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PSEUDOCOMPLEMENTED AND IMPLICATIVE
SEMILATTICES

C. S. HOO

1. Introduction. Let L be a semilattice and let ¢« € L. We refer the
reader to Definitions 2.2, 2.4, 2.5 and 2.12 below for the terminology.
If L is a-implicative, let C, be the set of a-closed elements of L, and let
D, be the filter of a-dense elements of L. Then C, is a Boolean algebra.
If a = 0, then Cy and D, are the usual closed algebra and dense filter of L.
If L is a-admissible and f : C, X D, — D, is the corresponding admissible
map, we can form a quotient semilattice C, X D,/f. In case a= 0,
Murty and Rao [4] have shown that Cy X D,/f is isomorphic to L, and
hence that Co X D,/f is 0-admissible. In case L is in fact implicative,
Nemitz [5] has shown that Cy X D,/f is isomorphic to L, and that
Co X Dy/f is also implicative. We shall show a more general result as
follows. Let C,D, denote the set of all products cd, where ¢ € C, and
d € D, Then C,D, is a subsemilattice of L containing the filter [a).
If @ = 0, then CoD, will be L. We shall show that, in general, C, X D,/f
is isomorphic to C,D,. It will also be shown that C,D, is b-admissible for
allb € C,. As a corollary, it will follow that if L is 0-admissible, it will also
be a-admissible for all ¢ € Co. The major consequence is that a bounded
semilattice L is implicative if and only if L is 0-admissible and D, is
implicative.

2. Preliminaries. Let L be a meet semilattice. We shall denote the
greatest lower bound of two elements a, b of L by ab, and the least upper
bound, if it exists, by @ 4 b. A non-empty subset F of L is a filter provided
that xy € Fif and only if x € Fand y € F. Given an element a of L,
let [a) = {x € Llx = a}. Then [a) is a filter, called the principal filter
generated by a.

A semi-ideal of L is a non-empty subset I of L such that & € I and
a = b imply that ¢ € I. We call I an ideal if further whenever ¢ + b
exists, where a, b € I, then ¢ + b € I. Given an element a of L, let
(] = {x € Llx £ a}. Then (a] is the principal ideal generated by a.

A semilattice L is distributive if z = xy (where x, y, 3 € L) implies the
existence in L of elements xy, y; such that x; = x, ¥y; = vy and z = x1y;.
A semilattice L is modular if whenever y = z = xy, where x, vy, z € L,
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then there exists an element x; € L such thatx; = x and z = x;y. Clearly
a distributive semilattice is modular.

Definition 2.1. Let x, a be elements of a semilattice L. The annihilator
(x,a)y = {y € Llxy < a}. Itis easily checked that (x, a) is always a semi-
ideal of L.

Definition 2.2. Let L be a semilattice and let ¢ € L. Then L is a-
implicative if (x, a) is a principal ideal. We shall denote this principal
ideal by (x*a]. A semilattice L is implicative if and only if it is a-implica-
tive for all ¢ € L. We observe that x * a is a relative pseudocomplement.

If L has a least element 0, then L is O-implicative means that L is
pseudocomplemented, and it is customary to denote x * 0 by x*. We
observe that an a-implicative semilattice always has a greatest element 1
since x € (a, a) for all elements x, and hencea * a = 1.

If the semilattice L is a-implicative, then the following results hold

(see [6]):

1N x*xa=a

(2)x £ a,x*a =1and x *xa = x are equivalent
B)1lxa=q

(4)x*xa=xifandonlyif x = a = 1

5) (x*xa)*a = x,a

6)ifx <y, thenxxa = y*xa and (xxa)*xa < (y*a)=*a
(7) ((x*a)*xa)*a =xx*a

(8) (xxa)((x*a)xa) =a

(9) x(x *a) = xa.

If L is implicative, then the following also hold (see [5]):

(10) if x < y, thenzxx < zxy
(11) x* (y*x32) = (xy) *2

12) x * (y2) = (x * ) (x * 3)
(A3) x* (yx2z) = (x*x7y) * (x *3)
(14) x = yifandonly if x xy = 1.

In [6], Varlet proved the following result.

THEOREM 2.3. If x and y are elements of an a-implicative semilattice, then
((xy)*a) *a = ((x*xa)*a)((y*xa)*a).

From this, it is also quite easy to verify that

(xy)*a = (((x*xa) xa)((y*a) xa)) *a.

Definition 2.4. An element x of an a-implicative semilattice L is called
a-closed if (xxa)*a = x. The set of a-closed elements of L will be
denoted by C,. If @ = 0, 0-closed means closed. From Theorem 2.3 we see
that C, is a subsemilattice of L.
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Definition 2.5. Let a be an element of a semilattice L. An element
x € Lisa-denseif (x,a) C (a], thatis, if {(x,a) = (a].

If a = 0, 0-dense means dense. The set of all a-dense elements will be
denoted by D,. Then D, is either empty or is a filter. If L is a-implicative,
then x € D, if and only if x *x @ = a, or equivalently, (x * a) x a = 1.

We observe thata € C,since (e¢*xa)*xa = 1%a = a.Also (1xa) *xa =
a*a = 1,s0 that 1 € C,. Obviously, x € C,if and only if there exists an
element y € L such thatx = y * a. For each x € C,, we havea £ (x * a)
*x ¢ = x. Thus ¢ is the smallest element of C,, and 1 is the largest. We can
define an operation ® in C, by

x@y=((xxa)(yxa)) xa, forx,y € C,.
Ifx € C,, wedefinex’ = x*xa € C,. Then
x®a=(x*xa)(axa))xa = (x*a)*xa = x.

THEOREM 2.6. Let L be an a-implicative semilaitice. Then C, is a Boolean
algebra with join ® and complementation’ as above.

Proof. We verify that x @ vy is the least upper bound of x and y in C,.
We have that x xa = (x * a)(y * a). Hence

x=(x*xa)*xa £ [(x*xa)(y*a)]l*a =x @ y.

Similarly, y < x ® y. Now suppose thatx < zand y =< 2, wherez € C,.
Then

x*xa =Zz*a and y*a = 3*a.
Hence (x xa)(y *a) = z * a. Thus
x@y=[(xxa)(yxa)]l*xa £ (z%a) xa = z.

This proves that x @ v is the least upper bound of x and y in C,. Next,
we observe that x’ = x x a is the complement of x in C,. For, we have
x'x = (x * a)x < a. Since « is the smallest element of C,, this means that
x'x = a. Also

¥ @x =[x *xa)(x*xa)] xa.
Butx'*a = (xxa) xa = x. Hence
¥ ®@x = [x(x*a)]*xa = (xa) xa = 1.

Thus, C, is a complemented lattice. Finally, we show that C, is a comple-
mented distributive lattice, that is, a Boolean algebra. According to (2]
(Lemma 4.10, page 30), we need only verify the inequality

x@®y)z=x® (yz) forx,y,2¢€ C,.
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We have that xz < x @ (y2) and yz2 < x @ (yz). Hence
xz[(x @ (y2)) *a] = (x2)[x ® (yz)]

Il

and
yal(x ® (y2)) #al = (y3)[x ® (y3)]

since a is the least element in C,. Thus

Il
S

2Z(x @ (92))*a]l S x*xa and z[(x ® (y2)) *xa] = y*a.
This means that z[(x @ (yz)) *a] < (x *xa)(y * ¢) and hence
2l(x @ (y2)) xall{(x xa) (y * a)} ¥ a] = a.
Thus
2(x @ y) = [(x ® (y2)) xa] xa.
But x @ (y2) € C, and hence
[(x @ (y2)) *a]lxa = x @ (y2).
Thusz(x ® y) = x ® (y2), and hence C, is a Boolean algebra.

THEOREM 2.7. If L ts an implicative semilatiice, then for each x € L and
each a € L, we have

x = [(x*xa)*al{[(x*a)*a]*x}.

If x = a, then [(x*xa)*xa]l*x € D, and 1s the greatest element d € D,
satisfying

x = [(x*a)*ald.

Proof. Letb = (x xa) xa,y = b xx. We wish to show thatx = by. We
have x < b and x < y. Hence x < by. But (b, x) = (b * x] = (y], and
hence by < x. Thus x = by. Suppose that x = a. We wish to show that
y € D,. Since {y, a) = (v * a], we need only show that ¥ * a £ a. Since
y 2 x, we have y * ¢ < x # a. On the other hand, since x = a, we have
that

(xxa)[(x*xa)*xa]l = a

I\
XK

Thus (x *x a)b < «x, that is,
x*xa € (b,x)= (bxx] = ()]

This means thatx * ¢ < y. Hencey * ¢ £ (x * a) * @ and hence
yxa = (x*xa)[(xxa)*a] = a.

Finally, suppose that d € D, and x = [(x * a) * a]d. Then we have
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x = bd = by. This means that
d e (bby) = (bx(by)] = (b*x].
Thusd £ bxx = [(x*a) *a] xx.

Note.d = 1o [(xxa)xa]*x =1 (x*xa)*xa =x=x € C,. The
referee has pointed out to us that in this proof b and y may be inter-
changed.

We also have the following result.

THEOREM 2.8. Suppose that L 1s an a-implicative semilatiice which is also
modular. Then for each x = a, there exists an element d € D, such that

x = [(x*xa) *ald.

Proof. We first observe that
(x*xa)[(x*xa)*xa] =a = x £ (x*xa)+*a.

Since L is modular, there exists d = x * a such that
x = [(xxa)*ald.

It remains only to show thatd € D,. We have x < d and x * ¢ = d. Hence
x*a = dxaalso,and (xxa)*xa = d *a. Thus

(xxa)[(x*a)*al =a=d*a = a,
thatis,d *a = a. Thusd € D,.
The following are easy corollaries.

LEMMA 2.9. Suppose that L is implicative (or a-implicative and modular).
Let x,y = a. Then (x xa) * a = (v * @) * ¢ if and only 1if there exists
d € D, such that xd = vyd.

LeMMA 2.10. Let L be an implicative semilattice and let x = a. Then
x € Dyif and only if x = [(y *x a) * a] x y for somey = a.

THEOREM 2.11. Let L be an implicative semilattice. Then the following
holds in L:

{xxy)xalxa={(x*xa)*xa} *{(y*xa)*a} ify = a.

Proof. For simplicity, let us generally write z* for 2z * ¢ and z** for
(z # a) * a, and so on. Since ¥y 2 a, by Theorem 2.7, we can find d € D,
such thaty = y**d. Sinced € D,and d < x » d, it follows thatx xd € D,
also because D, is a filter. Hence

(exy)** = {ox (P I* = {(xx ™) (x D)} = (w# y**)** (w5 d)**
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by Theorem 2.3. But since x *x d € D,, we have that (x * d)** = 1. Hence
(xx % y)** = (x % yFF)FE = x4 y¥*

since it can be easily verified that (xy)* = x * »* in general. Hence
(x % y)¥* = (xy*)*eE = (Fhytin)s

by Theorem 2.3 again. Thus (x » ¥)** = (x®*y*)* = x** x y** proving
our result.

Definition2.12. L = (L, -, *,a, 1) is an a-admissible semilattice if
(i) L is an a-implicative semilattice.
(ii) For each ¥ € L such that x = a, there exists d € D, such that
= [(x * a) * ald.
(iii) There exists a function f : C, X D, — D, such that for each x € L,
we have x < f(¢, d) if and only if xc = d, thatis, if and only if x € {(c, d).
This means that ¢ * d exists and is in D, for ¢ € C,and d € D,.

We observe that if L has a least element 0, then 0-admissible means
admissible in the sense of [3]. If L is implicative, then for eacha € L, L is
a-admissible, for we can define f by f(c, d) = ¢ * d. We observe also that
in this case, D, is also implicative.

Definition 2.13. Let 4 be a Boolean algebra and let D be a meet semi-
lattice with 1. Amap f: 4 X D — D is admissible if

(1) f(ab, @) = f(a, f(b, d)).

(2) Foreacha € 4, f,: D — D given by f,(d) = f(a, d), is an endo-

morphism.
(3) @ = b implies that f(b,d) = f(a,d).
4) f(1,4) = d.

LeEmMA 2.14. If L is an a-admissible semilattice, then the corresponding
mapf:C, X D,— D, satisfiesd < f(c,d), ¢f(¢c,d) = cd.

Proof. Since cd = d, we haved =< f(¢,d). Alsof(c,d) £ f(c,d) and hence
¢f(c, d) = d. This means that ¢f(c, d) £ cd. Thus ed £ ¢f(c, d) £ cd,
thatis, ¢f(¢,d) = cd.

THEOREM 2.15. If L is an a-admissible semilattice, then the corresponding
map f: C, X D, — D, 1s admissible.

Proof. We have seen that C, is a Boolean algebra and that D, is a filter,
that is, a meet semilattice with 1.
(i) To show that f(bc, d) = f(b, f(c, d)). Since f(be, d) = f(be, d), we
have bcf(be, d) £ d. Hence bf (be,d) < f(c,d) and hence

flbe, d) = f(b,f(c, d)).
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On the other hand,
bef (b, f(c, d)) = cbf(b, flc,d)) = cbf(c,d) = bef(e, d) = bed £ d.

Thus f(b, f(c, d)) = f(be, d).
(ii) Let b € C,. To show that f,: C, — C, is an endomorphism, that is,
fo(de) = fo(d)fs(e) for d, e € D,. We have

bf (b, de) = bde < d.

Hence f(b, de) < f(b, d). Similarly, f(b, de) < f(b, ¢). Hence
f(b, de) < f(b, )f (b, €).

On the other hand,
of (b, d)f(b, e) = bf (b, d)bf (b, e) = bdeb = bde < de.

Hence f(b, d)f(b, e) < f(b, de).
(iii) Suppose that b = ¢. To show that f(¢, d) £ f(b, d). We have

bf(e,d) £ ¢f(c,d) = ¢d £ d.

Hence f(c, d) £ f(b, d).
@iv) f(1,d) =1-f(1,d) =1-d = d.
Thus f is an admissible map.

3. Admissible semilattices. Let 4 be a Boolean algebra and let D be
a meet semilattice with 1. Let f : 4 X D — D be an admissible map. We
can define an equivalence relation ~ on 4 X D by (a,d) ~ (b, e) if and
only if ¢ = b and f(a,d) = f(a, e). Then we can form the quotient
A X D/f consisting of all the equivalence classes [a, d].

We can define {a, d] [b, ¢] = [ab, de], and [a, d] < [b, €] if and only if
la, d] [b, €] = [a, d]. Then A X D/f is a meet semilattice. As in [5], we
have the following observations.

(i) Suppose that b £ a and f(a, d) = f(a, e), that is, [a, d] = |a, €].
Then f(b, d) = f(b, ), that is, [, d] = [b, €].
(ii) [a, d] £ [b, e] if and only if ¢ < b and f(q, d) £ f(a, e).

If f(0,d) = 1foralld € D, then 4 X D/f has [0, 1] as its zero.

We can define a pseudocomplementation on 4 X D/f by [a, d]* =
[a’, 1]. Then A X D/f is a pseudocomplemented semilattice. The 0-closed
algebra of A X D/f is isomorphic to 4 via [a, 1] <> a. That is, the 0-closed
elements consist of all {a, 1]. The 0-dense filter of 4 X D/f is isomorphic
to D via [1, d] «» d. That is, the 0-dense elements are all the elements
[1, d]. Then, each element [a, d] of A X D/f can be written as [a, d] =
la, 1] {1, d], with {a, d]** = [a, 1] being O-closed, and {1, d] being 0-dense.
In fact, 4 X D/f is 0-admissible. The corresponding admissible map f; is
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given by
fille, 10, (1, d]) = [1, f(a, d)].

It can be verified that f; satisfies the requirements, making 4 X D/f a
0-admissible semilattice.

If L is a 0-admissible semilattice and f : Cy X Dy — Dy is the cor-
responding admissible map, then L = Cy X D,/f. The required iso-
morphism g : Cy X Do/f — L may be defined by gla, d] = ad. The above
is a summary of the results obtained in [5] and [4]. In fact, we claim the
following result.

THEOREM 3.1. Let A be a Boolean algebra, D be a meet semilattice with 1,
and f : A X D — D be an admassible map. Then A X D/f is a [b, 1]-
admissible semilaitice for all elements b € A, that is A X D/f is an x-
admissible semilattice for all elements x in the 0-closed algebra of A X D/f.

Proof. Let b ¢ A. We first show that 4 X D/f is [b, 1]-implicative. We
define [a, b] * [b, 1] = [0’ V b, 1] for each [a, d] € A X D/f, where V
denotes the join operation in the Boolean algebra 4. This is obviously
well-defined. We have to show that [a1, di] [a, d] = [b, 1] if and only if

lai, di] £ [@' V b, 1], that is, [aa,y, dd,] £ [b, 1] if and only if [a;, d;] £

[a’ Vv b,1]. Thisreduces to the statement aa; < b if and only if a; £ a’ V b,

and this is trivially true since 4 is a Boolean algebra. Next, suppose that
la,d] =z [b,1], thatis, b < a and f(b,d) = 1. We have

(la, d] % [b, 1]) = [b, 1] = [a' V b, 1] * [b, 1]
= [(a' Vb)Y Vb 1] = [ab Vb 1]

Now, (ab’" VvV b) = (ab')'b’ = (¢’ V b)b' = &'b’. Hence ab’ V b =
(@'b) =aV b= asince b < a. Thus

(la, d] = [b, 1]) * [b, 1] = [a, 1].

Also [1, d] = [b, 1] = (b, 1], that is, [1, d] is [b, 1]-dense. Thus, for each
[a, d] = [b, 1], we have

la, d] = [a, 1] [1,d] = {(la, d] * [b, 1]) * [b, 1]}[1, @].
Finally, to obtain the corresponding admissible map

g : {]b, 1]-closed elements} X {[b, 1]-dense elements)}
— {[b, 1]-dense elements},

we observe the following facts. We have that
la, d] is [b, 1]-dense
< [a,d]* [b,1] = [b, 1]
< lad Vb, 1] = [b, 1]
=a £0.
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Also
[a, d] is [b, 1]-closed
< ([a,d] * [b, 1]) * [b, 1] = [a, d]
@ la,d] = [a,1] withd £ a.
We define g by
g([ay, 1], [az, da]) = [ai" V ay, f(a1as, ds)]

where b = a;and @y’ £ b. We note that [a)’ V a,, f(a1as, d2)] 1s [b, 1]-dense
since

(0,1, V (12)' = (lezl é b.
This map g satisfies the requirements. In fact,
[(l, d] é g([aly 1]1 [02, d?])
e [a,d] = [a) V ay, f(aras, ds)]
— Qa é Clll V [e2)
and
fla,d) £ f(aaia,, d2)

S aa; < aq
and

f(a: d) £ f(aalll'z, ds)
& aa, £ s
and

flaay, d) = f(aay, ds)
& laay, d] £ [ay, do]
A s [(l, d] [0,1, 1] _S_ {G’?) dZ]

Thus 4 X D/f is b, 1]-admissible for all b € 4.
Definition 3.2. If L is an a-implicative semilattice, then
C.D, = {cd|c € Coyd € D,}.

We observe that C,D, is a subsemilattice of L containing the filter [a).
Ifa= 0, the C()Do = L.

Definition 3.3. Let L be a semilattice, then %/ (L) will denote the set of
all elements ¢ € L such that L is a-implicative.

LeEmMMA 3.4. %7 (L) is a subsemilattice of L.

Proof. Let a, b € &/ (L). We define x * (ab) = (x % a)(x % b) for each
x € L. It is easily verified that this shows that ab € &/ (L).
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LemMa 3.5. Ifa € 9/ (L), thenbxa € /(L) forallb € L.

Proof. Define x % (b % a) = (xb) * a. It is easily checked that this
satisfies the requirements.

LEMMA 3.6. Ifa € &/ (L) andd € D,, then (bd) * a = bx aforallb € L.
Proof. bd < b. Hence b x @ < (bd) * a. But bd((bd) * a) < a. Hence
b((bd) xa) £d*xa =a
and hence (bd) *xa £ b *a.

THEOREM 3.7. Let L be an a-admassible semilattice and let f : C, X D, —
D, be the corresponding admissible map. Then

C. X D,/f = C,D,.

Proof. Let g : C, X D,/f — L be given by g([b, d]) = bd. This is well-
defined. For if [b, d] = [b;, d1], then b = by, and f(b, d) = f(b, d1). Hence

bd = bf(b, d) = bf(b, dy) = bdy = buds.
Now g is a homomorphism, for
g([0,@][b1,d1]) = g([bb1,dd,]) = bbidd: = bdbidy = g([b,d])g([b1,d1])-
Also g isone to one. For if bd = bid;, then
{(bd) * a} x a = {(bidy1) * a} * q,
that is,
{(bxa)*al {(d*a)*a} = {(byxa)*xa} {(d1*a)*al.
Hence b = b, since b, b, € Cy, and d, d, € D,. Hence
bf(b,d) = bd = bid, < dy,
and hence f(b, d) = f(b, d1). Similarly
of(b,dy) = bdy = bidi =bd = d

and hence f(b, d1) < f(b, d). Thus f(b, d) = f(b, d1) and hence [b, d] =
[b1, d1]. Clearly, the image of g is contained in C,D,. On the other hand,
it is also obvious that the image of g contains C,D,. Thus

g: Cy X DoJf = CoD,.

COROLLARY 3.8. Let L be a 0-admissible semilattice and let f : Cy X Dy —
Dy be the corresponding admissible map. Then

C() X Dﬁ/fg L.
PfOOf. C()Do = L.

The following is easily verified.
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LemMmA 3.9. Let L, Ly be semilattices and let a € L, a1 € Ly. Suppose that
L 1s a-implicative and L, is a-implicative, and suppose that g: L — L, 1s
an isomorphism such that

gla) = a1 and glxxa) = gx) *a,
for all x € L. If Lis a-admissible, then L, is a;-admissible.

TueOREM 3.10. Suppose that L is an a-admissible semilattice for some
a € L. Then C,D, is a b-admissible semilattice for allb € C,.

Proof. By Theorem 3.7, ¢ : C, X D,/f — C,D,, given by g([b, d])) = bd,
is an isomorphism, where f : C, X D, — D, is the corresponding admis-
sible map. By Theorem 3.1, C, X D,/f is [b, 1]-admissible for all b € C,.
Now g([b, 1]) = bforeachd € C,. Also, if b; € C,, we have (b *a) * a =
by. Since a € 7 (L), it follows by Lemma 3.5 that (b; x a) x a € ./ (L),
that is, b; € &/ (L). We have, for b, b; € C,, d € D, that

(bd) * by = g([b, @]) * g([bs, 1]).
Thus

g([b, @l) = g([b1, 1) = (bd) * by = (b@) * { (b1 * @) * a}

= {(bd)(bi*xa)} xa = (bi*a) * {(bd) xa} = (bixa)x(b*a)

since d € D,. Thus

g([b, @) * g([by, 1]) = {b(b1* a)} * a.
On the other hand.

g({b, d] % [b1, 1]) = g([6" V by, 1]) = &' V b
But in C,,

Vb ={0xa)bixa)}xa = {bbi*xa)} *xa
since b’ = b *a in C,. Thus g satisfies

g([b, d] * [b, 1]) = g([b, d]) * g([b1, 1]) = g([b, @]) * b
forall b, b, € C,, d € D,. The proof is completed by applying Lemma 3.9.

CoroLLARY 3.11. Suppose that L is 0-admissible. Then L 1s also b-
admissible for all 0-closed elements b.

We may, of course, iterate the situation described in Theorem 3.7.
That is to say, suppose that L is as described in Theorem 3.7. Then

g: Co X DJf — C,D,

is an isomorphism given by g([b, d]) = bd. Then by Theorem 3.10,
C, X D,/f is [b, 1]-admissible for each b € C,, and C,D, is b-admissible
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for each b € C,. For each b € C,, let C[b, 1], D[b, 1] denote the [b, 1]-
closed and [b, 1]-dense elements of C, X D,/f respectively. Let

h: Clb, 1] X D[b, 1] — D[b, 1]
be the corresponding admissible map. Then by Theorem 3.7,
Clb, 1] X D[b, 1]/ = C[b, 11DIb, 1].

We recall that C[b, 1] consists of all [¢, 1], ¢ € (s, and b < ¢ and D[b, 1]
consists of all [¢, d] with ¢/ < b. Thus C[b, 1]D[b, 1] consists of all elements
lecy, d) of Cy X D./f with ¢y’ £ b £ ¢, that is, of all elements [c, d] [y, 1]
with &' £ ¢y and b £ ¢. Thus, C[b ,1]D[b, 1] consists of all the products
[c, d] [cy, 1] with [¢', 1] £ [c1, 1] and b £ ¢, that is, C[b, 1]DI[b, 1] is the

filter of C, X D,/f generated by
(b, 1] [b, d] = [(b x a)b, d] = [a, d].

In case a = 0, then for each b € C, C[b, 1] = C via [a, 1] <> a, and
D[b, 1] consists of all products dx,d € D,, x = b’ = b*, that is, the set of
all products Dy[d’) = Dy[b*). Thus

Clb, 11D[b, 1] = CoD[b*) = principal filter of L generated by b*.
Thus we have the following result.

THEOREM 3.12. Let L be an a-admissible semilattice and let f : Co X Dy —
D, be the corresponding admissible map. For each b € C,, let C[b, 1] be the
set of all [0, 1]-closed elements of C, X D,/f, and let D[b, 1] be the set of all
(b, 1]-dense elements of C, X D./f. Then Clb, 1]1D[b, 1] is the filter of
C., X D,/f generated by (a, d] for all d € D,. In case a = 0, then

Clb, 11D[b, 1] =2 [b*) for eachb € C,.

LeMmMmA 3.13. Let L be an a-admaissible semilattice and let f : C, X D, —
D, be the corresponding admissible map. If D, is implicative, then f satisfies

f(b,dixdo) = f(b, d) +f(b, do)
forallb € C,,dy,dy € D,.
Proof.
f(b, d0)f(b, drx ds) = f(b, di(d1* do)) = [f(b, didz) = f(b, do).
Hence, f(b, d1 ¥ d2) = f(b, d1) * f(b, d2). On the other hand, since
bif(b,dr) xf(b,d2)} = f(b, dv) * f(b, do),
we have

bf (b, d){f(b, d1) * f(b, d2)} < f(b, ds).

https://doi.org/10.4153/CJM-1982-028-6 Published online by Cambridge University Press


file:////-dense
https://doi.org/10.4153/CJM-1982-028-6

SEMILATTICES 435

Thus
bdl{f(by dl) *f(bv d2)} é j(br d2>

and hence

bdi{f (b, d1) * f(b, dr)} < do.
This gives

bif(b, dv) % f(b, d2)} = dixd»
and hence

£, dy) % f(b, ds) < f(b, dy * ds).

THEOREM 3.14. Let L be an a-admissible semilattice and let f: C, X Dy —
D, be the corresponding admassible map. If D, is implicative, then C, X
D,/f1s (1, d)-implicative for each d € D,.

Proof. Letd € D,andlet [a,dq] € C, X D,/f. We define
lai, di] * [1,d] = [1, f(a1, d1 * d)).
This makes C, X D,/f into an [1, d]-implicative semilattice. For, let
las, ds) € C. X D,/f. Then
las, ds] = (1, f(a1, d1 % d)]
& f(aq, ds) = f(azai, di*d)
& f(azay, d2) £ flagay, dy*d) = f(asay, dr) * f(asay, d)
< f(asa, d2)f(azay, d1) = f(asay, d)
& f(asa, dody) = f(asay, d)
& [aqai, dodq) £ [1, d]
& lag, dolay, di] = (1, d].

THEOREM 3.15. Let L be an a-admissible semilattice and letf : C, X D, —
D, be the corresponding admissible map. If D, is implicative, then C, X
D, /f is implicative.

Proof. We have seen that C, X D,/f is [c, 1]-admissible for all ¢ € C,,
and hence is [¢, 1]-implicative for all ¢ € C,. By Theorem 3.14, C, X D,/f
is [1, d]-implicative for all d € D,. Since (¢, d] = [c, 1] [1, d], it follows by
Lemma 3.4 that C, X D,/f is [¢, d)-implicative for all [¢, d] € C, X D,/f.

COROLLARY 3.16. Let L be a 0-admaissible semilattice. If Dy is implicative,
then L ts implicative.

Remark. Let L be a-admissible and let f : C, X D, — D, be the cor-
responding admissible map. Suppose that D, is implicative. Then by
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Theorem 3.15, C, X D,/f is implicative. The implication * is given by
[alv dl] * [Cy d] = [a’lv dl] * ([Cv 1] [11 d])

(lay, di] * [c, 1]) (las, du] * [1, @])

la) Ve, 111, f(ar, di % d)] = [a) V¢, f(a, dy %d)].

THEOREM 3.17. Let L be a bounded semilattice. Then L is an implicative
semilattice if and only if L is 0-admassible and D, 1s implicative.

Proof. If L is implicative, then of course L is 0-admissible and D, is
implicative. The converse follows from Theorem 3.15.

Remark. On a constructive level, we can say the following. Suppose
that L is 0-admissible and D is implicative. Let f : Co X Dy — D be the
corresponding admissible map. The implication in L can be described by

x*xy = (x* V y*)f(x**, d x e)

where x = x**d,y = y**e,x,v € L,d,e € Dy. Forlett € (x, v), that is,
tx < v. Then txy* < yy* = 0. Hence

fREyR SRR (R YRR (pegk) Rk = ()
Thus ¢t = (x**y*)* = x* VvV y**. Also, since tx < v, we have
tx**d < y**e < e.
Hence
t** < dsxe and ¢ = f(x**,dxe).
Thus
b= (% VY, dxe),
that is,
(e, 3) C (" V y*™*)f(x**, d xe)].
On the other hand, suppose that ¢t < (x* V y**)f(x**, d x ¢). Then
e S (x* V oy f(x**, d x e)x.
But
(x* V y*¥)x < y¥* for x¥ y*F xR € Oy
a Boolean algebra, and
(x* V y*)x = (2% V y**)a* € G,
and hence

(x* V y¥)x S afatr v yFRgRE < R
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Thus

tx < f(x**, d * e)y** and
txe < f(x**, d % e)y**e = f(x**,dxe)y < v.

But we also have ¢t < f(x**, d * ), and hence {x** < d * e. Thus tx**d <
d(d*e) < e,and hence tx < e. Buttxe < y. Hence tx < txe < yand hence
t € (x, v). This proves our claim. This argument holds more generally,
and in fact, we have the following result.

LeEmMA 3.18. Suppose that L is a-admissible and D, is implicative. Then
[a) is implicative. In fact, for x,y = a, we have

xxy = (x* V y**)f(«** d *xe)

where f : C, X D, — D, is the corresponding admissible map, x* = x * a,
x** = (x*xa)*xa, y*™* = (yxa) *xa,x = x*d,y = y**e, where d, e € D,.
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