PSEUDOCOMPLEMENTED AND IMPLICATIVE SEMILATTICES

C. S. HOO

1. Introduction. Let L be a semilattice and let $a \in L$. We refer the reader to Definitions 2.2, 2.4, 2.5 and 2.12 below for the terminology. If L is a-implicative, let C_a be the set of a-closed elements of L, and let D_a be the filter of a-dense elements of L. Then C_a is a Boolean algebra. If a = 0, then C_0 and D_0 are the usual closed algebra and dense filter of L. If L is a-admissible and $f: C_a \times D_a \to D_a$ is the corresponding admissible map, we can form a quotient semilattice $C_a \times D_a/f$. In case a = 0, Murty and Rao [4] have shown that $C_0 \times D_0/f$ is isomorphic to L, and hence that $C_0 \times D_0/f$ is 0-admissible. In case L is in fact implicative, Nemitz [5] has shown that $C_0 \times D_0/f$ is isomorphic to L, and that $C_0 \times D_0/f$ is also implicative. We shall show a more general result as follows. Let $C_a D_a$ denote the set of all products cd, where $c \in C_a$ and $d \in D_a$. Then $C_a D_a$ is a subsemilattice of L containing the filter [a]. If a = 0, then $C_0 D_0$ will be L. We shall show that, in general, $C_a \times D_a/f$ is isomorphic to C_aD_a . It will also be shown that C_aD_a is b-admissible for all $b \in C_a$. As a corollary, it will follow that if L is 0-admissible, it will also be a-admissible for all $a \in C_0$. The major consequence is that a bounded semilattice L is implicative if and only if L is 0-admissible and D_0 is implicative.

2. Preliminaries. Let *L* be a meet semilattice. We shall denote the greatest lower bound of two elements *a*, *b* of *L* by *ab*, and the least upper bound, if it exists, by a + b. A non-empty subset *F* of *L* is a filter provided that $xy \in F$ if and only if $x \in F$ and $y \in F$. Given an element *a* of *L*, let $[a] = \{x \in L | x \ge a\}$. Then [a] is a filter, called the *principal filter* generated by *a*.

A semi-ideal of L is a non-empty subset I of L such that $b \in I$ and $a \leq b$ imply that $a \in I$. We call I an ideal if further whenever a + b exists, where $a, b \in I$, then $a + b \in I$. Given an element a of L, let $(a] = \{x \in L | x \leq a\}$. Then (a) is the principal ideal generated by a.

A semilattice L is *distributive* if $z \ge xy$ (where $x, y, z \in L$) implies the existence in L of elements x_1, y_1 such that $x_1 \ge x, y_1 \ge y$ and $z = x_1y_1$. A semilattice L is *modular* if whenever $y \ge z \ge xy$, where x, y, $z \in L$,

Received November 28, 1980 and in revised form June 9, 1981. This research was supported by NSERC (Canada) Grant A3026.

then there exists an element $x_1 \in L$ such that $x_1 \ge x$ and $z = x_1y$. Clearly a distributive semilattice is modular.

Definition 2.1. Let x, a be elements of a semilattice L. The annihilator $\langle x, a \rangle = \{y \in L | xy \leq a\}$. It is easily checked that $\langle x, a \rangle$ is always a semiideal of L.

Definition 2.2. Let L be a semilattice and let $a \in L$. Then L is *a*-implicative if $\langle x, a \rangle$ is a principal ideal. We shall denote this principal ideal by (x * a]. A semilattice L is implicative if and only if it is *a*-implicative for all $a \in L$. We observe that x * a is a relative pseudocomplement.

If L has a least element 0, then L is 0-implicative means that L is pseudocomplemented, and it is customary to denote x * 0 by x^* . We observe that an *a*-implicative semilattice always has a greatest element 1 since $x \in \langle a, a \rangle$ for all elements x, and hence a * a = 1.

If the semilattice L is *a*-implicative, then the following results hold (see [6]):

(1) $x * a \ge a$ (2) $x \le a, x * a = 1$ and $x * a \ge x$ are equivalent (3) 1 * a = a(4) x * a = x if and only if x = a = 1(5) $(x * a) * a \ge x, a$ (6) if $x \le y$, then $x * a \ge y * a$ and $(x * a) * a \le (y * a) * a$ (7) ((x * a) * a) * a = x * a(8) (x * a)((x * a) * a) = a(9) x(x * a) = xa.

If L is implicative, then the following also hold (see [5]):

(10) if $x \le y$, then $z * x \le z * y$ (11) x * (y * z) = (xy) * z(12) x * (yz) = (x * y)(x * z)(13) x * (y * z) = (x * y) * (x * z)(14) $x \le y$ if and only if x * y = 1.

In [6], Varlet proved the following result.

THEOREM 2.3. If x and y are elements of an a-implicative semilattice, then

((xy) * a) * a = ((x * a) * a)((y * a) * a).

From this, it is also quite easy to verify that

(xy) * a = (((x * a) * a)((y * a) * a)) * a.

Definition 2.4. An element x of an a-implicative semilattice L is called a-closed if (x * a) * a = x. The set of a-closed elements of L will be denoted by C_a . If a = 0, 0-closed means closed. From Theorem 2.3 we see that C_a is a subsemilattice of L.

Definition 2.5. Let a be an element of a semilattice L. An element $x \in L$ is a-dense if $\langle x, a \rangle \subset (a]$, that is, if $\langle x, a \rangle = (a]$.

If a = 0, 0-dense means dense. The set of all *a*-dense elements will be denoted by D_a . Then D_a is either empty or is a filter. If *L* is *a*-implicative, then $x \in D_a$ if and only if x * a = a, or equivalently, (x * a) * a = 1.

We observe that $a \in C_a$ since (a * a) * a = 1 * a = a. Also (1 * a) * a = a * a = 1, so that $1 \in C_a$. Obviously, $x \in C_a$ if and only if there exists an element $y \in L$ such that x = y * a. For each $x \in C_a$, we have $a \leq (x * a) * a = x$. Thus a is the smallest element of C_a , and 1 is the largest. We can define an operation \oplus in C_a by

 $x \oplus y = ((x * a)(y * a)) * a$, for $x, y \in C_a$.

If $x \in C_a$, we define $x' = x * a \in C_a$. Then

 $x \oplus a = ((x * a)(a * a)) * a = (x * a) * a = x.$

THEOREM 2.6. Let L be an a-implicative semilattice. Then C_a is a Boolean algebra with join \oplus and complementation ' as above.

Proof. We verify that $x \oplus y$ is the least upper bound of x and y in C_a . We have that $x * a \ge (x * a)(y * a)$. Hence

 $x = (x * a) * a \leq [(x * a)(y * a)] * a = x \oplus y.$

Similarly, $y \leq x \oplus y$. Now suppose that $x \leq z$ and $y \leq z$, where $z \in C_a$. Then

 $x * a \ge z * a$ and $y * a \ge z * a$.

Hence $(x * a)(y * a) \ge z * a$. Thus

$$x \oplus y = [(x * a)(y * a)] * a \leq (z * a) * a = z.$$

This proves that $x \oplus y$ is the least upper bound of x and y in C_a . Next, we observe that x' = x * a is the complement of x in C_a . For, we have $x'x = (x * a)x \leq a$. Since a is the smallest element of C_a , this means that x'x = a. Also

$$x' \oplus x = [(x' * a)(x * a)] * a.$$

But x' * a = (x * a) * a = x. Hence

$$x' \oplus x = [x(x * a)] * a = (xa) * a = 1.$$

Thus, C_a is a complemented lattice. Finally, we show that C_a is a complemented distributive lattice, that is, a Boolean algebra. According to [2] (Lemma 4.10, page 30), we need only verify the inequality

 $(x \oplus y)z \leq x \oplus (yz)$ for $x, y, z \in C_a$.

We have that $xz \leq x \oplus (yz)$ and $yz \leq x \oplus (yz)$. Hence

$$xz[(x \oplus (yz)) * a] = (xz)[x \oplus (yz)]' = a$$

and

$$yz[(x \oplus (yz)) * a] = (yz)[x \oplus (yz)]' = a$$

since a is the least element in C_a . Thus

 $z[(x \oplus (yz)) * a] \leq x * a$ and $z[(x \oplus (yz)) * a] \leq y * a$. This means that $z[(x \oplus (yz)) * a] \leq (x * a)(y * a)$ and hence

$$z[(x \oplus (yz)) * a][\{(x * a) (y * a)\} * a] = a.$$

Thus

 $z(x \oplus y) \leq [(x \oplus (yz)) * a] * a.$

But $x \oplus (yz) \in C_a$ and hence

 $[(x \oplus (yz)) * a] * a = x \oplus (yz).$

Thus $z(x \oplus y) \leq x \oplus (yz)$, and hence C_a is a Boolean algebra.

THEOREM 2.7. If L is an implicative semilattice, then for each $x \in L$ and each $a \in L$, we have

 $x = [(x * a) * a] \{ [(x * a) * a] * x \}.$

If $x \ge a$, then $[(x * a) * a] * x \in D_a$ and is the greatest element $d \in D_a$ satisfying

x = [(x * a) * a]d.

Proof. Let b = (x * a) * a, y = b * x. We wish to show that x = by. We have $x \leq b$ and $x \leq y$. Hence $x \leq by$. But $\langle b, x \rangle = (b * x] = (y]$, and hence $by \leq x$. Thus x = by. Suppose that $x \geq a$. We wish to show that $y \in D_a$. Since $\langle y, a \rangle = (y * a]$, we need only show that $y * a \leq a$. Since $y \geq x$, we have $y * a \leq x * a$. On the other hand, since $x \geq a$, we have that

 $(x * a)[(x * a) * a] = a \leq x.$

Thus $(x * a)b \leq x$, that is,

 $x \ast a \in \langle b, x \rangle = (b \ast x] = (y].$

This means that $x * a \leq y$. Hence $y * a \leq (x * a) * a$ and hence

 $y * a \leq (x * a)[(x * a) * a] = a.$

Finally, suppose that $d \in D_a$ and x = [(x * a) * a]d. Then we have

x = bd = by. This means that

$$d \in \langle b, by \rangle = (b * (by)] = (b * x].$$

Thus $d \leq b * x = [(x * a) * a] * x$.

Note. $d = 1 \Leftrightarrow [(x * a) * a] * x = 1 \Leftrightarrow (x * a) * a = x \Leftrightarrow x \in C_a$. The referee has pointed out to us that in this proof b and y may be interchanged.

We also have the following result.

THEOREM 2.8. Suppose that L is an a-implicative semilattice which is also modular. Then for each $x \ge a$, there exists an element $d \in D_a$ such that

x = [(x * a) * a]d.

Proof. We first observe that

$$(x * a)[(x * a) * a] = a \leq x \leq (x * a) * a.$$

Since L is modular, there exists $d \ge x * a$ such that

x = [(x * a) * a]d.

It remains only to show that $d \in D_a$. We have $x \leq d$ and $x * a \leq d$. Hence $x * a \geq d * a$ also, and $(x * a) * a \geq d * a$. Thus

 $(x * a)[(x * a) * a] = a \ge d * a \ge a,$

that is, d * a = a. Thus $d \in D_a$.

The following are easy corollaries.

LEMMA 2.9. Suppose that L is implicative (or a-implicative and modular). Let x, $y \ge a$. Then (x * a) * a = (y * a) * a if and only if there exists $d \in D_a$ such that xd = yd.

LEMMA 2.10. Let L be an implicative semilattice and let $x \ge a$. Then $x \in D_a$ if and only if x = [(y * a) * a] * y for some $y \ge a$.

THEOREM 2.11. Let L be an implicative semilattice. Then the following holds in L:

$$\{(x * y) * a\} * a = \{(x * a) * a\} * \{(y * a) * a\} \quad if y \ge a.$$

Proof. For simplicity, let us generally write z^* for z * a and z^{**} for (z * a) * a, and so on. Since $y \ge a$, by Theorem 2.7, we can find $d \in D_a$ such that $y = y^{**}d$. Since $d \in D_a$ and $d \le x * d$, it follows that $x * d \in D_a$ also because D_a is a filter. Hence

$$(x*y)^{**} = \{x*(y^{**}d)\}^{**} = \{(x*y^{**})(x*d)\}^{**} = (x*y^{**})^{**}(x*d)^{**}$$

by Theorem 2.3. But since $x * d \in D_a$, we have that $(x * d)^{**} = 1$. Hence

 $(x * y)^{**} = (x * y^{**})^{**} = x * y^{**}$

since it can be easily verified that $(xy)^* = x * y^*$ in general. Hence

 $(x * y)^{**} = (xy^*)^{***} = (x^{**}y^{***})^*$

by Theorem 2.3 again. Thus $(x * y)^{**} = (x^{**}y^*)^* = x^{**} * y^{**}$, proving our result.

Definition 2.12. $L = (L, \cdot, *, a, 1)$ is an *a*-admissible semilattice if

(i) L is an a-implicative semilattice.

(ii) For each $x \in L$ such that $x \ge a$, there exists $d \in D_a$ such that x = [(x * a) * a]d.

(iii) There exists a function $f: C_a \times D_a \to D_a$ such that for each $x \in L$, we have $x \leq f(c, d)$ if and only if $xc \leq d$, that is, if and only if $x \in \langle c, d \rangle$. This means that c * d exists and is in D_a for $c \in C_a$ and $d \in D_a$.

We observe that if L has a least element 0, then 0-admissible means admissible in the sense of [3]. If L is implicative, then for each $a \in L, L$ is *a*-admissible, for we can define f by f(c, d) = c * d. We observe also that in this case, D_a is also implicative.

Definition 2.13. Let A be a Boolean algebra and let D be a meet semilattice with 1. A map $f: A \times D \rightarrow D$ is admissible if

(1) f(ab, d) = f(a, f(b, d)).

(2) For each $a \in A$, $f_a : D \to D$ given by $f_a(d) = f(a, d)$, is an endomorphism.

(3) $a \leq b$ implies that $f(b, d) \leq f(a, d)$.

(4) f(1, d) = d.

LEMMA 2.14. If L is an a-admissible semilattice, then the corresponding $mapf: C_a \times D_a \rightarrow D_a$ satisfies $d \leq f(c, d), cf(c, d) = cd$.

Proof. Since $cd \leq d$, we have $d \leq f(c, d)$. Also $f(c, d) \leq f(c, d)$ and hence $cf(c, d) \leq d$. This means that $cf(c, d) \leq cd$. Thus $cd \leq cf(c, d) \leq cd$, that is, cf(c, d) = cd.

THEOREM 2.15. If L is an a-admissible semilattice, then the corresponding map $f: C_a \times D_a \rightarrow D_a$ is admissible.

Proof. We have seen that C_a is a Boolean algebra and that D_a is a filter, that is, a meet semilattice with 1.

(i) To show that f(bc, d) = f(b, f(c, d)). Since $f(bc, d) \leq f(bc, d)$, we have $bcf(bc, d) \leq d$. Hence $bf(bc, d) \leq f(c, d)$ and hence

 $f(bc, d) \leq f(b, f(c, d)).$

On the other hand,

$$bcf(b, f(c, d)) = cbf(b, f(c, d)) = cbf(c, d) = bcf(c, d) = bcd \leq d.$$

Thus $f(b, f(c, d)) \leq f(bc, d)$.

(ii) Let $b \in C_a$. To show that $f_b: C_a \to C_a$ is an endomorphism, that is, $f_b(de) = f_b(d)f_b(e)$ for $d, e \in D_a$. We have

 $bf(b, de) = bde \leq d.$

Hence $f(b, de) \leq f(b, d)$. Similarly, $f(b, de) \leq f(b, e)$. Hence

 $f(b, de) \leq f(b, d)f(b, e).$

On the other hand,

 $bf(b, d)f(b, e) = bf(b, d)bf(b, e) = bdeb = bde \leq de.$

Hence $f(b, d)f(b, e) \leq f(b, de)$.

(iii) Suppose that $b \leq c$. To show that $f(c, d) \leq f(b, d)$. We have

 $bf(c, d) \leq cf(c, d) = cd \leq d.$

Hence $f(c, d) \leq f(b, d)$.

(iv) $f(1, d) = 1 \cdot f(1, d) = 1 \cdot d = d$.

Thus f is an admissible map.

3. Admissible semilattices. Let A be a Boolean algebra and let D be a meet semilattice with 1. Let $f : A \times D \to D$ be an admissible map. We can define an equivalence relation \sim on $A \times D$ by $(a, d) \sim (b, e)$ if and only if a = b and f(a, d) = f(a, e). Then we can form the quotient $A \times D/f$ consisting of all the equivalence classes [a, d].

We can define [a, d] [b, e] = [ab, de], and $[a, d] \leq [b, e]$ if and only if [a, d] [b, e] = [a, d]. Then $A \times D/f$ is a meet semilattice. As in [5], we have the following observations.

(i) Suppose that $b \leq a$ and f(a, d) = f(a, e), that is, [a, d] = [a, e]. Then f(b, d) = f(b, e), that is, [b, d] = [b, e].

(ii) $[a, d] \leq [b, e]$ if and only if $a \leq b$ and $f(a, d) \leq f(a, e)$.

If f(0, d) = 1 for all $d \in D$, then $A \times D/f$ has [0, 1] as its zero.

We can define a pseudocomplementation on $A \times D/f$ by $[a, d]^* = [a', 1]$. Then $A \times D/f$ is a pseudocomplemented semilattice. The 0-closed algebra of $A \times D/f$ is isomorphic to A via $[a, 1] \leftrightarrow a$. That is, the 0-closed elements consist of all [a, 1]. The 0-dense filter of $A \times D/f$ is isomorphic to D via $[1, d] \leftrightarrow d$. That is, the 0-dense elements are all the elements [1, d]. Then, each element [a, d] of $A \times D/f$ can be written as [a, d] = [a, 1] [1, d], with $[a, d]^{**} = [a, 1]$ being 0-closed, and [1, d] being 0-dense. In fact, $A \times D/f$ is 0-admissible. The corresponding admissible map f_1 is

given by

 $f_1([a, 1], [1, d]) = [1, f(a, d)].$

It can be verified that f_1 satisfies the requirements, making $A \times D/f$ a 0-admissible semilattice.

If L is a 0-admissible semilattice and $f: C_0 \times D_0 \to D_0$ is the corresponding admissible map, then $L \cong C_0 \times D_0/f$. The required isomorphism $g: C_0 \times D_0/f \to L$ may be defined by g[a, d] = ad. The above is a summary of the results obtained in [5] and [4]. In fact, we claim the following result.

THEOREM 3.1. Let A be a Boolean algebra, D be a meet semilattice with 1, and $f : A \times D \to D$ be an admissible map. Then $A \times D/f$ is a [b, 1]admissible semilattice for all elements $b \in A$, that is $A \times D/f$ is an xadmissible semilattice for all elements x in the 0-closed algebra of $A \times D/f$.

Proof. Let $b \in A$. We first show that $A \times D/f$ is [b, 1]-implicative. We define $[a, b] * [b, 1] = [a' \lor b, 1]$ for each $[a, d] \in A \times D/f$, where \lor denotes the join operation in the Boolean algebra A. This is obviously well-defined. We have to show that $[a_1, d_1] [a, d] \leq [b, 1]$ if and only if $[a_1, d_1] \leq [a' \lor b, 1]$, that is, $[aa_1, dd_1] \leq [b, 1]$ if and only if $[a_1, d_1] \leq [a' \lor b, 1]$. This reduces to the statement $aa_1 \leq b$ if and only if $a_1 \leq a' \lor b$, and this is trivially true since A is a Boolean algebra. Next, suppose that $[a, d] \geq [b, 1]$, that is, $b \leq a$ and f(b, d) = 1. We have

$$([a, d] * [b, 1]) * [b, 1] = [a' \lor b, 1] * [b, 1] = [(a' \lor b)' \lor b, 1] = [ab' \lor b, 1].$$

Now, $(ab' \lor b)' = (ab')'b' = (a' \lor b)b' = a'b'$. Hence $ab' \lor b = (a'b')' = a \lor b = a$ since $b \leq a$. Thus

([a, d] * [b, 1]) * [b, 1] = [a, 1].

Also [1, d] * [b, 1] = [b, 1], that is, [1, d] is [b, 1]-dense. Thus, for each $[a, d] \ge [b, 1]$, we have

 $[a, d] = [a, 1] [1, d] = \{([a, d] * [b, 1]) * [b, 1]\} [1, d].$

Finally, to obtain the corresponding admissible map

 $g: \{[b, 1]\text{-closed elements}\} \times \{[b, 1]\text{-dense elements}\}$

 $\rightarrow \{[b, 1] \text{-dense elements}\},\$

we observe the following facts. We have that

[a, d] is [b, 1]-dense $\Leftrightarrow [a, d] * [b, 1] = [b, 1]$ $\Leftrightarrow [a' \lor b, 1] = [b, 1]$ $\Leftrightarrow a' \leq b.$ Also

$$[a, d] \text{ is } [b, 1]\text{-closed}$$

$$\Leftrightarrow ([a, d] * [b, 1]) * [b, 1] = [a, d]$$

$$\Leftrightarrow [a, d] = [a, 1] \text{ with } b \leq a.$$

We define g by

$$g([a_1, 1], [a_2, d_2]) = [a_1' \lor a_2, f(a_1a_2, d_2)]$$

where $b \leq a_1$ and $a_{2'} \leq b$. We note that $[a_1' \lor a_2, f(a_1a_2, d_2)]$ is [b, 1]-dense since

 $(a_1' \lor a_2)' = a_1 a_2' \le b.$

This map g satisfies the requirements. In fact,

$$[a, d] \leq g([a_1, 1], [a_2, d_2])$$

$$\Leftrightarrow [a, d] \leq [a_1' \lor a_2, f(a_1a_2, d_2)]$$

$$\Leftrightarrow a \leq a_1' \lor a_2$$

and

$$f(a, d) \leq f(aa_1a_2, d_2)$$
$$\Leftrightarrow aa_1 \leq a_2$$

and

$$f(a, d) \leq f(aa_1a_2, d_2)$$
$$\Leftrightarrow aa_1 \leq a_2$$

and

$$f(aa_1, d) \leq f(aa_1, d_2)$$

$$\Leftrightarrow [aa_1, d] \leq [a_2, d_2]$$

$$\Leftrightarrow [a, d] [a_1, 1] \leq [a_2, d_2].$$

Thus $A \times D/f$ is [b, 1]-admissible for all $b \in A$.

Definition 3.2. If L is an a-implicative semilattice, then

 $C_a D_a = \{ cd | c \in C_a, d \in D_a \}.$

We observe that $C_a D_a$ is a subsemilattice of L containing the filter [a]. If a = 0, the $C_0 D_0 = L$.

Definition 3.3. Let L be a semilattice, then $\mathscr{A}(L)$ will denote the set of all elements $a \in L$ such that L is a-implicative.

LEMMA 3.4. $\mathscr{A}(L)$ is a subsemilattice of L.

Proof. Let $a, b \in \mathscr{A}(L)$. We define x * (ab) = (x * a)(x * b) for each $x \in L$. It is easily verified that this shows that $ab \in \mathscr{A}(L)$.

LEMMA 3.5. If $a \in \mathscr{A}(L)$, then $b * a \in \mathscr{A}(L)$ for all $b \in L$.

Proof. Define x * (b * a) = (xb) * a. It is easily checked that this satisfies the requirements.

LEMMA 3.6. If $a \in \mathscr{A}(L)$ and $d \in D_a$, then (bd) * a = b * a for all $b \in L$.

Proof. $bd \leq b$. Hence $b * a \leq (bd) * a$. But $bd((bd) * a) \leq a$. Hence

 $b((bd) * a) \leq d * a = a$

and hence $(bd) * a \leq b * a$.

THEOREM 3.7. Let L be an a-admissible semilattice and let $f: C_a \times D_a \rightarrow D_a$ be the corresponding admissible map. Then

 $C_a \times D_a/f \cong C_a D_a.$

Proof. Let $g: C_a \times D_a/f \to L$ be given by g([b, d]) = bd. This is well-defined. For if $[b, d] = [b_1, d_1]$, then $b = b_1$ and $f(b, d) = f(b, d_1)$. Hence

 $bd = bf(b, d) = bf(b, d_1) = bd_1 = b_1d_1.$

Now g is a homomorphism, for

 $g([b,d][b_1,d_1]) = g([bb_1,dd_1]) = bb_1dd_1 = bdb_1d_1 = g([b,d])g([b_1,d_1]).$

Also g is one to one. For if $bd = b_1d_1$, then

 $\{(bd) * a\} * a = \{(b_1d_1) * a\} * a,$

that is,

$$\{(b * a) * a\} \{(d * a) * a\} = \{(b_1 * a) * a\} \{(d_1 * a) * a\}.$$

Hence $b = b_1$ since $b, b_1 \in C_a$, and $d, d_1 \in D_a$. Hence

 $bf(b, d) = bd = b_1d_1 \leq d_1,$

and hence $f(b, d) \leq f(b, d_1)$. Similarly

 $bf(b, d_1) = bd_1 = b_1d_1 = bd \leq d$

and hence $f(b, d_1) \leq f(b, d)$. Thus $f(b, d) = f(b, d_1)$ and hence $[b, d] = [b_1, d_1]$. Clearly, the image of g is contained in $C_a D_a$. On the other hand, it is also obvious that the image of g contains $C_a D_a$. Thus

 $g: C_a \times D_a / f \cong C_a D_a.$

COROLLARY 3.8. Let L be a 0-admissible semilattice and let $f: C_0 \times D_0 \rightarrow D_0$ be the corresponding admissible map. Then

 $C_0 \times D_0/f \cong L.$

Proof.
$$C_0D_0 = L$$
.

The following is easily verified.

LEMMA 3.9. Let L, L_1 be semilattices and let $a \in L$, $a_1 \in L_1$. Suppose that L is a-implicative and L_1 is a_1 -implicative, and suppose that g: $L \to L_1$ is an isomorphism such that

$$g(a) = a_1$$
 and $g(x * a) = g(x) * a_1$

for all $x \in L$. If L is a-admissible, then L_1 is a_1 -admissible.

THEOREM 3.10. Suppose that L is an a-admissible semilattice for some $a \in L$. Then $C_a D_a$ is a b-admissible semilattice for all $b \in C_a$.

Proof. By Theorem 3.7, $g: C_a \times D_a/f \to C_a D_a$, given by g([b, d]) = bd, is an isomorphism, where $f: C_a \times D_a \to D_a$ is the corresponding admissible map. By Theorem 3.1, $C_a \times D_a/f$ is [b, 1]-admissible for all $b \in C_a$. Now g([b, 1]) = b for each $b \in C_a$. Also, if $b_1 \in C_a$, we have $(b_1 * a) * a = b_1$. Since $a \in \mathscr{A}(L)$, it follows by Lemma 3.5 that $(b_1 * a) * a \in \mathscr{A}(L)$, that is, $b_1 \in \mathscr{A}(L)$. We have, for $b, b_1 \in C_a, d \in D_a$ that

$$(bd) * b_1 = g([b, d]) * g([b_1, 1]).$$

Thus

$$g([b, d]) * g([b_1, 1]) = (bd) * b_1 = (bd) * \{(b_1 * a) * a\}$$

= {(bd)(b_1 * a)} * a = (b_1 * a) * {(bd) * a} = (b_1 * a)*(b * a)

since $d \in D_a$. Thus

$$g([b, d]) * g([b_1, 1]) = \{b(b_1 * a)\} * a.$$

On the other hand.

$$g([b, d] * [b_1, 1]) = g([b' \lor b_1, 1]) = b' \lor b_1.$$

But in C_a ,

$$b' \lor b_1 = \{ (b' * a) (b_1 * a) \} * a = \{ b(b_1 * a) \} * a$$

since b' = b * a in C_a . Thus g satisfies

$$g([b, d] * [b_1, 1]) = g([b, d]) * g([b_1, 1]) = g([b, d]) * b_1$$

for all $b, b_1 \in C_a, d \in D_a$. The proof is completed by applying Lemma 3.9.

COROLLARY 3.11. Suppose that L is 0-admissible. Then L is also badmissible for all 0-closed elements b.

We may, of course, iterate the situation described in Theorem 3.7. That is to say, suppose that L is as described in Theorem 3.7. Then

 $g: C_a \times D_a/f \to C_a D_a$

is an isomorphism given by g([b, d]) = bd. Then by Theorem 3.10, $C_a \times D_a/f$ is [b, 1]-admissible for each $b \in C_a$, and C_aD_a is b-admissible

for each $b \in C_a$. For each $b \in C_a$, let C[b, 1], D[b, 1] denote the [b, 1]-closed and [b, 1]-dense elements of $C_a \times D_a/f$ respectively. Let

 $h: C[b, 1] \times D[b, 1] \rightarrow D[b, 1]$

be the corresponding admissible map. Then by Theorem 3.7,

 $C[b, 1] \times D[b, 1]/h \cong C[b, 1]D[b, 1].$

We recall that C[b, 1] consists of all [c, 1], $c \in C_a$, and $b \leq c$ and D[b, 1] consists of all [c, d] with $c' \leq b$. Thus C[b, 1]D[b, 1] consists of all elements $[cc_1, d]$ of $C_a \times D_a/f$ with $c_1' \leq b \leq c$, that is, of all elements [c, d] $[c_1, 1]$ with $b' \leq c_1$ and $b \leq c$. Thus, C[b, 1]D[b, 1] consists of all the products [c, d] $[c_1, 1]$ with $[b', 1] \leq [c_1, 1]$ and $b \leq c$, that is, C[b, 1]D[b, 1]b, 1] is the filter of $C_a \times D_a/f$ generated by

$$[b', 1] [b, d] = [(b * a)b, d] = [a, d].$$

In case a = 0, then for each $b \in C_0$, $C[b, 1] \cong C_0$ via $[a, 1] \leftrightarrow a$, and D[b, 1] consists of all products $dx, d \in D_0, x \ge b' = b^*$, that is, the set of all products $D_0[b') = D_0[b^*)$. Thus

 $C[b, 1]D[b, 1] \cong C_0D[b^*) =$ principal filter of L generated by b^* .

Thus we have the following result.

THEOREM 3.12. Let L be an a-admissible semilattice and let $f: C_a \times D_a \rightarrow D_a$ be the corresponding admissible map. For each $b \in C_a$, let C[b, 1] be the set of all [b, 1]-closed elements of $C_a \times D_a/f$, and let D[b, 1] be the set of all [b, 1]-dense elements of $C_a \times D_a/f$. Then C[b, 1]D[b, 1] is the filter of $C_a \times D_a/f$ generated by [a, d] for all $d \in D_a$. In case a = 0, then

 $C[b, 1]D[b, 1] \cong [b^*)$ for each $b \in C_0$.

LEMMA 3.13. Let L be an a-admissible semilattice and let $f: C_a \times D_a \rightarrow D_a$ be the corresponding admissible map. If D_a is implicative, then f satisfies

 $f(b, d_1 * d_2) = f(b, d_1) * f(b, d_2)$

for all $b \in C_a$, $d_1, d_2 \in D_a$.

Proof.

$$f(b, d_1)f(b, d_1 * d_2) = f(b, d_1(d_1 * d_2)) = f(b, d_1d_2) \leq f(b, d_2).$$

Hence, $f(b, d_1 * d_2) \leq f(b, d_1) * f(b, d_2)$. On the other hand, since

$$b\{f(b, d_1) * f(b, d_2)\} \leq f(b, d_1) * f(b, d_2),$$

we have

$$bf(b, d_1)\{f(b, d_1) * f(b, d_2)\} \leq f(b, d_2).$$

Thus

$$bd_1{f(b, d_1) * f(b, d_2)} \le f(b, d_2)$$

and hence

$$bd_1\{f(b, d_1) * f(b, d_2)\} \leq d_2.$$

This gives

$$b\{f(b, d_1) * f(b, d_2)\} \leq d_1 * d_2$$

and hence

$$f(b, d_1) * f(b, d_2) \leq f(b, d_1 * d_2).$$

THEOREM 3.14. Let L be an a-admissible semilattice and let $f: C_a \times D_a \rightarrow D_a$ be the corresponding admissible map. If D_a is implicative, then $C_a \times D_a/f$ is [1, d]-implicative for each $d \in D_a$.

Proof. Let $d \in D_a$ and let $[a_1, d_1] \in C_a \times D_a/f$. We define

 $[a_1, d_1] * [1, d] = [1, f(a_1, d_1 * d)].$

This makes $C_a \times D_a/f$ into an [1, d]-implicative semilattice. For, let $[a_2, d_2] \in C_a \times D_a/f$. Then

$$[a_{2}, d_{2}] \leq [1, f(a_{1}, d_{1} * d)]$$

$$\Leftrightarrow f(a_{2}, d_{2}) \leq f(a_{2}a_{1}, d_{1} * d)$$

$$\Leftrightarrow f(a_{2}a_{1}, d_{2}) \leq f(a_{2}a_{1}, d_{1} * d) = f(a_{2}a_{1}, d_{1}) * f(a_{2}a_{1}, d)$$

$$\Leftrightarrow f(a_{2}a_{1}, d_{2})f(a_{2}a_{1}, d_{1}) \leq f(a_{2}a_{1}, d)$$

$$\Leftrightarrow f(a_{2}a_{1}, d_{2}d_{1}) \leq f(a_{2}a_{1}, d)$$

$$\Leftrightarrow [a_{2}a_{1}, d_{2}d_{1}] \leq [1, d]$$

$$\Leftrightarrow [a_{2}, d_{2}][a_{1}, d_{1}] \leq [1, d].$$

THEOREM 3.15. Let L be an a-admissible semilattice and let $f: C_a \times D_a \rightarrow D_a$ be the corresponding admissible map. If D_a is implicative, then $C_a \times D_a/f$ is implicative.

Proof. We have seen that $C_a \times D_a/f$ is [c, 1]-admissible for all $c \in C_a$, and hence is [c, 1]-implicative for all $c \in C_a$. By Theorem 3.14, $C_a \times D_a/f$ is [1, d]-implicative for all $d \in D_a$. Since [c, d] = [c, 1] [1, d], it follows by Lemma 3.4 that $C_a \times D_a/f$ is [c, d]-implicative for all $[c, d] \in C_a \times D_a/f$.

COROLLARY 3.16. Let L be a 0-admissible semilattice. If D_0 is implicative, then L is implicative.

Remark. Let L be a-admissible and let $f : C_a \times D_a \to D_a$ be the corresponding admissible map. Suppose that D_a is implicative. Then by

Theorem 3.15, $C_a \times D_a/f$ is implicative. The implication * is given by

$$[a_1, d_1] * [c, d] = [a_1, d_1] * ([c, 1] [1, d])$$

= ([a_1, d_1] * [c, 1]) ([a_1, d_1] * [1, d])
= [a_1' \lor c, 1] [1, f(a_1, d_1 * d)] = [a_1' \lor c, f(a_1, d_1 * d)].

THEOREM 3.17. Let L be a bounded semilattice. Then L is an implicative semilattice if and only if L is 0-admissible and D_0 is implicative.

Proof. If L is implicative, then of course L is 0-admissible and D_0 is implicative. The converse follows from Theorem 3.15.

Remark. On a constructive level, we can say the following. Suppose that L is 0-admissible and D_0 is implicative. Let $f : C_0 \times D_0 \rightarrow D_0$ be the corresponding admissible map. The implication in L can be described by

 $x * y = (x^* \lor y^{**})f(x^{**}, d * e)$

where $x = x^{**}d$, $y = y^{**}e$, $x, y \in L$, $d, e \in D_0$. For let $t \in \langle x, y \rangle$, that is, $tx \leq y$. Then $txy^* \leq yy^* = 0$. Hence

 $tx^{**}y^* \leq t^{**}x^{**}(y^*)^{**} = (txy^*)^{**} = 0.$

Thus $t \leq (x^{**}y^{*})^{*} = x^{*} \vee y^{**}$. Also, since $tx \leq y$, we have

 $tx^{**}d \leq y^{**}e \leq e.$

Hence

$$tx^{**} \leq d * e$$
 and $t \leq f(x^{**}, d * e)$.

Thus

$$t \leq (x^* \lor y^{**}) f(x^{**}, d * e),$$

that is,

$$\langle x, y \rangle \subset ((x^* \lor y^{**})f(x^{**}, d * e)].$$

On the other hand, suppose that $t \leq (x^* \vee y^{**})f(x^{**}, d * e)$. Then

$$tx \leq (x^* \lor y^{**})f(x^{**}, d * e)x.$$

But

$$(x^* \lor y^{**})x \leq y^{**}$$
 for $x^*, y^{**}, x^{**} \in C_0$,

a Boolean algebra, and

$$(x^* \lor y^{**})x \leq (x^* \lor y^{**})x^{**} \in C_0,$$

and hence

$$(x^* \lor y^{**})x \leq x^*x^{**} \lor y^{**}x^{**} \leq y^{**}.$$

Thus

$$tx \leq f(x^{**}, d * e)y^{**} \text{ and} txe \leq f(x^{**}, d * e)y^{**}e = f(x^{**}, d * e)y \leq y.$$

But we also have $t \leq f(x^{**}, d * e)$, and hence $tx^{**} \leq d * e$. Thus $tx^{**}d \leq d(d * e) \leq e$, and hence $tx \leq e$. But $txe \leq y$. Hence $tx \leq txe \leq y$ and hence $t \in \langle x, y \rangle$. This proves our claim. This argument holds more generally, and in fact, we have the following result.

LEMMA 3.18. Suppose that L is a-admissible and D_a is implicative. Then [a) is implicative. In fact, for $x, y \ge a$, we have

 $x * y = (x^* \lor y^{**})f(x^{**}, d * e)$

where $f: C_a \times D_a \to D_a$ is the corresponding admissible map, $x^* = x * a$, $x^{**} = (x * a) * a$, $y^{**} = (y * a) * a$, $x = x^{**}d$, $y = y^{**}e$, where $d, e \in D_a$.

References

- 1. O. Frink, Pseudocomplements in semilattices, Duke Math. J. 29 (1962), 505-514.
- 2. G. Grätzer, General lattice theory (Academic Press, New York, 1978).
- 3. P. V. Ramana Murty, Prime and implicative semilattices, Algebra Universalis 10 (1980), 31-35.
- P. V. Ramana Murty and V. V. Rama Rao, Characterization of certain classes of pseudocomplemented semilattices, Algebra Universalis 4 (1974), 289-300.
- 5. W. C. Nemitz, Implicative semilattices, Trans. Amer. Math. Soc. 117 (1965), 128-142.
- J. C. Varlet, Relative annihilators in semilattices, Bull. Austral. Math. Soc. 9 (1973), 169–185.
- 7. —— On separation properties in semilattices, Semigroup Forum 10 (1975), 220-228.

University of Alberta, Edmonton, Alberta