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1. Introduction. A complete graph Kn has a triangulation in an orientable surface
if and only if n ≡ 0, 3, 4 or 7 (mod 12). The necessity of the condition follows
immediately from Euler’s formula V + F − E = 2 − 2g, where V , F and E are the
numbers of vertices, faces and edges, respectively, and g is the orientable genus.
Sufficiency was established by the classic work of Ringel and Youngs and is presented
in [5]. The set of faces form a twofold triple system of order n, TTS(n) for short, i.e. a
collection of triples having the property that every pair is contained in precisely two
triples. In such a triangulation the number of faces around each vertex is n − 1, and so
if n − 1 is even, i.e. n ≡ 3 or 7 (mod 12), it may be possible to colour each face using
one of two colours, say black or white, so that no two faces of the same colour are
adjacent. We say that the triangulation is (properly) face two-colourable. The set of
faces of each colour class then form a Steiner triple system of order n, STS(n) for short,
i.e. a collection of triples having the property that every pair is contained in precisely
one triple. We say that the two STS(n)s are biembedded in the surface. An obvious
question therefore is whether for each n ≡ 3 or 7 (mod 12), there is a biembedding of
some pair of STS(n)s in an orientable surface. The answer is in the affirmative, the case
n ≡ 3 (mod 12) is dealt with in [5], and the case n ≡ 7 (mod 12) is dealt with in [8].

However, STS(n)s exist for all n ≡ 1 or 3 (mod 6), i.e. n ≡ 1, 3, 7 or 9 (mod 12),
[3]. In this paper we are concerned with the case where n ≡ 1 (mod 12) and consider
the question of how close it is possible to biembed a pair of STS(n)s of these orders in
an orientable surface. Exactly what we mean by this is now explained. A pseudosurface
is the topological space which results when finitely many identifications of finitely
many points each are made on a given surface. More precisely, distinct points {pi,j : i =
1, 2, . . . , k, j = 1, 2, . . . , mi} on a given surface are identified to form points pi = {pi,j :
j = 1, 2, . . . mi}, i = 1, 2, . . . , k called singular points or pinch points. The number mi is
the multiplicity of the pinch point. Further, if the rotation about a pinch point consists
of cycles of equal length, the pinch point will be called regular. The pseudosurface
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will be called orientable or non-orientable depending on whether the surface from
which it is obtained is orientable or non-orientable respectively. In what follows, the
pseudosurfaces which we will consider are orientable and contain just one pinch point
which is regular and of multiplicity 2, i.e. the rotation about it will consist of two cycles
each of length (n − 1)/2. Thus, in a sense the pseudosurfaces are as close to being an
orientable surface as possible. Euler’s formula does not disallow possible biembeddings
of pairs of STS(n)s for n ≡ 1 or 9 (mod 12) in these pseudosurfaces, and in this paper
we initiate the study of these pseudosurfaces. In particular, we prove that there exists a
biembedding in such a pseudosurface of a pair of STS(n)s for all n ≡ 13 or 37 (mod 72).
However, first we present some computational results for the smallest value, n = 13.
We will need such a biembedding not only to prove our general result but also to
illustrate the idea described in this Introduction.

2. Biembeddings of STS(13)s. Up to isomorphism, there exist precisely two
STS(13)s [1]. One of these has a cyclic automorphism and can be constructed on
the base set �13 by the action of the group generated from the mapping i �→ i + 1
(mod 13) on the two starter blocks {0, 1, 4} and {0, 2, 7}. Denote this system by S.
The system also has a further automorphism τ : i �→ 3i (mod 13) of order 3 giving
the full automorphism group of order 39. Without loss of generality we can assume
that the point 0 is the pinch point. We then applied all 12!/266! = 10, 395 involutions
with no fixed points on the set �13 \ {0} in turn to S and tested whether the system
obtained biembeds with S in an orientable pseudosurface with 0 as a regular pinch
point of multiplicity 2. There are two involutions which produce such biembeddings,
σ = (1 10)(2 8)(3 4)(5 7)(6 11)(9 12) and σ ′ = (1 12)(2 8)(3 10)(4 9)(5 7)(6 11). The full
automorphism group of both the biembeddings is the cyclic group �6, generated
respectively by the permutations g = στ = τσ = (1 4 9 10 3 12)(2 11 5 8 6 7)
and g′ = σ ′τ = τσ ′ = (1 10 9 12 3 4)(2 11 5 8 6 7). Automorphisms of even
order are colour-reversing and those of odd order are colour-preserving. All
automorphisms are orientation-preserving. However, the two biembeddings are non-
isomorphic and are shown in Tables 1 and 2.

The non-isomorphism of the two biembeddings can be proved by counting
the number of Pasch configurations in each TTS(13); there are 112 and 82 Pasch
configurations respectively. The biembeddings can also be derived from voltage
graphs.

The voltages in the voltage graph shown in Figure 1 are taken in the group
�3 = {0, 1, 2}. Therefore, the embedding derived from this voltage graph has a vertex set
{u0

i , u1
i , u2

i : i = 0, 1, 2, 3}. Moreover, the embedding has 20 black triangular faces, 20
white triangular faces and two 6-cycles. The black triangles are {ui

0ui
1ui+2

1 }, {ui
0ui+1

0 ui+1
3 },

{ui+1
0 ui

2ui
3}, {ui

1ui+1
2 ui+2

3 }, {ui
0ui+1

1 ui+1
2 }, {ui

1ui+2
2 ui+1

3 }, i ∈ {0, 1, 2}; {u0
2u1

2u2
2} and {u0

3u1
3u2

3},
the white triangles are {ui

0ui
2ui

3}, {ui
0ui

1ui+1
3 }, {ui

0ui+1
1 ui+2

2 }, {ui
0ui+2

1 ui+2
2 }, {ui

1ui
2ui+2

2 },
{ui

2ui+1
3 ui+2

3 }, i ∈ {0, 1, 2}; {u0
0u1

0u2
0} and {u0

1u1
1u2

1} and the 6-cycles are {u0
0u0

2u2
0u2

2u1
0u1

2} and
{u0

1u0
3u1

1u1
3u2

1u2
3}. Let u0

0 = 1, u1
0 = 3, u2

0 = 9, u0
1 = 2, u1

1 = 6, u2
1 = 5, u0

2 = 4, u1
2 = 12,

u2
2 = 10, u0

3 = 7, u1
3 = 8 and u2

3 = 11. Finally, by adding the point 0 to the embedding
and connecting it to the other 12 points gives the biembedding of a pair of STS(13)s in
an orientable surface with one pinch point with the rotation scheme given in Table 1.
A similar approach gives the second biembedding from the voltage graph as shown in
Figure 2.
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Table 1. Rotation scheme of biembedding #1

0: (1 4 9 10 3 12) (2 7 6 8 5 11)
1: 4 0 12 6 10 11 5 2 8 3 9 7
2: 7 0 11 12 9 4 10 8 1 5 6 3
3: 12 0 10 5 4 7 2 6 11 9 1 8
4: 0 1 7 3 5 8 11 6 12 10 2 9
5: 11 0 8 4 3 10 12 7 9 6 2 1
6: 8 0 7 10 1 12 4 11 3 2 5 9
7: 0 2 3 4 1 9 5 12 11 8 10 6
8: 0 6 9 12 3 1 2 10 7 11 4 5
9: 10 0 4 2 12 8 6 5 7 1 3 11
10: 0 9 11 1 6 7 8 2 4 12 5 3
11: 0 5 1 10 9 3 6 4 8 7 12 2
12: 0 3 8 9 2 11 7 5 10 4 6 1

Table 2. Rotation scheme of biembedding #2

0: (1 4 3 12 9 10) (7 2 11 5 8 6)
1: 4 0 10 11 12 6 8 3 9 7 5 2
2: 0 7 9 4 1 5 6 3 8 10 12 11
3: 12 0 4 7 10 5 11 9 1 8 2 6
4: 0 1 2 9 8 5 12 10 6 11 7 3
5: 0 11 3 10 9 6 2 1 7 12 4 8
6: 0 8 1 12 3 2 5 9 11 4 10 7
7: 2 0 6 10 3 4 11 8 12 5 1 9
8: 6 0 5 4 9 12 7 11 10 2 3 1
9: 10 0 12 8 4 2 7 1 3 11 6 5
10: 0 9 5 3 7 6 4 12 2 8 11 1
11: 5 0 2 12 1 10 8 7 4 6 9 3
12: 0 3 6 1 11 2 10 4 5 7 8 9

u0 u3

u1 u2

1
1

1

1

1

1

1

1

12
1 1

1

1

1

1
2

1

2

1

2

2

Figure 1. Toroidal embedding of voltage graph of biembedding #1.
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u0 u3

u1 u2

1

1

1

1

1 1

21 2
2

2

2

2

2

1

1

2

1

2

2

1

1

Figure 2. Toroidal embedding of voltage graph of biembedding #2.

For the other STS(13) we take the representation given in [4], and for sake of
completeness list the triples, omitting set brackets for clarity.

123, 145, 167, 189, 1ab, 1cd, 246, 257, 28a, 29c, 2bd, 348, 35c

36d, 37b, 39a, 479, 4ad, 4bc, 56a, 58b, 59d, 68c, 69b, 78d, 7ac

The full automorphism group is the dihedral group �3 of order 6 generated by the
permutations (1 2 8)(3 a 9)(4 b c)(5 d 6) and (1 5)(2 6)(3 a)(8 d)(b c).
The automorphism partitioning is {1, 2, 5, 6, 8, d}, {3, 9, a}, {4, b, c}, {7}. Without loss
of generality, there are therefore four possibilities for the pinch point, namely 1, 3, 4
and 7. We in turn considered each of these by applying the 10,395 involutions without
fixed points as in the case of the cyclic STS(13) above. The results are summarized below.

Pinch point 1.
There are three permutations which give biembeddings. These are (2 5)(3 d)(4 c)
(6 b)(7 8)(9 a), (2 6)(3 c)(4 b)(5 9)(7 d)(8 a) and (2 c)(3 9)(4 a)(5 6)(7 b)(8 d). The three
biembeddings are non-isomorphic. The TTS(13)s obtained from the biembeddings
contain 78, 82 and 98 Pasch configurations respectively.

Pinch point 3.
There are two permutations which give biembeddings. These are (1 d)(2 8)(4 6)
(5 9)(7 c)(a b) and (1 c)(2 6)(4 7)(5 d)(8 a)(9 b) but the two biembeddings are isomorphic
under the permutation (1 6)(2 d)(4 c)(5 8)(9 a). The TTS(13) contains 106 Pasch
configurations.
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Pinch point 4.
There are four permutations which give biembeddings. These are (1 b)(2 c)(3 7)(5 6)
(8 d)(9 a), (1 b)(2 7)(3 c)(5 8)(6 a)(9 d), (1 d)(2 3)(5 c)(6 7)(8 9)(a b) and
(1 2)(3 9)(5 c)(6 b)(7 a)(8 d). The biembeddings given by permutations #1 and
#4, and those by permutations #2 and #3 are isomorphic under the permutation
(1 5)(2 6)(3 a)(8 d)(b c). The TTS(13) of the biembedding given by permutations #1
or #4 contains 116 Pasch configurations and that given by permutations #2 or #3
contains 80 Pasch configurations.

Pinch point 7.
There are no biembeddings.

The six biembeddings only have the identity and the involution given as
automorphisms.

3. General construction. Our main construction is a modification of the product
construction described as Construction 4 of [2]. To facilitate a comparison of the steps
carried out here with the original proof, we will keep to the notation of [2] as much as
possible.

THEOREM 3.1. Suppose that n ≡ 1 (mod 12) and that m ≡ 1 or 3 (mod 6). Then if
there exists a biembedding of a pair of Steiner triple systems of order n in an orientable
pseudosurface having precisely one regular pinch point of multiplicity 2, then there exists
a biembedding of a pair of Steiner triple systems of order m(n − 1) + 1 in an orientable
pseudosurface having precisely one regular pinch point of multiplicity 2.

Proof. We first give a rough outline of the proof. We will begin with taking m copies
of a pair of biembedded Steiner triple systems of order n in an orientable surface
with one regular pinch point of multiplicity 2, removing the m pinch points together
with interiors of incident edges and faces, and ‘bridging’ the m components in an
intricate way to obtain a connected surface with 2m cyclic boundary components.
We will continue by capping the 2m ‘holes’ created in the previous step by a cap
consisting of a bordered pseudosurface with one pinch point and 2m cyclic boundary
components. The task will be completed by constructing a pair of biembedded STS
of order m(n − 1) + 1 out of the partial embedding on the pseudosurface obtained by
capping.

Instead of speaking about biembedded STS of order n, we will use the equivalent
language of face-2-colourable orientable triangular embeddings of Kn, called simply
2to-embeddings in [2]. Initially we will assume that m and (n − 1)/2 are relatively prime,
and we will deal with the general case at the end of the proof.

Let η be a 2to-embedding of Kn in an (say, clockwise) oriented pseudosurface with
a single regular pinch point of multiplicity 2, with faces properly coloured black and
white. Let z be the unique vertex of Kn identified with the pinch point. We remove from
η the vertex z, together with all open arcs and open triangular faces originally incident
with z, obtaining a face 2-coloured triangular embedding φ of G = Kn \ {z} ∼= Kn−1

in a bordered surface S. Observe that S has no pinch points and the two connected
boundary components of S are two disjoint cycles D1 and D2 in G, each of length
(n − 1)/2. Following our outline, for every i ∈ Zm, let φi : Gi → Si be m mutually
disjoint copies of the embedding φ together with the proper 2-colouring of triangular
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faces inherited from η. In doing so we assume that the natural mapping f i : G → Gi that
endows each vertex of G with the superscript i is a colour-preserving and orientation-
preserving isomorphism of the embeddings φ and φi.

We continue with describing the ‘bridging’ procedure. To do so we need to return
to the embedding φ whose description uses no superscripts. Let T be the set of the total
of t = (n − 1)(n − 3)/6 white triangular faces in φ and for each i ∈ Zm let T i = f i(T ) be
the corresponding set of all white triangular faces in φi. Choose a particular triangular
face T of φ with vertex set {a, b, c} and assume that the cyclic permutation (abc)
corresponds to the clockwise orientation of the boundary cycle C of T . For each such
T take a 2to-embedding ψT of the complete tripartite graph Km,m,m in a closed surface
ST disjoint from each Si; let {ai

T }, {bi
T } and {ci

T } (i ∈ Zm) be the three vertex-parts of
this Km,m,m. Such embeddings are well known, [6, 7]. By Construction 1 of [2], we may
select ψT to have a parallel class of black triangular faces {ai

T , bi
T , ci

T } and we may
choose the orientation of ψT to ensure that it induces the cyclic permutations (ai

T ci
T bi

T )
of the boundary cycles Ci

T of these faces. Note that we have chosen different cyclic
permutations (abc) on S and (ai

T ci
T bi

T ) on ST .
Next, for every i ∈ Zm we perform the following steps: remove from φi the open

triangular face Ti = f i(T), creating in each Si a new hole with boundary curve Ci =
f i(C) corresponding to the 3-cycle (aibici) in φi, remove from ψT the open triangular
faces {ai

T , bi
T , ci

T }, and identify the closed curve Ci in φi with the curve Ci
T in ψT

in such a way that ai ≡ ai
T , bi ≡ bi

T and ci ≡ ci
T . Assuming that the embeddings ψT

are mutually disjoint, we apply this procedure successively to each white triangular
face T ∈ T . Let Ŝ denote the connected triangulated surface Ŝ with 2m boundary
components, obtained this way from the surfaces Si. Roughly speaking, Ŝ is obtained
from the surfaces Si by adding |T | ‘bridges’, explaining the term ‘bridging’ used in the
earlier informal outline of our construction.

The 2m boundary components of Ŝ correspond, for i ∈ Zm, to the cycles Di
1 =

f i(D1) and Di
2 = f i(D2) in the graphs Gi, the images of the cycles D1 and D2 in G.

The chosen orientations of φi and ψT induce an orientation of Ŝ by inheriting the
clockwise orientation from φi and ψT , and Ŝ also inherits the proper 2-colouring of
triangular faces from these embeddings. Note that there are t = (n − 1)(n − 3)/6 black
triangles in S (and hence in each Si), and for each of the t white triangles T in S we
added, in ψT , another (2m2 − m) triangles. The total number of triangular faces on
Ŝ is therefore equal to mt + (2m2 − m)t = m2(n − 1)(n − 3)/3. For each collection of
(2m2 − m) triangles added, m2 are white and (m2 − m) are black; hence, it is easy to
check that exactly half of the triangles on Ŝ are black, as expected.

To proceed, we need an exact description of the graph H triangulating the
bordered surface Ŝ. Let D1 = (u1u2 . . . u(n−1)/2) and D2 = (v1v2 . . . v(n−1)/2) be the two
cycles in G = Kn \ {z} introduced earlier. Since (n − 1)/2 is even, every other edge
of both D1 and D2 is incident to a white triangle on Ŝ; let these edges be u2u3,
u4u5,. . . , u(n−1)/2u1 and v2v3, v4v5,. . . , v(n−1)/2v1. It may now be checked that the
graph H is obtained as follows. For 1 ≤ j 
= j′ ≤ (n − 1)/2, each vertex uj and vj

of G gives rise to m vertices ui
j and vi

j , (0 ≤ i ≤ m − 1), of H, and each edge ujuj′

and vjvj′ of G incident to a white triangle gives rise to m2 edges ui
ju

i′
j′ and vi

jv
i′
j′ ,

(i, i′ ∈ Zm), of H. Since each edge of G except for the (n − 1)/2 edges u1u2, u3u4,. . . ,
u(n−3)/2u(n−1)/2 and v1v2, v3v4,. . . , v(n−3)/2v(n−1)/2 is incident to exactly one white triangle,
H has m2(|E(G)| − (n − 1)/2) + m(n − 1)/2 = m(n − 1)(m(n − 3) + 1)/2 edges. To have
further insight into its structure, observe that for each edge ujuj′ and vjvj′ of G ∼= Kn−1
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..................

1

11

u1 u2

u3

u4u(n−3)/2

u(n−1)/2

Figure 3. The plane embedding μ1 of the graph M1.

(except when {uj, uj′ } = {ul, ul+1} and {vj, vj′ } = {vl, vl+1} , l = 1, 3, 5, . . . , (n − 3)/2),
H contains all edges of the form ui

ju
i′
j′ and vi

jv
i′
j′ , i, i′ ∈ Zm. But if {uj, uj′ } = {ul, ul+1}

or {vj, vj′ } = {vl, vl+1} for some l = 1, 3, . . . , (n − 3)/2 then H contains no edge ui
ju

i′
j′

and vi
jv

i′
j′ with i 
= i′, although it does contain the edges ui

ju
i
j′ and vi

jv
i
j′ . Note also

that H contains no edges of the form ui
ju

i′
j and vi

jv
i′
j for any i, i′ ∈ Zm. It follows

that H is isomorphic to Km(n−1) minus (n − 1)/2 pairwise disjoint copies of (K2m

minus a 1-factor), one on each of the sets {u0
l , u1

l , . . . , um−1
l , u0

l+1u1
l+1, . . . , um−1

l+1 } and
{v0

l , v
1
l , . . . , v

m−1
l , v0

l+1v
1
l+1, . . . , v

m−1
l+1 } with the missing 1-factor {ui

lu
i
l+1; i ∈ Zm} and

{vi
lv

i
l+1; i ∈ Zm}, respectively, for l = 1, 3, 5, . . ., (n − 3)/2.
Let ω : H → Ŝ be the resulting embedding of H in our surface Ŝ with 2m boundary

components consisting of the images of the cycles D1 and D2 under the isomorphisms
f i, i ∈ Zm. To construct the final 2to-embedding of Km(n−1)+1 we build two auxiliary
triangulated bordered surfaces S∗

1 and S∗
2 containing m boundary components each,

and paste them to Ŝ so that the 2m holes of Ŝ will be capped. We will focus on S∗
1 in

detail and then explain how S∗
2 is obtained. The surface S∗

1 will be described as a lift of
the plane embedding μ1 of the multigraph M1 as depicted in Figure 3, with voltages
α on directed edges of M1 in the group Zm identical with the group from which all
our superscripts are taken. Edges with no direction assigned are assumed to carry zero
voltage.

The lifted graph Mα
1 has the vertex set {ui

j : 1 ≤ j ≤ (n − 1)/2, i ∈ Zm}. (We are
deliberately using the same letters for vertices of Mα as for vertices of the graphs Gi,
but assume that these graphs are disjoint; such notation will be of advantage later.) The
lifted embedding μα

1 : Mα
1 → R1 is orientable and has the following face boundaries.

(a) (n − 1)/4 faces whose boundaries correspond to cycles of length 2m of the
form (u0

2j−1u0
2ju

m−1
2j−1um−1

2j . . . u1
2j) for 1 ≤ j ≤ (n − 1)/4.

(b) m faces whose boundaries correspond to cycles of length (n − 1)/2 of the form
(ui

(n−1)/2ui
(n−3)/2 . . . ui

1) for i ∈ Zm.
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(c) One face whose boundary corresponds to a cycle of length m(n − 1)/2 of
the form (u0

1u1
2u1

3u2
4u2

5u3
6 . . . u0

(n−1)/2). (Note: This is the only place in this proof
where we have used the assumption that m and (n − 1)/2 are relatively prime;
if this were not the case then a multiplicity of faces with shorter boundary
cycles would be obtained.)

We now describe a series of modifications of the embedding μ1. Firstly, we remove
all the open faces of type (a) from the surface R1, leaving an orientable surface Ro

1

with (n − 1)/4 vertex-disjoint boundaries (u0
2j−1u0

2j um−1
2j−1um−1

2j . . . u1
2j), 1 ≤ j ≤ (n − 1)/4.

We cap each of these in turn by taking, for each j, a 2to-embedding of K2m+1 with
colour classes black and white on the vertex set {∞j, u0

2j, u0
2j−1, u1

2j, u1
2j−1,. . . , um−1

2j−1}, in

which the rotation at ∞j is the cycle (u0
2ju

0
2j−1u1

2ju
1
2j−1 . . . um−1

2j−1) and in which the face
corresponding to the 3-cycle (∞ju0

2ju
0
2j−1) is coloured black. Here also for convenience

we are using the same letters for the vertices of our K2m+1 embeddings as for the vertices
of Mα

1 , but we assume that the corresponding surfaces are disjoint. Secondly, from each
embedding of K2m+1 we remove the vertex ∞j, all open edges incident with ∞j, and all
open triangular faces incident with ∞j. This results in a face 2-colourable embedding
of K2m in an orientable surface R1j with a boundary cycle (u0

2ju
0
2j−1u1

2ju
1
2j−1 . . . um−1

2j−1).
Thirdly, for every j such that 1 ≤ j ≤ (n − 1)/4 we glue the surface R1j to the surface
Ro

1, identifying points carrying the same labels on each of the two surfaces, thereby
obtaining an embedding μ′

1 : M′
1 → R′

1 of a graph M′
1 with m2(n − 1)/2 edges.

We continue by removing from R′
1 all the open faces of type (b), obtaining

thus an orientable surface S∗
1 with m vertex-disjoint boundaries of the form

(ui
(n−1)/2ui

(n−3)/2 . . . ui
1), i ∈ Zm.

Let M∗
1 be the graph obtained from M′

1 by adding a new vertex ∞(1) and joining
it to each vertex of M′

1 while keeping all other edges in M′
1 unchanged. We construct

an embedding μ∗
1 : M∗

1 → S∗
1 from the embedding of M′

1 in S∗
1 by inserting the vertex

∞(1) in the centre of the face F1 bounded by the cycle of length m(n − 1)/2 and joining
this vertex by open arcs within F1 to every vertex on the boundary of F1 (that is, to
every vertex of Mα

1 ). This gives rise to m(n − 1)/2 new triangular faces on S∗
1 bounded,

for 1 ≤ j ≤ (n − 1)/4, by cycles of the forms (∞(1)uk
j uk+1

j+1 ) for j odd, and (∞(1)uk
j uk

j+1)
for j even. The new triangular faces will be coloured as follows.

The edge u0
1u1

2 lies in a black triangular face of μ′
1 because (∞1u0

1u1
2) was a white

triangular face of the K2m+1 embedding employed in the construction of μ′
1. We

therefore colour white the face of μ∗
1 bounded by the 3-cycle (∞(1)u0

1u1
2). It is easy to see

that, by an extension of this argument, we must colour white those alternate triangles
with boundary cycles (∞(1)uk

j uk+1
j+1 ) for j odd. The remaining alternate triangles, those

with boundary cycles of the form (∞(1)uk
j uk

j+1) for j even, do not share an edge with
any existing triangular face of μ′

1 and these are coloured black.
By this process, the triangular faces of μ∗

1 are properly 2-coloured, and the number
of such faces is

(n − 1)
4

2m(2m − 2)
3

+ m(n − 1)
2

= m(2m + 1)(n − 1)
6

, (1)

where the terms (n − 1)/4, 2m(2m − 2)/3 and m(n − 1)/2 on the left represent the
number of faces of type (a) in R1, the number of triangles in the added K2m and the
number of triangles added by inserting the vertex ∞(1) respectively. Note that exactly
half of these faces are coloured black.

https://doi.org/10.1017/S0017089513000220 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000220


BIEMBEDDINGS OF STEINER TRIPLE SYSTEMS 259

The next step is to construct an embedding μ∗
2 of a graph M∗

2 on a surface S∗
2 with

an extra vertex ∞(2), which is done in exactly the same way as described above for μ∗
1

by replacing all occurrences of u with v and keeping all subscripts and superscripts
unchanged. The description would thus start from an embedding μ2 of a graph M2

with vertices v1, v2, . . . , v(n−1)/2 corresponding to Figure 3 and continue through the
intermediate graphs, surfaces and embeddings Mα

2 , R2, μα
2 , Ro

2, M′
2, R′

2, μ′
2 to M∗

2 ,
S∗

2 and μ∗
2 as indicated. The embedding μ∗

2 will, of course, have the same number of
triangles as given by (1), half of which will be black.

We are ready for the final steps. Our method of constructing the orientable
surface Ŝ from the earlier part of the proof guarantees that a chosen orientation
of Ŝ induces consistent orientations of the boundary cycles of the 2m holes of Ŝ.
We may assume that the orientation induces the cyclic ordering of the cycles Di

1
and Di

2 in the form that was used before, namely Di
1 = f i(D1) = (ui

1ui
2 . . . ui

(n−1)/2)
and Di

2 = f i(D2) = (vi
1v

i
2 . . . vi

(n−1)/2), i ∈ Zm. The bordered surfaces S∗
1 and S∗

2 have
m holes each. Our construction again implies that an orientation of S∗

1 and S∗
2 can be

chosen so that the boundary cycles are oriented in the form D∗i
1 = (ui

(n−1)/2 . . . ui
2ui

1) and
D∗i

2 = (vi
(n−1)/2 . . . vi

2v
i
1), i ∈ Zm. It remains to do the obvious, namely for each i to paste

together the boundary cycles Di
1 and D∗i

1 in such a way that the corresponding vertices
ui

j get identified, and glue the boundary cycles Di
2 and D∗i

2 so that the corresponding
vertices vi

j will be identified. At last, we identify the vertex ∞(1) with ∞(2), creating one
regular pinch point of multiplicity 2. The final result is an orientable pseudosurface
S̄ with a single pinch point, regular of multiplicity 2, and a triangular embedding
σ : K → S̄ of some graph K . We claim that K ∼= Km(n−1)+1 and that the triangulation
is face 2-colourable.

Obviously, |V (K)| = m(n − 1) + 1. A straightforward edge count shows that

|E(K)| = |E(H)| + |E(M∗
1 )| + |E(M∗

2 )| − m|E(D1)| − m|E(D2)|
= m(n − 1)(m(n − 3) + 1)

2
+ (n − 1)(m2 + m) − m(n − 1)

= m(n − 1)(m(n − 1) + 1)
2

= |E(Km(n−1)+1)|.

It is easy to check that, except for edges incident with the vertex obtained by
identification of ∞(1) with ∞(2) and edges contained in the 2m cycles D∗i

1 and D∗i
2

of length (n − 1)/2, the graph M∗
1 ∪ M∗

2 contains exactly those edges which are missing
in H. This shows that there are no repeated edges or loops in K , and thus K ∼= Km(n−1)+1.
As regards the face 2-colouring, we just have to see what happens along the identified
cycles Di

1 and D∗i
1 , and Di

2 and D∗i
2 , since the triangulations of Ŝ, S∗

1 and S∗
2 have

been face 2-coloured. But according to the construction, if l = 1, 3, 5, . . . , (n − 3)/2,
a triangular face on Ŝ that contains the edge ui

lu
i
l+1 is black, while the face on S∗

1
containing this edge is white because the embeddings of K2m+1 employed had the faces
with boundary cycles (∞jui

2ju
i
2j−1) coloured black. This also applies to the way the

embeddings Ŝ and S∗
2 meet.

To finish the proof it remains to deal with the case when m and (n − 1)/2 are not
relatively prime. To do so, we return to Figure 3 and generalise the construction.
Namely, it turns out that the voltages shown in Figure 3 as 1 may be replaced
respectively by voltages x1, x2, . . . , x(n−1)/4 ∈ Zm, provided that
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(d) each xi is relatively prime to m, and
(e)

∑(n−1)/4
i=1 xi is relatively prime to m.

Condition (d) ensures that the embedding μα
1 will have (n − 1)/4 faces with

boundary cycles of length 2m on each of the sets of points of the form
{u0

2j−1, u0
2j, u1

2j−1, u1
2j, . . . , um−1

2j−1, um−1
2j }, while condition (e) ensures that μα

1 has a single
face with boundary cycle of length m(n − 1)/2. In effect, condition (e) replaces the
condition that m and (n − 1)/2 should be relatively prime. Of course, a similar
conclusion applies to the embedding μα

2 . It is easy to see that there are numerous ways
to select the voltages so that xj ∈ {+1,−1}, 1 ≤ j ≤ (n − 1)/4, with

∑(n−1)/4
i=1 xi ∈ {1, 2},

which is relatively prime to m since m is odd. The subsequent steps in the proof then
proceed as before with the obvious changes. We leave the verification of the details to
the reader. �

COROLLARY 3.1.1. For all n ≡ 13 or 37 (mod 72), there exists a biembedding of a
pair of Steiner triple systems of order n in an orientable pseudosurface having precisely
one regular pinch point of multiplicity 2.

Proof. Put n = 13 in the above theorem and use one of the biembeddings given in
Section 2. �
REMARK. The existence of such a biembedding of a pair of STS(25)s would extend the
existence spectrum to include all n ≡ 25 or 73 (mod 144), i.e. in arithmetic set density
terms from 1/3 to 1/2 in the set of all n ≡ 1 (mod 12). We have tried to construct such
a biembedding but have been unsuccessful.
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