and any δ > 0, there exists a PGF g(·) such
that sup0≤s≤1 |f (s) − g(s)| ≤ δ. Indeed, since f (·) is a uniformly continuous function on the
interval [0, 1], then there exists 0 < α < 1 such that |f (s) − f (s∗)| ≤ δ for all s, s∗ with
0 ≤ s, s∗ ≤ 1 and |s − s∗| ≤ α. For each 0 ≤ s ≤ 1, let g(s) = f (α + (1 − α)s). We will
show in the next section that g(·) is a PGF. Since α + (1 − α)s − s ≤ α for all 0 ≤ s ≤ 1, then
sup0≤s≤1 |f (s) − g(s)| ≤ δ.

(ii) In Theorem 2.3 specifically, we proved a continuity property for the DF vf (·) depending on
f (·), when mf < 1. Taking into account (2.2), we can also deduce this continuity property when
mf > 1. Indeed, let f (·) be a PGF such that mf > 1. From the embedded generation process
associated with the BHBP and the equation f (qf ) = qf , it is not hard to obtain the continuity
of qf depending on f (·). Moreover, since vf (t) = qf vg(t), recall that g(s) = q−1

f f (qf s) is
a PGF such that mg < 1, then, from Theorem 2.3, the continuity property can be proved.

3. Application to epidemic modelling

Branching processes have been widely used to model the evolution of infectious diseases
that follow SIR schemes, at least in their early stages (see, for example, [2], [6], [13], [18],
[21], and [24]). In particular, infectious diseases with long incubation periods and negligible
contagious times, such as avian flu, measles, and mumps, can be described by a BHBP.

To model the spread of an infectious disease using a BHBP, we consider the following
scheme. Let us assume that three types of individual exist in the population: infected
individuals, healthy individuals who are susceptible to catching the infection (susceptible
individuals), and healthy individuals who are immune to the infection. The disease is spread
when an infected individual is in contact with susceptible individuals. Note that, during the
incubation period, an infected individual does not show any symptoms of the disease and does
not pass the disease on to a susceptible individual. Moreover, when the infectious disease is
observed in an individual, this individual is either isolated (for example, in human or animal
populations) or culled (for example, in animal populations with very dangerous diseases), so
that the individual ceases to be infective. Hence, just after the incubation period and before
being isolated or culled, there is a very short contact period (in comparison with the incubation
period) in which the individual may infect others. We denote by pk the probability that one
infected individual contacts k healthy individuals, k ≥ 0, and we denote by α (0 ≤ α ≤ 1)
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the proportion of immune individuals in the population. We suppose that both infected and
immune individuals are dispersed uniformly in the population. Furthermore, we assume that the
population size is fixed and large enough in comparison with the number of infected individuals,
so that α and the contact distribution law, {pk}k≥0, can be considered stable over time (see [15]).
Note that this is not a restriction in either critical and subcritical processes, because of their
almost-sure extinction, or in the early stages of supercritical processes.

Under these assumptions, the probability that an infected individual transmits the disease to
k susceptible individuals, where α is the proportion of immune individuals in the population,
is given by

pα,k =
∞∑

j=k

(
j

k

)
αj−k(1 − α)kpj , (3.1)

i.e. the infected individual has been in contact with j healthy individuals and among them there
have been k susceptible individuals. We call {pα,k}k≥0 the infection distribution law when
the proportion of immune individuals in the population is α. Note that if no individual in
the population is immune, i.e. α = 0, then every individual will be infected whenever he/she
contacts an infected individual, i.e. p0,k = pk for all k ≥ 0. On the other hand, if all individuals
in the population are immune, i.e. α = 1, then the infection does not spread, i.e. p1,k = 0 for
all k > 0. Following this spreading scheme along time, infected individuals pass on the disease
to other susceptible individuals, and so on. We model the number of infected individuals in a
population with a proportion α of immune individuals by a BHBP, such that its offspring law
is determined by the infection distribution law {pα,k}k≥0 and the DF of the life length of an
infected individual is given by an arbitrary DF G(·) of a nonnegative RV. By life length we mean
the period (measured in real time) consisting of the incubation period plus the comparatively
very short (negligible) contact period. Note that we assume that the life length of an infected
individual does not depend on either the proportion of immune individuals in the population or
the contact distribution law.

In order to immunize a proportion of susceptible individuals, we suppose that a vaccination
policy is applied. Our objective is to determine what proportion, α, of these individuals might
be vaccinated/immunized to guarantee the extinction of the disease, possibly in a given period
of time. We call this proportion the vaccination level. Specifically, we deal with the problem
of determining the optimal vaccination level, which depends not only on the speed of the
transmission of the disease, expressed in terms of the infection distribution law {pα,k}k≥0, but
also on the time until the epidemic becomes extinct after the vaccination process finishes. To
this end, we first study the behaviour of the extinction time of the epidemic depending on
the vaccination level, applying the results of the previous sections. Then, from this study we
propose an optimal vaccination level, and, finally, we illustrate how to determine this optimal
vaccination level by means of a simulation method.

3.1. The extinction time of the epidemic

In what follows, our goal is to investigate the distribution of the extinction time of a BHBP
depending on the vaccination level α. To this end, for each α such that 0 ≤ α ≤ 1, we denote
by fα(·) the PGF of {pα,k}k≥0. From (3.1), it is easy to obtain

fα(s) = f (α + (1 − α)s), 0 ≤ s ≤ 1, (3.2)

where f (·) is the PGF of {pk}k≥0. Moreover, we denote by Tα the extinction time of a BHBP
initiated at time 0 with a single infected individual and with PGF fα(·), and we denote by vα(·)
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the DF of Tα . Intuitively, Tα is the maximal time that the infection survives in the population
when the proportion of immune individuals is α.

Also, we denote by m the mean number of contacts of an infected individual and by mα the
mean number of susceptible individuals, who are infected by a contagious individual, given
that the proportion of immune individuals in the population is α. Then, from (3.1), it is easy to
calculate that

mα = (1 − α)m. (3.3)

Taking into account (3.3), mα ≤ 1 is equivalent to max{0, 1 − m−1} ≤ α ≤ 1, which depends
on the mean number of contacts of an infected individual. In order to simplify the notation, from
now on we denote by αinf = max{0, 1 − m−1} the smallest proportion of immune individuals,
so that the infectious disease becomes extinct a.s.

From the properties of f (·), (3.2), and Theorems 2.2 and 2.3, it is not hard to show that, for
each t ≥ 0, the function vα(t) is nondecreasing and continuous on α for αinf < α ≤ 1, i.e. in a
continuous way, the greater the proportion of immune individuals, the more probable it is that
the infectious disease disappears faster.

Furthermore, some parameters of Tα inherit these properties of vα(·). Next we investigate
the monotonicity and continuity properties of the quantiles of the distribution of the infected
extinction time, depending on the proportion of immune individuals in the population.

For fixed α and p, with αinf ≤ α ≤ 1 and 0 < p < 1, we denote by tαp the quantile of order
p of the variable Tα . We have the following result.

Theorem 3.1. Let p be such that 0 < p < 1.

(i) If αinf ≤ α1 < α2 ≤ 1 then t
α2
p ≤ t

α1
p .

(ii) If α is such that 0 < mα < mαinf , then limα̃→α+ t α̃p = tαp . Moreover,

(a) if vα(tαp ) = p then tαp ≤ limα̃→α− t α̃p ≤ t∗, with t∗ = sup{t : vα(t) = p};
(b) if vα(tαp ) > p then limα̃→α− t α̃p = tαp ;

(c) if vα(·) is an increasing and absolutely continuous function then limα̃→αt α̃p = tαp .

Remark 3.1. Note that if G(·) is an increasing and absolutely continuous function defined on
the nonnegative real numbers, we deduce from Proposition 2.1 that vα(·) is also of the same
type and, therefore, for αinf < α ≤ 1, tαp is a continuous function depending on α.

3.2. Determining vaccination policies

When an infectious disease is strongly detrimental to the population within which it is
spreading, such that it becomes an epidemic, then a vaccination policy should be applied to
protect the susceptible individuals and terminate the epidemic. Since, in most cases, it is
impossible to immunize the whole population, only a proportion of susceptible individuals can
be immunized through vaccination. How this proportion is determined is an important problem
which depends on a number of factors. A significant factor for public authorities to assess the
vaccination efficiency is the time that the infectious disease should be allowed to survive after
vaccination.

In what follows we propose an optimal proportion of susceptible individuals to be immunized.
Without loss of generality, we suppose that, before vaccination, every healthy individual in
contact with an infected individual is not immune, i.e. the contact always produces the infection.
Then, before the vaccination, with probability pk , an infected individual passes the disease on
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to k susceptible individuals. Moreover, after the vaccination process, we suppose that every
vaccinated individual is immune to the infectious disease. If at the end of the vaccination
process we have a proportion α of vaccinated susceptible individuals then, with probability pα,k

(see (3.1)), an infected individual transmits the disease to k susceptible individuals.
To guarantee the extinction of the disease a.s., α should be equal to at least αinf . Intuitively, it

is clear that increasing the vaccination level leads to a decrease (stochastically) in the extinction
time of the infection. Obviously, the best strategy is to vaccinate all the population, but this
is not practically feasible in most cases. This is why we propose a possible way of defining
the optimal proportion of vaccinated individuals, to guarantee that the infection terminates by
a given instant of time after the vaccination process ends. The vaccination policy is based on
the quantiles of the extinction time Tα . For fixed p and t , with 0 < p < 1 and t > 0, we
look for vaccination policies which guarantee that the infectious disease becomes extinct, with
probability greater than or equal to p, not later than time t after the vaccination process has
ended. Let us suppose that we have vaccinated a proportion α of susceptible individuals. If at
the end of the vaccination process there is a single infected individual in the population, since
this infected individual might have already lived some time before, then the probability that the
disease becomes extinct no later than time t after the vaccination process has ended is greater
than or equal to vα(t). In Appendix A we provide a mathematical justification of this fact.

On the other hand, if there are z infected individuals at the end of the vaccination process,
since each individual reproduces/infects independently from the others, then the probability
that the disease becomes extinct no later than time t after the vaccination process has ended can
be bounded by (vα(t))z.

Consequently, any vaccination level α such that vα(t) ≥ p(z) or, equivalently, tα
p(z) ≤ t , with

p(z) = p1/z, could be used. Taking this fact into account, we propose as the optimal vaccination
policy that one which corresponds to the smallest α of all of them, i.e.

αq = αq(p, t, z)

= inf{α : αinf ≤ α ≤ 1, vα(t) ≥ p(z)}
= inf{α : αinf ≤ α ≤ 1, tα

p(z) ≤ t}.

Applying the monotonicity and continuity properties of the functions vα(t) and tαp (depending
on α) we have vαq (t) ≥ p(z) and t

αq

p(z) ≤ t if αq > αinf . Note that, since (vα(t))z is a lower
bound of the probability of interest, then some α less than αq could also be valid for our general
aim. Moreover, although t and p are fixed arbitrarily, in order to find a solution of the problem,
it is necessary that t ≥ t1

p(z) or, equivalently, p(z) ≤ v1(t).

3.3. A simulation-based method for determining vaccination policies

In the previous subsections we proposed a vaccination policy defined by αq . This vaccination
policy depends on the DF of the extinction time. Therefore, to calculate αq , it is necessary
to know vα(·) for α such that αinf ≤ α ≤ 1. Although vα(·) satisfies (2.1) and (2.3), in
general it is not possible to obtain this function in a closed form. Recently, some numeric and
simulation methods have been provided in order to approximate the function satisfying (2.1)
(see, for example, [20]). In what follows we determine αq , approximating vα(·) by means of
a simulation-based method when {pk}k≥0 and G(·) are known. When α is fixed, such that
αinf ≤ α ≤ 1, we apply the Monte Carlo method to estimate the empirical DF of the extinction
time when the proportion of immune individuals is α. Taking different αs sufficiently close,
we approach αq from its definition. To simulate the spread of the disease when the proportion
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of immune individuals is α, it is enough to know G(·) and {pk}k≥0. Usually, the life-length
distribution and the contact distribution law are estimated from the information that becomes
available as the epidemic proceeds (see, for example, [16]).

Next we illustrate the simulation-based method by means of the following example. Let the
life length of an infected individual follow the gamma distribution �(2, 1). Also, let the contact
distribution law follow a Poisson distribution with parameter m. These types of distribution
have been used to model the incubation period and the number of contacts for infectious diseases
(see, for example, [10], [11], and [21]). From (3.2) we have

fα(s) = f (α + (1 − α)s) = e−m(1−α−(1−α)s) = e−mα(1−s), 0 ≤ s ≤ 1,

which means that the infection distribution law also follows a Poisson distribution with
parameter mα = (1 − α)m, where mα is the number of susceptible individuals that become
infected. Note that, for fixed m, α is determined one-to-one by mα . Therefore, instead of
calculating αq , we determine mq = (1 − αq)m. From the definition of αq we obtain

mq = mq(t, p, z) = sup{mp : 0 ≤ mp ≤ 1, ump(t) ≥ p(z)},
where ump(·) is the DF of the extinction time when the infection distribution law follows a
Poisson distribution with parameter mp. Note that vα(·) = umα(·) and that mq is independent
of the magnitude of m. Therefore, to approximate mq we need to obtain only the empirical
distribution ump(·) for 0 ≤ mp ≤ 1 using the Monte Carlo method. To this end, for each
fixed mp, 10 000 processes have been simulated and their extinction times have been calculated.
The left-hand diagram of Figure 1 shows the behaviour of the empirical DF ump(·) for several
mps. Note that, as mp increases, the extinction time also increases (stochastically).

As an example, to compute mq , we take p = 0.9, t = 15, and z = 3. Then we have
p(z) = 0.965. The behaviour of the estimated value ofump(15), jointly with an upper confidence
bound of 95%, depending on mp, is given in the right-hand diagram of Figure 1. We also show
in Figure 1, using dashed lines, that, given p(z) = 0.965, an approximation of mq(15, 0.9, 3)

is 0.64.
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Figure 1: Left: behaviour of the empirical distribution functions of ump (·) depending on mp . Right:
behaviour of the estimated value of ump (15), jointly with an upper confidence bound of 95%, depending

on mp (dashed line).
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Figure 2: Proportion of individuals to be vaccinated, depending on m and taking into account
mq(15, 0.9, 3) = 0.64.

Finally, in Figure 2 we illustrate the proportion of individuals to be vaccinated, depending
on m and taking into account mq(15, 0.9, 3). Note that, if the mean number of contacts per
individual, m, is close to 1.5 then we need to vaccinate about 57% of the population in order to
guarantee that the infectious disease becomes extinct with probability greater than or equal to
0.9 not later than time 15 after the vaccination period has ended.

Remark 3.2. For the computer simulations, we used the language and environment of statistical
computing and graphics, R (see [25]).

4. Proofs

In this section we provide the proofs of the results in the paper.

Proof of Proposition 2.1. For all t ≥ 0, we have

vf (t) =
∫ t

0
f (vf (t − s)) dG(s)

= f (0)G(t) + (1 − f (0))

∫ t

0
Ff (t − s) dG(s), (4.1)

with Ff (y) = (1 − f (0))−1(f (vf (y)) − f (0)) for y ≥ 0. Since f (·) is a PGF and vf (·) is a
DF, then Ff (·) is also a DF on the nonnegative real numbers, and, therefore,∫ t

0
Ff (t − s) dG(s) =

∫ ∞

0
Ff (t − s) dG(s) = (Ff ∗ G)(t)

is the convolution of Ff (·) and G(·). If G(·) is an absolutely continuous DF then it is well known
that Ff ∗ G(·) is also an absolutely continuous DF (see [9, p. 272]). Therefore, since vf (·)
is a convex linear combination of two absolutely continuous DFs, then it is also an absolutely
continuous DF.

Proof of Theorem 2.1. Let h(·) be a function from R+ to the closed interval [0, 1]. In order
to obtain the result, it is enough to prove the following four statements.

(S1) For all t ≥ 0, G̃(t) ≤ Hf (h)(t) ≤ G(t), with G̃(t) = f (0)G(t).
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(S2) Hf (·) is a nondecreasing operator, i.e. if hi : R+ → [0, 1], i ∈ {1, 2}, are two functions
such that h1(t) ≤ h2(t) for all t ≥ 0, then Hf (h1)(t) ≤ Hf (h2)(t) for all t ≥ 0.

(S3) For all t ≥ 0, there exist u1(t) = limn→∞ Hn
f (G̃)(t) and u2(t) = limn→∞ Hn

f (G)(t).

(S4) Let u1(·) and u2(·) be solutions of the fixed-point equation u(·) = Hf (u)(·). Then
vf (·) = u1(·) = u2(·).

Indeed, from these statements, it is easy to prove that, for all n ≥ 1 and t ≥ 0,

vf (t) = u1(t)

= lim
n→∞ Hn

f (G̃)(t)

≤ lim
n→∞ Hn+1

f (h)(t)

≤ lim
n→∞ Hn

f (G)(t)

= u2(t) = vf (t).

It remains to prove statements (S1)–(S4).
(S1) Since f (·) is an increasing function such that f (1) = 1, we have

G̃(t) = f (0)G(t) ≤
∫ t

0
f (h(t − s)) dG(s) ≤ G(t).

(S2) Since f (·) is an increasing function and h1(t) ≤ h2(t) for all t ≥ 0, then the statement
is shown.

(S3) By (S1), (S2), and taking iterations, for each t ≥ 0, {Hn
f (G̃)(t)}n≥1 is an upper bounded,

nondecreasing sequence and {Hn
f (G)(t)}n≥1 is a lower bounded, nonincreasing sequence.

Hence, the statement follows.
(S4) Since f (·) is a continuous function, then, by (S3) and applying the dominated conver-

gence theorem, it follows that, for each fixed t ≥ 0,

u1(t) = lim
n→∞ Hn+1

f (G̃)(t)

= lim
n→∞

∫ t

0
f (Hn

f (G̃)(t − s)) dG(s)

=
∫ t

0
f

(
lim

n→∞ Hn
f (G̃)(t − s)

)
dG(s)

=
∫ t

0
f (u1(t − s)) dG(s)

= Hf (u1)(t).

Moreover, since vf (·) = Hf (vf )(·) and u1(·) is bounded, u1(·) = vf (·), because only one
bounded function is a solution of (2.1) (see [3, p. 139]). The statement for the function u2(·)
follows similarly.

Proof of Theorem 2.2. Since vf (·) is a distribution function and f (s) ≤ g(s) for all 0 ≤
s ≤ 1, then, for each t ≥ 0,

Hf (vf )(t) ≤ Hg(vf )(t).
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Taking this fact into account and (2.1), we have vf (t) ≤ Hg(vf )(t) for all t ≥ 0. Moreover,
by (S2) in the proof of Theorem 2.1 and again taking iterations, for all n ≥ 1 and t ≥ 0, we
obtain

vf (t) ≤ Hn
g (vf )(t),

and the proof is completed using Theorem 2.1.

Remark 4.1. We note that the proofs of Theorem 2.1 and Theorem 2.2 hold even when mf > 1.

Proof of Theorem 2.3. We show by induction on n, for each n ≥ 1, that, for all t ≥ 0,

|Hn
f (G)(t) − Hn

g (G)(t)| ≤ ε(1 − mn
f ). (4.2)

For fixed t ≥ 0 and δ = ε(1 − mf ), since G(·) is a DF for n = 1, we deduce that

|Hf (G)(t) − Hg(G)(t)| ≤
∫ t

0
|f (G(t − s)) − g(G(t − s))| dG(s) ≤ ε(1 − mf ).

By the induction hypothesis, (4.2) holds for n. Then, for n + 1, we have

|Hn+1
f (G)(t) − Hn+1

g (G)(t)| ≤ |Hf (Hn
f (G))(t) − Hf (Hn

g (G))(t)|
+ |Hf (Hn

g (G))(t) − Hg(H
n
g (G))(t)|.

By (S1) and (S2) in the proof of Theorem 2.1 and iterating, we deduce, for all n ≥ 1, that
Hn

f (G)(t) ≤ 1 and Hn
g (G)(t) ≤ 1. Taking these facts into account, we obtain

|Hf (Hn
f (G))(t) − Hf (Hn

g (G))(t)| ≤
∫ t

0
|f (Hn

f (G)(t − s)) − f (Hn
g (G)(t − s))| dG(s)

≤ mf sup
0≤s∗<∞

|Hn
f (G)(s∗) − Hn

g (G)(s∗)|

≤ ε(1 − mn
f )mf

and

|Hf (Hn
g (G))(t) − Hg(H

n
g (G))(t)| ≤

∫ t

0
|f (Hn

g (G)(t − s)) − g(Hn
g (G)(t − s))| dG(s)

≤ ε(1 − mf ).

Therefore, we conclude that

|Hn+1
f (G)(t) − Hn+1

g (G)(t)| ≤ ε(1 − mn
f )mf + ε(1 − mf ) = ε(1 − mn+1

f ).

Since mf < 1, from (4.2), by applying Theorem 2.1, we obtain

sup
0≤t<∞

|vf (t) − vg(t)| ≤ ε,

and this completes the proof.

Proof of Theorem 3.1. Let p be such that 0 < p < 1.
(i) Let α1 and α2 be such that αinf ≤ α1 < α2 ≤ 1. Taking into account the stochastic

monotonicity property of the extinction time, we obtain

p ≤ vα1(t
α1
p ) ≤ vα2(t

α1
p ),

and, therefore, by the definition of t
α2
p , we deduce that t

α2
p ≤ t

α1
p .
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(ii) Let α be such that 0 < mα < mαinf . From the previous part, we guarantee the existence
of limα̃→α+ t α̃p , which is equal to t = sup{t α̃p : α̃ > α}. Therefore, t ≤ tαp . On the other hand,
from the continuity property of the extinction time, we deduce that, for each ε > 0, there exists
η = η(ε, α) > 0 such that

p − ε ≤ vα̃(t α̃p ) − ε ≤ vα(t α̃p ) ≤ vα(t)

for all α̃ such that 0 < α̃ − α ≤ η. Then p ≤ vα(t), and so tαp = t .
(a) Applying the first part, we deduce that limα̃→α− t α̃p exists, that it is equal to t =

inf{t α̃p : α̃ < α}, and that tαp ≤ t . Next, we prove that t ≤ t∗. We split the proof into two
cases: vα(t∗) > p and vα(t∗) = p. First we consider the case in which vα(t∗) > p. Let
ε = vα(t∗) − p. From the continuity property of the extinction time we deduce that there
exists η = η(ε, α) > 0 such that

vα(t∗) − vα̃(t∗) ≤ ε = vα(t∗) − p

for all α̃, 0 < α − α̃ ≤ η. Then p ≤ vα̃(t∗) and, therefore, we have t α̃p ≤ t∗ and, consequently,
t ≤ t∗.

Finally, we consider the case in which vα(t∗) = p. By the definition of t∗ we have p < vα(t)

for all t > t∗. For each t > t∗, let ε = vα(t)−p. From the continuity property of the extinction
time, we deduce that there exists η = η(ε, α) > 0 such that

vα(t) − vα̃(t) ≤ ε = vα(t) − p

for all α̃, 0 < α − α̃ ≤ η. Then p ≤ vα̃(t), t α̃p ≤ t , and t ≤ t , and, consequently, t ≤ t∗.
(b) This part is proved similarly to the vα(t∗) > p case above, replacing t∗ by tαp .
(c) From (a) we obtain limα̃→α− t α̃p = tαp , and this completes the proof.

Appendix A

We consider a BHBP initiated with one individual, with reproduction law {pk,α}k≥0, where
0 ≤ α ≤ 1, DF G∗(·) of the initial progenitor’s life length, and DF G(·) of the life length for
other individuals. We suppose that G∗(t) ≥ G(t) for all t ≥ 0. In an epidemiological context,
this condition reflects the fact that the life-length distribution G∗(·) of the initial individual after
vaccination is always less than or equal to its total life length, given by G(·).

We denote by T̂α the extinction time of such a BHBP. Also, we denote by v̂α(·) the DF of
the extinction time T̂α , i.e. v̂α(t) = P(T̂α ≤ t) for all t ∈ R. Following a heuristic derivation
as in [3, p. 138], we obtain the integral equation

v̂α(t) =
∫ t

0
fα(vα(t − s)) dG∗(s), t ≥ 0. (A.1)

From (4.1) and (A.1), for all t ≥ 0, we obtain

vα(t) = fα(0)G(t) + (1 − fα(0))(Fα ∗ G)(t)

and
v̂α(t) = fα(0)G∗(t) + (1 − fα(0))(Fα ∗ G∗)(t),

where Fα ∗ G∗(·) denotes the convolution of Fα(·) and G∗(·), with

Fα(y) = (1 − fα(0))−1(fα(vα(y)) − fα(0)) for all y ≥ 0.
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Since G∗(t) ≥ G(t) for all t ≥ 0, then

(Fα ∗ G∗)(t) ≥ (Fα ∗ G)(t)

for all t ≥ 0 and, therefore, v̂α(t) ≥ vα(t) for all t ≥ 0.
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