PSEUDOCOMPLEMENTED AND IMPLICATIVE SEMILATTICES

C. S. HOO

1. Introduction. Let L be a semilattice and let $a \in L$. We refer the reader to Definitions $2.2,2.4,2.5$ and 2.12 below for the terminology. If L is a-implicative, let C_{a} be the set of a-closed elements of L, and let D_{a} be the filter of a-dense elements of L. Then C_{a} is a Boolean algebra. If $a=0$, then C_{0} and D_{0} are the usual closed algebra and dense filter of L. If L is a-admissible and $f: C_{a} \times D_{a} \rightarrow D_{a}$ is the corresponding admissible map, we can form a quotient semilattice $C_{a} \times D_{a} / f$. In case $a=0$, Murty and Rao [4] have shown that $C_{0} \times D_{0} / f$ is isomorphic to L, and hence that $C_{0} \times D_{0} / f$ is 0 -admissible. In case L is in fact implicative, Nemitz [5] has shown that $C_{0} \times D_{0} / f$ is isomorphic to L, and that $C_{0} \times D_{0} / f$ is also implicative. We shall show a more general result as follows. Let $C_{a} D_{a}$ denote the set of all products $c d$, where $c \in C_{a}$ and $d \in D_{a}$. Then $C_{a} D_{a}$ is a subsemilattice of L containing the filter $[a)$. If $a=0$, then $C_{0} D_{0}$ will be L. We shall show that, in general, $C_{a} \times D_{a} / f$ is isomorphic to $C_{a} D_{a}$. It will also be shown that $C_{a} D_{a}$ is b-admissible for all $b \in C_{a}$. As a corollary, it will follow that if L is 0 -admissible, it will also be a-admissible for all $a \in C_{0}$. The major consequence is that a bounded semilattice L is implicative if and only if L is 0 -admissible and D_{0} is implicative.
2. Preliminaries. Let L be a meet semilattice. We shall denote the greatest lower bound of two elements a, b of L by $a b$, and the least upper bound, if it exists, by $a+b$. A non-empty subset F of L is a filter provided that $x y \in F$ if and only if $x \in F$ and $y \in F$. Given an element a of L, let $[a)=\{x \in L \mid x \geqq a\}$. Then $[a)$ is a filter, called the principal filter generated by a.

A semi-ideal of L is a non-empty subset I of L such that $b \in I$ and $a \leqq b$ imply that $a \in I$. We call I an ideal if further whenever $a+b$ exists, where $a, b \in I$, then $a+b \in I$. Given an element a of L, let $(a]=\{x \in L \mid x \leqq a\}$. Then ($a]$ is the principal ideal generated by a.

A semilattice L is distributive if $z \geqq x y$ (where $x, y, z \in L$) implies the existence in L of elements x_{1}, y_{1} such that $x_{1} \geqq x, y_{1} \geqq y$ and $z=x_{1} y_{1}$. A semilattice L is modular if whenever $y \geqq z \geqq x y$, where $x, y, z \in L$,

[^0]then there exists an element $x_{1} \in L$ such that $x_{1} \geqq x$ and $z=x_{1} y$. Clearly a distributive semilattice is modular.

Definition 2.1. Let x, a be elements of a semilattice L. The annihilator $\langle x, a\rangle=\{y \in L \mid x y \leqq a\}$. It is easily checked that $\langle x, a\rangle$ is always a semiideal of L.

Definition 2.2. Let L be a semilattice and let $a \in L$. Then L is a implicative if $\langle x, a\rangle$ is a principal ideal. We shall denote this principal ideal by $(x * a]$. A semilattice L is implicative if and only if it is a-implicative for all $a \in L$. We observe that $x * a$ is a relative pseudocomplement.

If L has a least element 0 , then L is 0 -implicative means that L is pseudocomplemented, and it is customary to denote $x * 0$ by x^{*}. We observe that an a-implicative semilattice always has a greatest element 1 since $x \in\langle a, a\rangle$ for all elements x, and hence $a * a=1$.

If the semilattice L is a-implicative, then the following results hold (see [6]):
(1) $x * a \geqq a$
(2) $x \leqq a, x * a=1$ and $x * a \geqq x$ are equivalent
(3) $1 * a=a$
(4) $x * a=x$ if and only if $x=a=1$
(5) $(x * a) * a \geqq x, a$
(6) if $x \leqq y$, then $x * a \geqq y * a$ and $(x * a) * a \leqq(y * a) * a$
(7) $((x * a) * a) * a=x * a$
(8) $(x * a)((x * a) * a)=a$
(9) $x(x * a)=x a$.

If L is implicative, then the following also hold (see [5]):
(10) if $x \leqq y$, then $z * x \leqq z * y$
(11) $x *(y * z)=(x y) * z$
(12) $x *(y z)=(x * y)(x * z)$
(13) $x *(y * z)=(x * y) *(x * z)$
(14) $x \leqq y$ if and only if $x * y=1$.

In [6], Varlet proved the following result.
Theorem 2.3. If x and y are elements of an a-implicative semilattice, then

$$
((x y) * a) * a=((x * a) * a)((y * a) * a)
$$

From this, it is also quite easy to verify that

$$
(x y) * a=(((x * a) * a)((y * a) * a)) * a .
$$

Definition 2.4. An element x of an a-implicative semilattice L is called a-closed if $(x * a) * a=x$. The set of a-closed elements of L will be denoted by C_{a}. If $a=0,0$-closed means closed. From Theorem 2.3 we see that C_{a} is a subsemilattice of L.

Definition 2.5. Let a be an element of a semilattice L. An element $x \in L$ is a-dense if $\langle x, a\rangle \subset(a]$, that is, if $\langle x, a\rangle=(a]$.

If $a=0,0$-dense means dense. The set of all a-dense elements will be denoted by D_{a}. Then D_{a} is either empty or is a filter. If L is a-implicative, then $x \in D_{a}$ if and only if $x * a=a$, or equivalently, $(x * a) * a=1$.

We observe that $a \in C_{a}$ since $(a * a) * a=1 * a=a$. Also $(1 * a) * a=$ $a * a=1$, so that $1 \in C_{a}$. Obviously, $x \in C_{a}$ if and only if there exists an element $y \in L$ such that $x=y * a$. For each $x \in C_{a}$, we have $a \leqq(x * a)$ $* a=x$. Thus a is the smallest element of C_{a}, and 1 is the largest. We can define an operation \oplus in C_{a} by

$$
x \oplus y=((x * a)(y * a)) * a, \quad \text { for } x, y \in C_{a} .
$$

If $x \in C_{a}$, we define $x^{\prime}=x * a \in C_{a}$. Then

$$
x \oplus a=((x * a)(a * a)) * a=(x * a) * a=x
$$

Theorem 2.6. Let L be an a-implicative semilattice. Then C_{a} is a Boolean algebra with join \oplus and complementation' as above.

Proof. We verify that $x \oplus y$ is the least upper bound of x and y in C_{a}. We have that $x * a \geqq(x * a)(y * a)$. Hence

$$
x=(x * a) * a \leqq[(x * a)(y * a)] * a=x \oplus y .
$$

Similarly, $y \leqq x \oplus y$. Now suppose that $x \leqq z$ and $y \leqq z$, where $z \in C_{a}$. Then

$$
x * a \geqq z * a \quad \text { and } \quad y * a \geqq z * a .
$$

Hence $(x * a)(y * a) \geqq z * a$. Thus

$$
x \oplus y=[(x * a)(y * a)] * a \leqq(z * a) * a=z
$$

This proves that $x \oplus y$ is the least upper bound of x and y in C_{a}. Next, we observe that $x^{\prime}=x * a$ is the complement of x in C_{a}. For, we have $x^{\prime} x=(x * a) x \leqq a$. Since a is the smallest element of C_{a}, this means that $x^{\prime} x=a$. Also

$$
x^{\prime} \oplus x=\left[\left(x^{\prime} * a\right)(x * a)\right] * a .
$$

But $x^{\prime} * a=(x * a) * a=x$. Hence

$$
x^{\prime} \oplus x=[x(x * a)] * a=(x a) * a=1
$$

Thus, C_{a} is a complemented lattice. Finally, we show that C_{a} is a complemented distributive lattice, that is, a Boolean algebra. According to [2] (Lemma 4.10 , page 30), we need only verify the inequality

$$
(x \oplus y) z \leqq x \oplus(y z) \quad \text { for } x, y, z \in C_{a} .
$$

We have that $x z \leqq x \oplus(y z)$ and $y z \leqq x \oplus(y z)$. Hence

$$
x z[(x \oplus(y z)) * a]=(x z)[x \oplus(y z)]^{\prime}=a
$$

and

$$
y z[(x \oplus(y z)) * a]=(y z)[x \oplus(y z)]^{\prime}=a
$$

since a is the least element in C_{a}. Thus

$$
z[(x \oplus(y z)) * a] \leqq x * a \quad \text { and } \quad z[(x \oplus(y z)) * a] \leqq y * a .
$$

This means that $z[(x \oplus(y z)) * a] \leqq(x * a)(y * a)$ and hence

$$
z[(x \oplus(y z)) * a][\{(x * a)(y * a)\} * a]=a .
$$

Thus

$$
z(x \oplus y) \leqq[(x \oplus(y z)) * a] * a .
$$

But $x \oplus(y z) \in C_{a}$ and hence

$$
[(x \oplus(y z)) * a] * a=x \oplus(y z) .
$$

Thus $z(x \oplus y) \leqq x \oplus(y z)$, and hence C_{a} is a Boolean algebra.
Theorem 2.7. If L is an implicative semilattice, then for each $x \in L$ and each $a \in L$, we have

$$
x=[(x * a) * a]\{[(x * a) * a] * x\} .
$$

If $x \geqq a$, then $[(x * a) * a] * x \in D_{a}$ and is the greatest element $d \in D_{a}$ satisfying

$$
x=[(x * a) * a] d .
$$

Proof. Let $b=(x * a) * a, y=b * x$. We wish to show that $x=b y$. We have $x \leqq b$ and $x \leqq y$. Hence $x \leqq b y$. But $\langle b, x\rangle=(b * x]=(y]$, and hence $b y \leqq x$. Thus $x=b y$. Suppose that $x \geqq a$. We wish to show that $y \in D_{a}$. Since $\langle y, a\rangle=(y * a]$, we need only show that $y * a \leqq a$. Since $y \geqq x$, we have $y * a \leqq x * a$. On the other hand, since $x \geqq a$, we have that

$$
(x * a)[(x * a) * a]=a \leqq x .
$$

Thus $(x * a) b \leqq x$, that is,

$$
x * a \in\langle b, x\rangle=(b * x]=(y] .
$$

This means that $x * a \leqq y$. Hence $y * a \leqq(x * a) * a$ and hence

$$
y * a \leqq(x * a)[(x * a) * a]=a .
$$

Finally, suppose that $d \in D_{a}$ and $x=[(x * a) * a] d$. Then we have
$x=b d=b y$. This means that

$$
d \in\langle b, b y\rangle=(b *(b y)]=(b * x] .
$$

Thus $d \leqq b * x=[(x * a) * a] * x$.
Note. $d=1 \Leftrightarrow[(x * a) * a] * x=1 \Leftrightarrow(x * a) * a=x \Leftrightarrow x \in C_{a}$. The referee has pointed out to us that in this proof b and y may be interchanged.

We also have the following result.
Theorem 2.8. Suppose that L is an a-implicative semilattice which is also modular. Then for each $x \geqq a$, there exists an element $d \in D_{a}$ such that

$$
x=[(x * a) * a] d .
$$

Proof. We first observe that

$$
(x * a)[(x * a) * a]=a \leqq x \leqq(x * a) * a .
$$

Since L is modular, there exists $d \geqq x * a$ such that

$$
x=[(x * a) * a] d .
$$

It remains only to show that $d \in D_{a}$. We have $x \leqq d$ and $x * a \leqq d$. Hence $x * a \geqq d * a$ also, and $(x * a) * a \geqq d * a$. Thus

$$
(x * a)[(x * a) * a]=a \geqq d * a \geqq a \text {, }
$$

that is, $d * a=a$. Thus $d \in D_{a}$.
The following are easy corollaries.
Lemma 2.9. Suppose that L is implicative (or a-implicative and modular). Let $x, y \geqq a$. Then $(x * a) * a=(y * a) * a$ if and only if there exists $d \in D_{a}$ such that $x d=y d$.

Lemma 2.10. Let L be an implicative semilattice and let $x \geqq a$. Then $x \in D_{a}$ if and only if $x=[(y * a) * a] * y$ for some $y \geqq a$.

Theorem 2.11. Let L be an implicative semilattice. Then the following holds in L :

$$
\{(x * y) * a\} * a=\{(x * a) * a\} *\{(y * a) * a\} \quad \text { if } y \geqq a .
$$

Proof. For simplicity, let us generally write z^{*} for $z * a$ and $z^{* *}$ for $(z * a) * a$, and so on. Since $y \geqq a$, by Theorem 2.7, we can find $d \in D_{a}$ such that $y=y^{* *} d$. Since $d \in D_{a}$ and $d \leqq x * d$, it follows that $x * d \in D_{a}$ also because D_{a} is a filter. Hence

$$
(x * y)^{* *}=\left\{x *\left(y^{* *} d\right)\right\}^{* *}=\left\{\left(x * y^{* *}\right)(x * d)\right\}^{* *}=\left(x * y^{* *}\right)^{* *}(x * d)^{* *}
$$

by Theorem 2.3. But since $x * d \in D_{a}$, we have that $(x * d)^{* *}=1$. Hence

$$
(x * y)^{* *}=\left(x * y^{* *}\right)^{* *}=x * y^{* *}
$$

since it can be easily verified that $(x y)^{*}=x * y^{*}$ in general. Hence

$$
(x * y)^{* *}=\left(x y^{*}\right)^{* * *}=\left(x^{* *} y^{* * *}\right)^{*}
$$

by Theorem 2.3 again. Thus $(x * y)^{* *}=\left(x^{* *} y^{*}\right)^{*}=x^{* *} * y^{* *}$, proving our result.

Definition 2.12. $L=(L, \cdot, *, a, 1)$ is an a-admissible semilattice if
(i) L is an a-implicative semilattice.
(ii) For each $x \in L$ such that $x \geqq a$, there exists $d \in D_{a}$ such that $x=[(x * a) * a] d$.
(iii) There exists a function $f: C_{a} \times D_{a} \rightarrow D_{a}$ such that for each $x \in L$, we have $x \leqq f(c, d)$ if and only if $x c \leqq d$, that is, if and only if $x \in\langle c, d\rangle$. This means that $c * d$ exists and is in D_{a} for $c \in C_{a}$ and $d \in D_{a}$.

We observe that if L has a least element 0 , then 0 -admissible means admissible in the sense of [3]. If L is implicative, then for each $a \in L, L$ is a-admissible, for we can define f by $f(c, d)=c * d$. We observe also that in this case, D_{a} is also implicative.

Definition 2.13. Let A be a Boolean algebra and let D be a meet semilattice with $1 . \mathrm{Amap} f: A \times D \rightarrow D$ is admissible if
(1) $f(a b, d)=f(a, f(b, d))$.
(2) For each $a \in A, f_{a}: D \rightarrow D$ given by $f_{a}(d)=f(a, d)$, is an endomorphism.
(3) $a \leqq b$ implies that $f(b, d) \leqq f(a, d)$.
(4) $f(1, d)=d$.

Lemma 2.14. If L is an a-admissible semilattice, then the corresponding mapf: $C_{a} \times D_{a} \rightarrow D_{a}$ satisfies $d \leqq f(c, d), c f(c, d)=c d$.

Proof. Since $c d \leqq d$, we have $d \leqq f(c, d)$. Also $f(c, d) \leqq f(c, d)$ and hence $c f(c, d) \leqq d$. This means that $c f(c, d) \leqq c d$. Thus $c d \leqq c f(c, d) \leqq c d$, that is, $c f(c, d)=c d$.

Theorem 2.15. If L is an a-admissible semilattice, then the corresponding mapf: $C_{a} \times D_{a} \rightarrow D_{a}$ is admissible.

Proof. We have seen that C_{a} is a Boolean algebra and that D_{a} is a filter, that is, a meet semilattice with 1.
(i) To show that $f(b c, d)=f(b, f(c, d))$. Since $f(b c, d) \leqq f(b c, d)$, we have $b c f(b c, d) \leqq d$. Hence $b f(b c, d) \leqq f(c, d)$ and hence

$$
f(b c, d) \leqq f(b, f(c, d))
$$

On the other hand,

$$
b c f(b, f(c, d))=c b f(b, f(c, d))=c b f(c, d)=b c f(c, d)=b c d \leqq d
$$

Thus $f(b, f(c, d)) \leqq f(b c, d)$.
(ii) Let $b \in C_{a}$. To show that $f_{b}: C_{a} \rightarrow C_{a}$ is an endomorphism, that is, $f_{b}(d e)=f_{b}(d) f_{b}(e)$ for $d, e \in D_{a}$. We have

$$
b f(b, d e)=b d e \leqq d
$$

Hence $f(b, d e) \leqq f(b, d)$. Similarly, $f(b, d e) \leqq f(b, e)$. Hence

$$
f(b, d e) \leqq f(b, d) f(b, e)
$$

On the other hand,

$$
b f(b, d) f(b, e)=b f(b, d) b f(b, e)=b d e b=b d e \leqq d e
$$

Hence $f(b, d) f(b, e) \leqq f(b, d e)$.
(iii) Suppose that $b \leqq c$. To show that $f(c, d) \leqq f(b, d)$. We have

$$
b f(c, d) \leqq c f(c, d)=c d \leqq d
$$

Hence $f(c, d) \leqq f(b, d)$.
(iv) $f(1, d)=1 \cdot f(1, d)=1 \cdot d=d$.

Thus f is an admissible map.
3. Admissible semilattices. Let A be a Boolean algebra and let D be a meet semilattice with 1 . Let $f: A \times D \rightarrow D$ be an admissible map. We can define an equivalence relation \sim on $A \times D$ by $(a, d) \sim(b, e)$ if and only if $a=b$ and $f(a, d)=f(a, e)$. Then we can form the quotient $A \times D / f$ consisting of all the equivalence classes $[a, d]$.

We can define $[a, d][b, e]=[a b, d e]$, and $[a, d] \leqq[b, e]$ if and only if $[a, d][b, e]=[a, d]$. Then $A \times D / f$ is a meet semilattice. As in [5], we have the following observations.
(i) Suppose that $b \leqq a$ and $f(a, d)=f(a, e)$, that is, $[a, d]=[a, e]$. Then $f(b, d)=f(b, e)$, that is, $[b, d]=[b, e]$.
(ii) $[a, d] \leqq[b, e]$ if and only if $a \leqq b$ and $f(a, d) \leqq f(a, e)$.

If $f(0, d)=1$ for all $d \in D$, then $A \times D / f$ has $[0,1]$ as its zero.
We can define a pseudocomplementation on $A \times D / f$ by $[a, d]^{*}=$ [$a^{\prime}, 1$]. Then $A \times D / f$ is a pseudocomplemented semilattice. The 0 -closed algebra of $A \times D / f$ is isomorphic to A via $[a, 1] \leftrightarrow a$. That is, the 0 -closed elements consist of all $[a, 1]$. The 0 -dense filter of $A \times D / f$ is isomorphic to D via $[1, d] \leftrightarrow d$. That is, the 0 -dense elements are all the elements $[1, d]$. Then, each element $[a, d]$ of $A \times D / f$ can be written as $[a, d]=$ $[a, 1][1, d]$, with $[a, d]^{* *}=[a, 1]$ being 0 -closed, and $[1, d]$ being 0 -dense. In fact, $A \times D / f$ is 0 -admissible. The corresponding admissible map f_{1} is
given by

$$
f_{1}([a, 1],[1, d])=[1, f(a, d)] .
$$

It can be verified that f_{1} satisfies the requirements, making $A \times D / f$ a 0 -admissible semilattice.

If L is a 0 -admissible semilattice and $f: C_{0} \times D_{0} \rightarrow D_{0}$ is the corresponding admissible map, then $L \cong C_{0} \times D_{0} / f$. The required isomorphism $g: C_{0} \times D_{0} / f \rightarrow L$ may be defined by $g[a, d]=a d$. The above is a summary of the results obtained in [5] and [4]. In fact, we claim the following result.

Theorem 3.1. Let A be a Boolean algebra, D be a meet semilattice with 1, and $f: A \times D \rightarrow D$ be an admissible map. Then $A \times D / f$ is a $[b, 1]-$ admissible semilattice for all elements $b \in A$, that is $A \times D / f$ is an x admissible semilattice for all elements x in the 0 -closed algebra of $A \times D / f$.

Proof. Let $b \in A$. We first show that $A \times D / f$ is $[b, 1]$-implicative. We define $[a, b] *[b, 1]=\left[a^{\prime} \vee b, 1\right]$ for each $[a, d] \in A \times D / f$, where \vee denotes the join operation in the Boolean algebra A. This is obviously well-defined. We have to show that $\left[a_{1}, d_{1}\right][a, d] \leqq[b, 1]$ if and only if $\left[a_{1}, d_{1}\right] \leqq\left[a^{\prime} \vee b, 1\right]$, that is, $\left[a a_{1}, d d_{1}\right] \leqq[b, 1]$ if and only if $\left[a_{1}, d_{1}\right] \leqq$ [$\left.a^{\prime} \vee b, 1\right]$. This reduces to the statement $a a_{1} \leqq b$ if and only if $a_{1} \leqq a^{\prime} \vee b$, and this is trivially true since A is a Boolean algebra. Next, suppose that $[a, d] \geqq[b, 1]$, that is, $b \leqq a$ and $f(b, d)=1$. We have

$$
\begin{aligned}
([a, d] *[b, 1]) *[b, 1] & =\left[a^{\prime} \vee b, 1\right] *[b, 1] \\
& =\left[\left(a^{\prime} \vee b\right)^{\prime} \vee b, 1\right]=\left[a b^{\prime} \vee b, 1\right]
\end{aligned}
$$

Now, $\left(a b^{\prime} \vee b\right)^{\prime}=\left(a b^{\prime}\right)^{\prime} b^{\prime}=\left(a^{\prime} \vee b\right) b^{\prime}=a^{\prime} b^{\prime}$. Hence $a b^{\prime} \vee b=$ $\left(a^{\prime} b^{\prime}\right)^{\prime}=a \vee b=a$ since $b \leqq a$. Thus

$$
([a, d] *[b, 1]) *[b, 1]=[a, 1] .
$$

Also $[1, d] *[b, 1]=[b, 1]$, that is, $[1, d]$ is $[b, 1]$-dense. Thus, for each $[a, d] \geqq[b, 1]$, we have

$$
[a, d]=[a, 1][1, d]=\{([a, d] *[b, 1]) *[b, 1]\}[1, d] .
$$

Finally, to obtain the corresponding admissible map
$g:\{[b, 1]$-closed elements $\} \times\{[b, 1]$-dense elements $\}$ $\rightarrow\{[b, 1]$-dense elements $\}$,
we observe the following facts. We have that

$$
\begin{aligned}
& {[a, d] \text { is }[b, 1] \text {-dense }} \\
& \quad \Leftrightarrow[a, d] *[b, 1]=[b, 1] \\
& \quad \Leftrightarrow\left[a^{\prime} \vee b, 1\right]=[b, 1] \\
& \quad \Leftrightarrow a^{\prime} \leqq b .
\end{aligned}
$$

Also

$$
\begin{aligned}
& {[a, d] \text { is }[b, 1] \text {-closed }} \\
& \quad \Leftrightarrow([a, d] *[b, 1]) *[b, 1]=[a, d] \\
& \quad \Leftrightarrow[a, d]=[a, 1] \quad \text { with } b \leqq a .
\end{aligned}
$$

We define g by

$$
g\left(\left[a_{1}, 1\right],\left[a_{2}, d_{2}\right]\right)=\left[a_{1}^{\prime} \vee a_{2}, f\left(a_{1} a_{2}, d_{2}\right)\right]
$$

where $b \leqq a_{1}$ and $a_{2}{ }^{\prime} \leqq b$. We note that $\left[a_{1}{ }^{\prime} \vee a_{2}, f\left(a_{1} a_{2}, d_{2}\right)\right]$ is $[b, 1]$-dense since

$$
\left(a_{1}^{\prime} \vee a_{2}\right)^{\prime}=a_{1} a_{2}^{\prime} \leqq b
$$

This map g satisfies the requirements. In fact,

$$
\begin{aligned}
{[a, d] } & \leqq g\left(\left[a_{1}, 1\right],\left[a_{2}, d_{2}\right]\right) \\
& \Leftrightarrow[a, d] \leqq\left[a_{1}^{\prime} \vee a_{2}, f\left(a_{1} a_{2}, d_{2}\right)\right] \\
& \Leftrightarrow a \leqq a_{1}^{\prime} \vee a_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
f(a, d) & \leqq f\left(a a_{1} a_{2}, d_{2}\right) \\
& \Leftrightarrow a a_{1} \leqq a_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
f(a, d) & \leqq f\left(a a_{1} a_{2}, d_{2}\right) \\
& \Leftrightarrow a a_{1} \leqq a_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(a a_{1}, d\right) & \leqq f\left(a a_{1}, d_{2}\right) \\
& \Leftrightarrow\left[a a_{1}, d\right] \leqq\left[a_{2}, d_{2}\right] \\
& \Leftrightarrow[a, d]\left[a_{1}, 1\right] \leqq\left[a_{2}, d_{2}\right] .
\end{aligned}
$$

Thus $A \times D / f$ is $[b, 1]$-admissible for all $b \in A$.
Definition 3.2. If L is an a-implicative semilattice, then

$$
C_{a} D_{a}=\left\{c d \mid c \in C_{a}, d \in D_{a}\right\}
$$

We observe that $C_{a} D_{a}$ is a subsemilattice of L containing the filter [a). If $a=0$, the $C_{0} D_{0}=L$.

Definition 3.3. Let L be a semilattice, then $\mathscr{A}(L)$ will denote the set of all elements $a \in L$ such that L is a-implicative.

Lemma 3.4. $\mathscr{A}(L)$ is a subsemilattice of L.
Proof. Let $a, b \in \mathscr{A}(L)$. We define $x *(a b)=(x * a)(x * b)$ for each $x \in L$. It is easily verified that this shows that $a b \in \mathscr{A}(L)$.

Lemma 3.5. If $a \in \mathscr{A}(L)$, then $b * a \in \mathscr{A}(L)$ for all $b \in L$.
Proof. Define $x *(b * a)=(x b) * a$. It is easily checked that this satisfies the requirements.

Lemma 3.6. If $a \in \mathscr{A}(L)$ and $d \in D_{a}$, then $(b d) * a=b * a$ for all $b \in L$.
Proof. $b d \leqq b$. Hence $b * a \leqq(b d) * a$. But $b d((b d) * a) \leqq a$. Hence

$$
b((b d) * a) \leqq d * a=a
$$

and hence $(b d) * a \leqq b * a$.
Theorem 3.7. Let L be an a-admissible semilattice and let f: $C_{a} \times D_{a} \rightarrow$ D_{a} be the corresponding admissible map. Then

$$
C_{a} \times D_{a} / f \cong C_{a} D_{a} .
$$

Proof. Let $g: C_{a} \times D_{a} / f \rightarrow L$ be given by $g([b, d])=b d$. This is welldefined. For if $[b, d]=\left[b_{1}, d_{1}\right]$, then $b=b_{1}$ and $f(b, d)=f\left(b, d_{1}\right)$. Hence

$$
b d=b f(b, d)=b f\left(b, d_{1}\right)=b d_{1}=b_{1} d_{1} .
$$

Now g is a homomorphism, for

$$
g\left([b, d]\left[b_{1}, d_{1}\right]\right)=g\left(\left[b b_{1}, d d_{1}\right]\right)=b b_{1} d d_{1}=b d b_{1} d_{1}=g([b, d]) g\left(\left[b_{1}, d_{1}\right]\right) .
$$

Also g is one to one. For if $b d=b_{1} d_{1}$, then

$$
\{(b d) * a\} * a=\left\{\left(b_{1} d_{1}\right) * a\right\} * a,
$$

that is,

$$
\{(b * a) * a\}\{(d * a) * a\}=\left\{\left(b_{1} * a\right) * a\right\}\left\{\left(d_{1} * a\right) * a\right\} .
$$

Hence $b=b_{1}$ since $b, b_{1} \in C_{a}$, and $d, d_{1} \in D_{a}$. Hence

$$
b f(b, d)=b d=b_{1} d_{1} \leqq d_{1},
$$

and hence $f(b, d) \leqq f\left(b, d_{1}\right)$. Similarly

$$
b f\left(b, d_{1}\right)=b d_{1}=b_{1} d_{1}=b d \leqq d
$$

and hence $f\left(b, d_{1}\right) \leqq f(b, d)$. Thus $f(b, d)=f\left(b, d_{1}\right)$ and hence $[b, d]=$ $\left[b_{1}, d_{1}\right]$. Clearly, the image of g is contained in $C_{a} D_{a}$. On the other hand, it is also obvious that the image of g contains $C_{a} D_{a}$. Thus

$$
g: C_{a} \times D_{a} / f \cong C_{a} D_{a} .
$$

Corollary 3.8. Let L be a 0 -admissible semilattice and letf : $C_{0} \times D_{0} \rightarrow$ D_{0} be the corresponding admissible map. Then

$$
\begin{gathered}
C_{0} \times D_{0} / f \cong L . \\
\text { Proof. } C_{0} D_{0}=L .
\end{gathered}
$$

The following is easily verified.

Lemma 3.9. Let L, L_{1} be semilattices and let $a \in L, a_{1} \in L_{1}$. Suppose that L is a-implicative and L_{1} is a_{1}-implicative, and suppose that $g: L \rightarrow L_{1}$ is an isomorphism such that

$$
g(a)=a_{1} \quad \text { and } \quad g(x * a)=g(x) * a_{1}
$$

for all $x \in L$. If L is a-admissible, then L_{1} is a_{1}-admissible.
Theorem 3.10. Suppose that L is an a-admissible semilattice for some $a \in L$. Then $C_{a} D_{a}$ is a b-admissible semilattice for all $b \in C_{a}$.

Proof. By Theorem 3.7, $g: C_{a} \times D_{a} / f \rightarrow C_{a} D_{a}$, given by $g([b, d])=b d$, is an isomorphism, where $f: C_{a} \times D_{a} \rightarrow D_{a}$ is the corresponding admissible map. By Theorem 3.1, $C_{a} \times D_{a} / f$ is $[b, 1]$-admissible for all $b \in C_{a}$. Now $g([b, 1])=b$ for each $b \in C_{a}$. Also, if $b_{1} \in C_{a}$, we have $\left(b_{1} * a\right) * a=$ b_{1}. Since $a \in \mathscr{A}(L)$, it follows by Lemma 3.5 that $\left(b_{1} * a\right) * a \in \mathscr{A}(L)$, that is, $b_{1} \in \mathscr{A}(L)$. We have, for $b, b_{1} \in C_{a}, d \in D_{a}$ that

$$
(b d) * b_{1}=g([b, d]) * g\left(\left[b_{1}, 1\right]\right)
$$

Thus

$$
\begin{aligned}
& g([b, d]) * g\left(\left[b_{1}, 1\right]\right)=(b d) * b_{1}=(b d) *\left\{\left(b_{1} * a\right) * a\right\} \\
& \quad=\left\{(b d)\left(b_{1} * a\right)\right\} * a=\left(b_{1} * a\right) *\{(b d) * a\}=\left(b_{1} * a\right) *(b * a)
\end{aligned}
$$

since $d \in D_{a}$. Thus

$$
g([b, d]) * g\left(\left[b_{1}, 1\right]\right)=\left\{b\left(b_{1} * a\right)\right\} * a
$$

On the other hand.

$$
g\left([b, d] *\left[b_{1}, 1\right]\right)=g\left(\left[b^{\prime} \vee b_{1}, 1\right]\right)=b^{\prime} \vee b_{1}
$$

But in C_{a},

$$
b^{\prime} \vee b_{1}=\left\{\left(b^{\prime} * a\right)\left(b_{1} * a\right)\right\} * a=\left\{b\left(b_{1} * a\right)\right\} * a
$$

since $b^{\prime}=b * a$ in C_{a}. Thus g satisfies

$$
g\left([b, d] *\left[b_{1}, 1\right]\right)=g([b, d]) * g\left(\left[b_{1}, 1\right]\right)=g([b, d]) * b_{1}
$$

for all $b, b_{1} \in C_{a}, d \in D_{a}$. The proof is completed by applying Lemma 3.9.
Corollary 3.11. Suppose that L is 0 -admissible. Then L is also b admissible for all 0 -closed elements b.

We may, of course, iterate the situation described in Theorem 3.7. That is to say, suppose that L is as described in Theorem 3.7. Then

$$
g: C_{a} \times D_{a} / f \rightarrow C_{a} D_{a}
$$

is an isomorphism given by $g([b, d])=b d$. Then by Theorem 3.10, $C_{a} \times D_{a} / f$ is $[b, 1]$-admissible for each $b \in C_{a}$, and $C_{a} D_{a}$ is b-admissible
for each $b \in C_{a}$. For each $b \in C_{a}$, let $C[b, 1], D[b, 1]$ denote the $[b, 1]$ closed and [$b, 1]$-dense elements of $C_{a} \times D_{a} / f$ respectively. Let

$$
h: C[b, 1] \times D[b, 1] \rightarrow D[b, 1]
$$

be the corresponding admissible map. Then by Theorem 3.7,

$$
C[b, 1] \times D[b, 1] / h \cong C[b, 1] D[b, 1] .
$$

We recall that $C[b, 1]$ consists of all $[c, 1], c \in C_{a}$, and $b \leqq c$ and $D[b, 1]$ consists of all $[c, d]$ with $c^{\prime} \leqq b$. Thus $C[b, 1] D[b, 1]$ consists of all elements $\left[c c_{1}, d\right]$ of $C_{a} \times D_{a} / f$ with $c_{1}{ }^{\prime} \leqq b \leqq c$, that is, of all elements $[c, d]\left[c_{1}, 1\right]$ with $b^{\prime} \leqq c_{1}$ and $b \leqq c$. Thus, $C[b, 1] D[b, 1]$ consists of all the products $[c, d]\left[c_{1}, 1\right]$ with $\left[b^{\prime}, 1\right] \leqq\left[c_{1}, 1\right]$ and $b \leqq c$, that is, $C[b, 1] D[b, 1]$ is the filter of $C_{a} \times D_{a} / f$ generated by

$$
\left[b^{\prime}, 1\right][b, d]=[(b * a) b, d]=[a, d] .
$$

In case $a=0$, then for each $b \in C_{0}, C[b, 1] \cong C_{0}$ via $[a, 1] \leftrightarrow a$, and $D[b, 1]$ consists of all products $d x, d \in D_{0}, x \geqq b^{\prime}=b^{*}$, that is, the set of all products $D_{0}\left[b^{\prime}\right)=D_{0}\left[b^{*}\right)$. Thus

$$
C[b, 1] D[b, 1] \cong C_{0} D\left[b^{*}\right)=\text { principal filter of } L \text { generated by } b^{*} .
$$

Thus we have the following result.
Theorem 3.12. Let L be an a-admissible semilattice and let f: $C_{a} \times D_{a} \rightarrow$ D_{a} be the corresponding admissible map. For each $b \in C_{a}$, let $C[b, 1]$ be the set of all $[b, 1]$-closed elements of $C_{a} \times D_{a} / f$, and let $D[b, 1]$ be the set of all $[b, 1]$-dense elements of $C_{a} \times D_{a} / f$. Then $C[b, 1] D[b, 1]$ is the filter of $C_{a} \times D_{a} / f$ generated by $[a, d]$ for all $d \in D_{a}$. In case $a=0$, then

$$
C[b, 1] D[b, 1] \cong\left[b^{*}\right) \quad \text { for each } b \in C_{0} .
$$

Lemma 3.13. Let L be an a-admissible semilattice and let f : $C_{a} \times D_{a} \rightarrow$ D_{a} be the corresponding admissible map. If D_{a} is implicative, then f satisfies

$$
f\left(b, d_{1} * d_{2}\right)=f\left(b, d_{1}\right) * f\left(b, d_{2}\right)
$$

for all $b \in C_{a}, d_{1}, d_{2} \in D_{a}$.
Proof.

$$
f\left(b, d_{1}\right) f\left(b, d_{1} * d_{2}\right)=f\left(b, d_{1}\left(d_{1} * d_{2}\right)\right)=f\left(b, d_{1} d_{2}\right) \leqq f\left(b, d_{2}\right) .
$$

Hence, $f\left(b, d_{1} * d_{2}\right) \leqq f\left(b, d_{1}\right) * f\left(b, d_{2}\right)$. On the other hand, since

$$
b\left\{f\left(b, d_{1}\right) * f\left(b, d_{2}\right)\right\} \leqq f\left(b, d_{1}\right) * f\left(b, d_{2}\right),
$$

we have

$$
b f\left(b, d_{1}\right)\left\{f\left(b, d_{1}\right) * f\left(b, d_{2}\right)\right\} \leqq f\left(b, d_{2}\right)
$$

Thus

$$
b d_{1}\left\{f\left(b, d_{1}\right) * f\left(b, d_{2}\right)\right\} \leqq f\left(b, d_{2}\right)
$$

and hence

$$
b d_{1}\left\{f\left(b, d_{1}\right) * f\left(b, d_{2}\right)\right\} \leqq d_{2}
$$

This gives

$$
b\left\{f\left(b, d_{1}\right) * f\left(b, d_{2}\right)\right\} \leqq d_{1} * d_{2}
$$

and hence

$$
f\left(b, d_{1}\right) * f\left(b, d_{2}\right) \leqq f\left(b, d_{1} * d_{2}\right)
$$

Theorem 3.14. Let L be an a-admissible semilattice and let $f: C_{a} \times D_{a} \rightarrow$ D_{a} be the corresponding admissible map. If D_{a} is implicative, then $C_{a} \times$ D_{a} / f is $[1, d]$-implicative for each $d \in D_{a}$.

Proof. Let $d \in D_{a}$ and let $\left[a_{1}, d_{1}\right] \in C_{a} \times D_{a} / f$. We define

$$
\left[a_{1}, d_{1}\right] *[1, d]=\left[1, f\left(a_{1}, d_{1} * d\right)\right] .
$$

This makes $C_{a} \times D_{a} / f$ into an $[1, d]$-implicative semilattice. For, let $\left[a_{2}, d_{2}\right] \in C_{a} \times D_{a} / f$. Then

$$
\begin{aligned}
{\left[a_{2}, d_{2}\right] } & \leqq\left[1, f\left(a_{1}, d_{1} * d\right)\right] \\
& \Leftrightarrow f\left(a_{2}, d_{2}\right) \leqq f\left(a_{2} a_{1}, d_{1} * d\right) \\
& \Leftrightarrow f\left(a_{2} a_{1}, d_{2}\right) \leqq f\left(a_{2} a_{1}, d_{1} * d\right)=f\left(a_{2} a_{1}, d_{1}\right) * f\left(a_{2} a_{1}, d\right) \\
& \Leftrightarrow f\left(a_{2} a_{1}, d_{2}\right) f\left(a_{2} a_{1}, d_{1}\right) \leqq f\left(a_{2} a_{1}, d\right) \\
& \Leftrightarrow f\left(a_{2} a_{1}, d_{2} d_{1}\right) \leqq f\left(a_{2} a_{1}, d\right) \\
& \Leftrightarrow\left[a_{2} a_{1}, d_{2} d_{1}\right] \leqq[1, d] \\
& \Leftrightarrow\left[a_{2}, d_{2}\right]\left[a_{1}, d_{1}\right] \leqq[1, d] .
\end{aligned}
$$

Theorem 3.15. Let L be an a-admissible semilattice and letf : $C_{a} \times D_{a} \rightarrow$ D_{a} be the corresponding admissible map. If D_{a} is implicative, then $C_{a} \times$ D_{a} / f is implicative.

Proof. We have seen that $C_{a} \times D_{a} / f$ is $[c, 1]$-admissible for all $c \in C_{a}$, and hence is $[c, 1]$-implicative for all $c \in C_{a}$. By Theorem 3.14, $C_{a} \times D_{a} / f$ is $[1, d]$-implicative for all $d \in D_{a}$. Since $[c, d]=[c, 1][1, d]$, it follows by Lemma 3.4 that $C_{a} \times D_{a} / f$ is $[c, d]$-implicative for all $[c, d] \in C_{a} \times D_{a} / f$.

Corollary 3.16. Let L be a 0 -admissible semilattice. If D_{0} is implicative, then L is implicative.

Remark. Let L be a-admissible and let $f: C_{a} \times D_{a} \rightarrow D_{a}$ be the corresponding admissible map. Suppose that D_{a} is implicative. Then by

Theorem 3.15, $C_{a} \times D_{a} / f$ is implicative. The implication * is given by

$$
\begin{aligned}
{\left[a_{1}, d_{1}\right] *[c, d] } & =\left[a_{1}, d_{1}\right] *([c, 1][1, d]) \\
& =\left(\left[a_{1}, d_{1}\right] *[c, 1]\right)\left(\left[a_{1}, d_{1}\right] *[1, d]\right) \\
& =\left[a_{1}^{\prime} \vee c, 1\right]\left[1, f\left(a_{1}, d_{1} * d\right)\right]=\left[a_{1}^{\prime} \vee c, f\left(a_{1}, d_{1} * d\right)\right] .
\end{aligned}
$$

Theorem 3.17. Let L be a bounded semilattice. Then L is an implicative semilattice if and only if L is 0 -admissible and D_{0} is implicative.

Proof. If L is implicative, then of course L is 0 -admissible and D_{0} is implicative. The converse follows from Theorem 3.15.

Remark. On a constructive level, we can say the following. Suppose that L is 0 -admissible and D_{0} is implicative. Let $f: C_{0} \times D_{0} \rightarrow D_{0}$ be the corresponding admissible map. The implication in L can be described by

$$
x * y=\left(x^{*} \vee y^{* *}\right) f\left(x^{* *}, d * e\right)
$$

where $x=x^{* *} d, y=y^{* *} e, x, y \in L, d, e \in D_{0}$. For let $t \in\langle x, y\rangle$, that is, $t x \leqq y$. Then $t x y^{*} \leqq y y^{*}=0$. Hence

$$
t x^{* *} y^{*} \leqq t^{* *} x^{* *}\left(y^{*}\right)^{* *}=\left(t x y^{*}\right)^{* *}=0 .
$$

Thus $t \leqq\left(x^{* *} y^{*}\right)^{*}=x^{*} \vee y^{* *}$. Also, since $t x \leqq y$, we have

$$
t x^{* *} d \leqq y^{* *} e \leqq e .
$$

Hence

$$
t x^{* *} \leqq d * e \quad \text { and } \quad t \leqq f\left(x^{* *}, d * e\right)
$$

Thus

$$
t \leqq\left(x^{*} \vee y^{* *}\right) f\left(x^{* *}, d * e\right)
$$

that is,

$$
\langle x, y\rangle \subset\left(\left(x^{*} \vee y^{* *}\right) f\left(x^{* *}, d * e\right)\right] .
$$

On the other hand, suppose that $t \leqq\left(x^{*} \vee y^{* *}\right) f\left(x^{* *}, d * e\right)$. Then

$$
t x \leqq\left(x^{*} \vee y^{* *}\right) f\left(x^{* *}, d * e\right) x
$$

But

$$
\left(x^{*} \vee y^{* *}\right) x \leqq y^{* *} \text { for } x^{*}, y^{* *}, x^{* *} \in C_{0}
$$

a Boolean algebra, and

$$
\left(x^{*} \vee y^{* *}\right) x \leqq\left(x^{*} \vee y^{* *}\right) x^{* *} \in C_{0}
$$

and hence

$$
\left(x^{*} \vee y^{* *}\right) x \leqq x^{*} x^{* *} \vee y^{* *} x^{* *} \leqq y^{* *} .
$$

Thus

$$
\begin{aligned}
& t x \leqq f\left(x^{* *}, d * e\right) y^{* *} \text { and } \\
& t x e \leqq f\left(x^{* *}, d * e\right) y^{* *} e=f\left(x^{* *}, d * e\right) y \leqq y
\end{aligned}
$$

But we also have $t \leqq f\left(x^{* *}, d * e\right)$, and hence $t x^{* *} \leqq d * e$. Thus $t x^{* *} d \leqq$ $d(d * e) \leqq e$, and hence $t x \leqq e$. But $t x e \leqq y$. Hence $t x \leqq t x e \leqq y$ and hence $t \in\langle x, y\rangle$. This proves our claim. This argument holds more generally, and in fact, we have the following result.

Lemma 3.18. Suppose that L is a-admissible and D_{a} is implicative. Then [a) is implicative. In fact, for $x, y \geqq a$, we have

$$
x * y=\left(x^{*} \vee y^{* *}\right) f\left(x^{* *}, d * e\right)
$$

where $f: C_{a} \times D_{a} \rightarrow D_{a}$ is the corresponding admissible map, $x^{*}=x * a$, $x^{* *}=(x * a) * a, y^{* *}=(y * a) * a, x=x^{* *} d, y=y^{* *} e$, where $d, e \in D_{a}$.

References

1. O. Frink, Pseudocomplements in semilattices, Duke Math. J. 29 (1962), 505-514.
2. G. Grätzer, General lattice theory (Academic Press, New York, 1978).
3. P. V. Ramana Murty, Prime and implicative semilattices, Algebra Universalis 10 (1980), 31-35.
4. P. V. Ramana Murty and V. V. Rama Rao, Characterization of certain classes of pseudocomplemented semilattices, Algebra Universalis 4 (1974), 289-300.
5. W. C. Nemitz, Implicative semilattices, Trans. Amer. Math. Soc. 117 (1965), 128-142.
6. J. C. Varlet, Relative annihilators in semilattices, Bull. Austral. Math. Soc. 9 (1973), 169-185.
7. - On separation properties in semilattices, Semigroup Forum 10 (1975), 220-228.

University of Alberta,
Edmonton, Alberta

[^0]: Received November 28, 1980 and in revised form June 9, 1981. This research was supported by NSERC (Canada) Grant A3026.

