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Stein quasigroups II:

algebraic aspects

M.J. Pelling and D.G. Rogers

This paper furthers the foundation of the theory of quasigroups

obeying the law x{xy) = yx "by studying their algebraic

properties. Much information is obtained by analysing the cycle

decomposition of left translations regarded as permutations, and

other results are obtained by representation in terms of abelian

groups with an operation.

1. D e f i n i t i o n s and elementary p r o p e r t i e s

Our paper [5] considered quasigroups obeying the law x{xy) = yx ,

also known as Stein quasigroups or systems, from a combinatorial viewpoint:

in this sequel we explore their algebraic properties. The main achievement

is perhaps the analysis, in Section 3, of medial Stein systems - that is

those obeying the medial law [xy){zt) = (xz)(yt) . This section also

contains results on canonical forms for abelian groups with an automorphism

which are of interest in their own right.

Elementary consequences of the defining law are idempotence, xx = x ,

and anticommutativity, xy = yx °* x = y , and while the associative law

can not hold universally except in the trivial system of order 1 (since

an idempotent group is trivial) we do have the special case

x(yx) = (xy)x . The cartesian product of Stein systems is also a Stein

system. Less trivial is the following theorem.

THEOREM 1 . If S is a finite Stein system with a proper subsystem

T then |s| > 3|r| + 1 .
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Proof. Let a € S\T . Since T is a subsystem, for any x £ T

there exis ts b € S\T , b + a , such that b x = a , and then

a, b , such that xb = b a = a .
' X X X X

y # x . Then b x = b y implies b ? b , and hencex y x y

r , i f b = a thenx y

[a u)b = [a u)c -a [yo ) = a [ y [yb )) = a [by]
*• yf3' x y y y y y y y y

c
X

°x

S\T

Let

a
y

y

°x *

e T ,
?urthe

= e a = b [b x] = xb =* a y - x *> ay xK x ' x -up uy x~~ X ' X y-' y

which is a contradiction.

So for any choice of x, y € T , b f c , and it follows that the

x y
set T , {b | x i. T) , {c | x (. T] , ia) are all disjoint; sob

\S\ Z 3\T\

COROLLARY. There are no Stein systems of orders 2 and 3 . For in

the theorem, if \s\ > 1 one may always take \T\ = 1 and deduce

\S\ > h .

Cases when equali ty holds in the theorem are discussed in [5 ] . Note

also that any Stein system S such that | s | < 13 must be minimal; that

i s there are no non- t r iv ia l proper subsystems.

The notions of homomorphism, endomorphism, isomorphism, automorphism of

Stein systems are defined in the usual way. Thus we have the following

def in i t ion and theorem,whose proof, being elementary, i s omitted.

DEFINITION. If S and K are Stein systems then a homomorphism f

of S to # i s a map f : S -»• K such that f{xy) = f(x)f(y) for a l l

x, y in S .

THEOREM 2. If f : S -*• K is a homomorphism of Stein systems and B

is any subsystem of K then f (B) is a (possibly empty) subsystem of

S . In particular if a £ f(S) then f~ ({a}) is a non-empty subsystem

of S .

Any homomorphism f of S defines an equivalence relation ft on S

by xRy *=* fix) = f(y) , with the property that xRy & uRv =* {xu)R(yv) .

Conversely given an equivalence relation R with this property then if
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[x] denotes the equivalence class of x € S , the set of equivalence

classes becomes a Stein system, denoted S/R , on defining [x][y] = [xy] ,

and the map x -*• [x] is a homomorphism of S onto S/R . Further if

f : S •*• K is an onto homomorphism with associated equivalence relation R

then K ~ S/R and the map [x] •* fix) is an isomorphism.

EXAMPLE. Let Z, be the cyclic group of order 1* and let

S = Z, © Z, with quasigroup multiplication defined by x = [x. , xS) ,

H = G/X' y^i •>
 x-y = T x + Ty where Tx = (x2, a^-Xg) • Then S is a

Stein system of order 16 (s c~ J{l6) in the notation of Section 3) and

x •* 2x defines a homomorphism f of S onto a subsystem K (c* sfCO) of

order h . As a runs through the elements of K , f ({a}) runs

through four disjoint subsystems of S all isomorphic to K . Thus the

equivalence classes composing S/R are actually subsystems of S , as is

the case generally.

An important technique in the study of finite Stein systems is the

analysis of the cycle decomposition of a left translation x -> ax regarded

as a permutation P of S\{a} , where a is a given element of the

system S . The notation P = [m ] + [m ] + . . . + [m. ] will mean that

P has a decomposition into cycles of lengths m , m , ..., m. . For

example the system t/(l6) above has P = [ 3 ] + [ 6 ] + [ 6 ] for any a ,

while its subsystem J(k) has P = [3] for all a . The cycle

decomposition can be different for different a (see, for example, Section

6), and a system i

be called cyclic.

6), and a system for which P is a sinsrle cycle Tor at least one a will

2. The analysis of ̂ yrles ii
a

THEOREM 3. Let S be a finite Stein su-item^ j y' > i . Then

(i) for any a £ S the length of a cycle 'in P^ is at "•s,<.st

3 ,
(ii) if [x x ... x, ) is a cycle in P of leKoth T< . :/-du i K—± a
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ax. = x. , 3 x .a = x. , x .x. „ = x. ,
^ t+1 v 1+2 v %+2 -Z.+1

x .x. = x. ox. , suffices being reduced modulo k

(i-ii) if P has a cycle C of length k where k = 3 or

k = h, then C u {a} is a subsystem of S of order

k + 1 .

Proof. Given a i S suppose b # a . Then P (b) = ab ,

P (b) = a(ab) = ba , and by introductory remarks in Section 1, b, ab, ba

are a l l d i s t i n c t . This proves (i).

For (ii), by def ini t ion of P , ax. = x. so

x .a = a(ax.) = ax. ., = a;.

Also

x..x. n = x.[x.a\ = ax. = x. . ,^ t+2 i l t J t t+1

and

x .a;. = a;. fa; .a;. „) = a;.

For (i-ii/1 , suppose f i r s t P has a 3-cycle C = (j ;~r.xj . Then, by

(ii) ,

x .a = x . „ = x . ^ x . _ = x . ..a;. = x.ix.x. A "* x .x. _ = a .
^ t+2 t+1 t+3 t+1 ^ i v ^ t+1-1 ^ ^+1

Using (H), it follows that Cu {a} is closed under the quasigroup operation,

and so constitutes a subsystem of order 1* .

If P has a U-cycle C - [x x xjc J , then

x.x. =x. ^x. =x. _x. =x.

a; .a = x . = x . nx . = x . _,x . = x . fx .x .
i ^+2 ^-l % t+3t il t i

and

so that x.i. = a . Thus again C u {a) is closed under the quasigroup
Is U T j

operation, and forms a subsystem of order 5 . //

The method of proof also shows that there do exist unique (up to
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isomorphism) systems of orders U and 5 which in conformity with Section

3 we denote J[h), J(5) respectively. These systems are cyclic, minimal,

medial, and have sharply 2-transitive automorphism groups - see Sections

3 and 5.

A P cycle C is said to be self-reciprocating (relative to a ) if

x, y exist in C with xy = a . The following theorem describes the

basic properties of self-reciprocating cycles.

THEOREM 4. In a finite Stein system S suppose P has a self-

reciprocating cycle C = {xox ... x ) of length Then

(i) if m is odd, m = 3 , and the only cyclic system of even

order is J(k) ;

(ii) if m = 2k is even and x x. = a then, if i is even k

is odd, i = k + 1 and x .x . . ^ = a , x . , .x . = x . .
3 j+k+1 ' j+fc+1 o 3+2

for all even j ;

(iii) if m = 2k and x x. = a with i odd, the relations
0 "Z-

x .x. . = a , x. x. = x. hold for j even, and the
3 3+v J + l 3 3+i

relations x JC . „ . = a , x . .x . = x . hold for j
3 j+2-i ' 3+2-1- 3 3+2 J d

odd.

Proof. With no assumptions about the parities of m and i , if
X0Xi = a t h e n XiX0 = XotetfJ = X0a = X2 ' XiX2 = xi(xiX0± = xQXi = a •

Repeating this argument starting from x.x. = a i t follows x~x.+2 = a ,

and so iterating,

( 1 ) x2tXi+2t = a ' Xi+2tX2+2t = a f O r a 1 1 * •

If m is odd then 2t runs through a l l residues (mod m),so in

particular

x.x0. = a = x.xo ** xo. = xo °* 2i = 2 (mod m) °* i = 1 .

But then x.x, = a , x.a = x~ , x.x_ = I, ,• which means that P has a
ux u *- u d x x

3-cycle [x axA so that, by Theorem 3 (iii), {a, z , x , x }
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cons t i tu tes a J(h) subsystem and m = 3 .

If m = 2k and i are even then taking 2t = i in ( l ) , x .x . = a

whence 2i = 2 (mod 2k) so that i = X or i = k + 1 . But, as before,

i = 1 leads to m = 3 , which i s impossible, and so i = k + 1 . Part

f i iJ now follows on putting 2t = j in ( l ) and noting that

x . , ., x . = x .{x x . . .,) = x .a = x . „ .3+k+l o oK o 3+k+l' j j+2

Part (Hi) follows similarly from ( l ) . / /

COROLLARY. If m = 2k > h then i t 1, 3, 2fc-l . In particular a

self-reciprocating cycle of length 6 is impossible.

Proof. If i = 1 then ^Q -̂I = o. leads, as above, to

{a, x , x , x } = J{h) , contradicting m > U . If i = 3 then

a; a; = a , ^-.^Q = a by part (Hi), so that

x l x0 = ^ o ^ c f j =a = X0x3 * ^O l̂ = X3 •

But then P has a 4-cycle ( i i - o i . ) , whence
xQ L i d .

{a, xQ, x , x , x-} = J"(5) , contradicting m > h .

If £ = 2k - 1 then, by part (Hi) with j = 2 , x..x^ = x, . But by

Theorem 3 (ii) , t x . = x^x.. = x> = a:-s:_ ^ x = x_ , again contradicting

m > h .

If C = (x-x.XpX_Xi x,-J were self-reciprocating of length 6 and

xfix. = a then by the preceding, i is not odd whence, by part (ii),

i = fe + 1 = h . Taking j = 0 in part (££,) , xhx
0
 = xo = xhX6 ~ XS ' a

contradiction since i # x- . So C can not exist. / /

If 5 were a system of order 9 then, since 5 must be minimal, P

can have no cycles of length less than or equal to h and thus comprises a

single cycle of length 8 , which must of course be self-reciprocating.

Part (iii) of the preceding theorem and corollary are then applicable to

deduce that if (^Q^-, ••• x
7)

 i s t i l e cycle then x .x. = a ,

x .x . = x . , for a l l j , and with this information i t is easy to
0 3 -3 3 *
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complete in a unique and consistent way the multiplication table for S .

This unique system of order 9 , denoted j(9) , is cyclic, minimal,

medial, and has a sharply 2-transitive automorphism group - see also

Sections 3 and 5.

It may also be conjectured that in general if C is a self-

reciprocating cycle in P of length 8 then C u {a} forms a J(9)

subsystem though we have not been able to prove this. It is true if one

assumes the system is left-distributive.

In the case where xy = a with x, y in different cycles of P the

following theorem may be proved by similar methods - we omit the details of

the proof.

THEOREM 5. Let P have disjoint cycles [XQX
1 • • • x •,) and

(j/nj/ ••• y i , ) of lengths m, m' respectively, and suppose x
ryCl

 = a •

Then

(i) if m, m' are both even, m = m' and

X2iy2i = y2iX2i+2 = a ' y2iX2i = X2i+2 ' X2i+2M2i = h*2i

for all i ,

(ii) if m, m' are both odd, m = m' and x.y. = y .x. = a ,

(Hi) if m is odd and m' is even, m' = 2m and

X2iy2i = y2iX2i+2 = a ' y2iX2i = X2i+2 ' X2i+2y2i = y2i+2

for all i .

The preceding theorems can now be used to prove the non-existence of

Stein systems of cer tain orders.

THEOREM 6. There are no Stein systems of orders 6, 7, 8, 10, 12,

lit .

Proof. Orders 6, 7, 8, 10 are ruled out because P could have no
a

cycles of length less than or equal to k and thus would consist of a

single self-reciprocating cycle of length 5, 6, 7, 9 respectively. Such

cycles can not exist by Theorem k and corollary.
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If S were of order 12 then S would be minimal so again P has

no cycles of length less than or equal to k . Thus P = [ll] or

P = [5] + [6] which are ruled out by Theorems h (i) and 5 (Hi) .

If S were of order l̂i then P can not have a cycle of length h

since Ik < 3.5+1 but conceivably cycles of length 3 could occur. The

possibilities ?a = [13], [5] + [8], [6] + [7], [3] + [3] + [7] are ruled

out by Theorems h (i) and 5 (Hi) which leaves [3] + [10] and

[3] + [5] + [5] • It follows that each element of 5 would be contained

in exactly one j(h) subsystem: these subsystems would therefore be

disjoint which is impossible since U does not divide lU . //

As regards other systems of low order it is easy to show that the

cycle decomposition for a system of order 11 must be [10] or

[5] + [5] • Both are possible and by tedious construction of the

multiplication tables one can show that there are precisely two systems of

order 11 , denoted </(ll, 7), ^(11, 3) respectively. These are medial

and minimal with sharply 2-transitive automorphism groups (see Sections 3

and 5).

It seems unlikely that a system of order 15 exists - if it does P

must have cycle decomposition [lit] or [7] + [7] or [3] + [3] + [8]

and the last case can not occur for every a . It also seems unlikely that

a system of order 18 exists. For further information about the spectrum

see reference [5].

3. Medial Stein systems

In this section we consider Stein systems obeying the medial law

ML : (xy)(zt) - {xz)(yt) . It is known [6] that for quasigroups the

modular law KL1 : x(yz) = z(yx) implies ML , and in the case of Stein

systems the converse is true: for given x, y, z we have x = yx ,

s = yz for some x , z , and

x(ys) = [yxjiyiyz^] = [yxj [zxy] = (yzj (x^) = 3(2/(1/3̂ )) = z(yx)

Also, if a quasigroup is idempotent and obeys ML1 then it is a Stein

system since x{xy) = y(xx) = yx . Any quasigroup which is medial and
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idempotent is left and right distributive [6], and although the converse is

not true in general, we do not know any Stein system which is left

distributive but fails to be medial. However, by a result of Fischer [1] a

left distributive minimal finite Stein system would be medial.

By Murdoch's result [3] on medial quasigroups with an idempotent

Stein systems which are medial can be characterised in terms of abelian

groups.

THEOREM 7. Let S be a medial Stein system and a £ S and let

T = T be the left translation by a , Tx = ax . Then there is a binary

operation + = + on S which converts S into an abelian group S(a)

in which a is the group zero and T an automorphism of S(a) satisfying

(2) T2 + T = 1 ,

and such that the quasigroup multiplication on S is given by xy = T x + Ty .

Conversely this equation defines a medial Stein system, given any abelian

group and automorphism satisfying (2). The groups S{a) with automorphism

T are all operator isomorphic for different choices of a .

Proof. Since S is left distributive, T{xy) = (Tx)(Ty) , and since

asigroup,

x + y = [f~ X) [T~ y) . Then

S i s a quasigroup, T has an inverse T . Define + on S x 5 by

x + y = [T-2x) [a{T-2y]) = (r"2^ [a^x]) = y + x

by ML' , so that + is commutative. Also

x + (y+z) = (T-^.T^dT^iT-h)) = (r"2x) . ((r3y) [T^Z] )

= [T~Zz)[[T2y)[T-2x)) = z + {y+x) = (x+y) + z

using ML' and conunutativity of + , so that + is associative.

Since x+a=a+x= [T~ a) [T~ X) = a[T~ x) = x and since the

equation x + y = a "=» [T~2x) (T"1!/) = a <=> [T~1x)y = a always has a

solution for y given x , it follows that under + , S is an abelian
o

group S(a) with zero a . Obviously xy = T x + Ty and the law

x(xy) = yx requires T + T = X .

https://doi.org/10.1017/S0004972700011059 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011059


3 3 0 M . J . P e l I i n g a n d D . G . R o g e r s

If b * a , define / : S(a) •* S(b) by f(x) = x + b , so that

T fT~ x = x + 21 2> . Then
a a a a

T,x = bx = T b + T x = T x - T b + b = fT f~ x ,
b a a a a a a a J <r '

so that ?£ = f1af~'
L and

/(x) *b f(y) = Tb f ^ ^ ^ a J^

= x + T b + y + T b = x + ty+ 5 = f fa; + ty) .

Thus / is an operator isomorphism of (s(a) , T ) and (s(&) , T,) . //

In the preceding proof / is an automorphism of S and in fact it is

easy to determine aut(S) in terms of S(a) and T . If g € aut(S)

then g(x) = h(x) + b for some b where h is an automorphism of 5

leaving a invariant. Then

h(xy) = h(x)h{y) =" h(TZx+Ty) = T2^(x) + 27z(z/) .

Putting x = a , h(Ty) = Th{y) so that h, T commute, whence

h(x+y) = h(x) + ̂ (y) for all x, y (. S . Hence aut(S) is the set of

maps g(x) = h{x) + b where h is an automorphism of S(a) commuting

with T . The left translations of 5 are the maps x •*• T x + b and

the group translations x -*• x + b form a transitive normal subgroup of

aut(S) .

If K is a subsystem of 5 and a £ K, then K(a) is a T -

invariant subgroup of S(a) , and conversely. Any other subsystem can be

obtained by translating in S(a) a subsystem containing a . Also, as S

is medial, one may form [6] the cosets xK , x 6 S , and the quotient

system S/K with multiplication (xK)(yK) = (xy)K . In terms of S(a)

2
the coset xK is the group coset T x + K{a) and

(xK)(yK) = T^(xy) + K{a) = T \ + T\J + X(a) = T^(xK) + T (yK) .

I t follows that S/K may be identified with the quotient group S(a)/K{a)
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and i t s induced automorphism T[x+K(a)) = Tx + K(a) where in S/K ,

£n = f J + T n . In the sense of Section 1 the map x -> xK defines a
A A

homomorphism of S onto S/K .

The preceding analysis is valid for all medial Stein systems; we now

proceed to a detailed analysis of finitely generated systems.

LEMMA 1. S is finitely generated as a quasigroup if and only if

S(a) is finitely generated as a group.

Proof. Let a, x , ..., x, generate 5 as a quasigroup. Then S(a)

is generated by x , . . . , x, , T x , . . . , T x. since the subgroup generated
-L K. a J- a K.

by these elements is T -closed and contains a, x , ..., x, .
CL . L / C

Conversely if S(a) is generated by y , ..., y, then, since

x + y = \T~ x\\T~ y\ , any sum n y + ... + n,yv can be obtained from

a, y , ..., y, by repeated quasigroup multiplication and left division by
1 K

a = T so that a, y , ..., y, generate S as a quasigroup.
[ a j 1 Ac

The proof shows that if s, t are the smallest possible numbers of

generators for 5, S{a) respectively,then s 5 t+1 and t - 2s~2 . It is

easy to construct examples which show that neither of these inequalities

can be sharpened.

DEFINITIONS. (i) If p is a prime we say S is a p-system if

S(a) is a p-group and S is torsion-free if S{a) is torsion-free.

(ii) If p = 1, it (mod 5) then j[p , X) will denote the p-system

5 given by S{a) = Z g , Tjx = Xx where X 2 + X - 1 E 0 (mod ps) (there

P
are two distinct possible values of X for given p and s ). J(5) will

denote the 5-system given by Z , Tx = 2x .

( i i i ) If p E 2, 3 (mod 5) or p = 5 then j ( p 2 s ) wi l l denote the

p-system given by S(a) = Z g © Z g , T (x, y) = (y, x-y) .
P P

(iv) The torsion-free system given by S(a) = Z ® Z ,
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T ( x , y) = (y, x-y) w i l l be denoted by J .

THEOREM 8. Let S be a finite medial Stein system. Then

(i) S c= "| f S is isomorphic to a cartesian product of
P P

p-systerns for various p ,

(
P

s .

cartesian product of various factors j[p , X] ,

2s.
(Hi) if p = 2, 3 (mod 5) then S ~ ~| f j[p %] , a cartesian

P i

product of various factors j[p s) .

In all cases the number and types of each factor are uniquely determined.

Proof. Part (i) follows directly from S(a) being the direct sum of

its Sylow p-subgroups,each of which must be T' -invariant for the

automorphism T . Each S is unique up to isomorphism by the uniqueness

of [S(a), T ) up to operator isomorphism.

The proofs of parts (ii) and (Hi) depend on finding canonical forms,

in various cases, for a finite abelian p-group with an automorphism.

LEMMA 2. Let U be a linear transformation of a finite dimensional

vector space V = V(F) over a field F such that its minimal polynomial

m(X) = m {X)m (A) ... mAX) factors into distinct irreducibles m.(X)

over F . Then if X is a U-invariant subspace of V there is a

U-invariant subspace Y such that V = X © Y .

The proof is a simple exercise in linear algebra and is omitted.

LEMMA 3. Let A be a finite abelian p-group and T an

automorphism of A satisfying f(T) = 0 where f is a monic polynomial

of degree n over Z which is irreducible mod p . Then A is a direct

sim of summands of the form [z] © [Tz] © ... © [r"~ z] where z € A is

different for different summands and each \T*Z\ ~ Z for some t = t{z)

P
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depending on z but not on j .

s s-1
Proof. Let s be the least integer such that p A = 0 . Then p 4

is a vector space V over GF(p) and T acts on / as a linear

transformation with minimal polynomial /(A) (mod p) . By the Jordan

Canonical Form, V is a direct sum of ^-invariant subspaces

. i - l - i
1 • L e t Mi = PS~±ZI ••> t h e n t h e

T?z . , 0 5 j < n , 1 5 i S t , a r e l i n e a r l y independent (mod p ) . For

Y a. -T^z1. = 0 =» V a . .Tt 7ps"132: = 0 =» a . . E 0 (mod p) =» a . . = pb . .

=* 7 fe . .2 JpS~12a : = 0 =* fc . . = 0 (mod p) =» . . . =» a . . E 0 fmod pSl .

Thus A has a subgroup X = © 7^2. where each 2^2 • ^ 2
z.,,7 L -1 L -J p

Now l e t V = p {x \ x ' i. A and p x = 0} ? which i s also a vector

space over GF(p) and V c K . 7^ and 7 are T-invariant, so by

2 1
Lemma 2, V = V ® V for a T-invariant subspace V . As before F?

is a d i rec t sum of T-invariant subspaces w., Tw., . . . , T U.\ ,

s—2 2 s—1 2

1 5 i S i (or i s empty), and putting w. = p z. where p z. = 0 ,

we obtain a subgroup A = © 2^2. where each J^s . ~ Z . Also,

as i s easily ver i f ied , A + A = A © A .

Continuing thus , K3 = pS~3{x | a: € A and pS"2x = 0} = V2 © 7 and

so on, we eventually express A = A © A © . . . © A in the form required

by the lemma.

COROLLARY. If A is a finite abelian p-group, pSA = 0 , and T an

automorphism of A with f{T) = 0 where f(X) = "] f fA\) (mod ps) and
k k

the f^ are monia of degree n. and distinct (mod p) and irreducible
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(mod p) , then A is a direct sum of surmands of the form
n -1

[z] @ [Tz] @ . . . © [? K 2] where fv(T)z = 0 and [T°•£] ~ Z for
p

t = t{z) . The number and types of each summand are uniquely determined.

For we may write A = © A where A = {x \ f,(T)x = 0} and
k K

(k)
apply the lemma to each A separately. The uniqueness follows by the

(k)
uniqueness of the A and the uniqueness of the canonical form for

finite abelian groups (without automorphism).

Finally parts (ii) and (Hi) of the theorem follow directly from Lemma

2
3 and its corollary applied to the case T + 7 - 1 = 0 , on noting that

A2 + A - 1 factors (A-A.J (A-A2) (\ * A2) in Z for p = 1, h

PS

(mod 5) and is irreducible in Z for p = 2, 3 (mod 5) . / /
s

p
2 2

The case p = 5 is anomalous since A + A - 1 = (A-2) (mod 5) and
is irreducible (mod y) for s > 1 . For an example of a 5-system not
of the kinds appearing in Theorem 8 (ii) and (Hi) consider
Z © Z = [ e ] © [e2] with T defined by

2
Then T + 7 - 1 = 0, so this is a 5-system, which we denote P . We have
developed a method for determining all 5-systems of a given order, but as
i t is complicated and does not yield the isomorphism classes explicitly we
omit the details . The isomorphism classes for orders ? , 1 S s - h ,
are as follows:
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Order

5

25

125

625

Associated

Z5

z 5 © 2

z 5 © z 5 ,

Z 2 5 ®

7 ffi 7

Z © 2

group

7

S

© z5

7

=7(5)

5) « ; ( 5 )

=/(5)

x«^(5)

x =7(5)

Systems

J(5)

x J-(5), J (25)

x J ( 5 ) , J"(5) x j ( 2 5 )

P

x J ( 5 ) , J ( 5 ) x j ( 5 ) x j ( 2 5 )

c/(25) x =7(25)

=7(625)

THEOREM 9. Let S be an infinite finitely generated medial Stein

system. Then S ~ H x K where H is torsion-free and K is finite.

h

Further H ~ ~| f J. where each J. is a copy of J . The integer h is
i=l v v

uniquely determined and K is unique up to isomorphism.

h
Proof, (i) Assume first that if 5 is torsion-free; then S ~ ] f* J.

i=l %

for some h and copies J. of H . Given any S and a (. A , let K(a)

"be the torsion subgroup of S(a) , which will be T -invariant and so

defines a finite subsystem K of S . S{a)/K{a) , which is the group

associated with the quotient system S/K , is torsicr.-free; so by hypothesis

h
S(a)/K(a) c? © (Z © Z) . , where each summand (Z ® Z) . is invariant under

i=l % %

the induced automorphism T , and T acts in it by T {x, y) = {y, x-y) .

By the canonical form theorem for finitely generated abelian groups it

h
follows that we may write S(a) = @ (Z © Z). © K(a) , where if

i=X v

(Z © Z)i = [>2J © [g2.+1] , then

= e2i ~ e2i+l + ^2 i + l f O r S O m e y2i> U2i+1 6 K{a) ' a n d a l s o

= ° ' s i n c e ^ + Ta =
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P u t 62i = S2i ' S2i+1 = 62i+l + *2i " t h e n

h
T e ' . = e ' . - e ' . so that we may now write S(a) = Q (Z © Z) . © K{a)
Q d'L''X C1 CI+X %tr X

where each summand is T -invariant and in each (Z © Z) . , T acts by

T (x, y) = {y, x-y) . From this the required representation 5 ~ H x K

follows.

Conversely given such a representation and any a € 5 , then K ~ K{a)

(qua quasigroup), so (by Theorem 7) K is unique up to isomorphism. Also

2h = rank S{a)/K{a) {qua group), so h is uniquely determined.

(ii) Now suppose that S is torsion free so, S{a) ĉ  Z for some k,

k k
and T = T :Z -»• Z is a linear transformation satisfying

f{T) = T2 + T - 1 = 0 . From the linear algebra theory for Z (see

[4, Sections 15, l6]), we obtain a canonical form for T ; the matrix of

T with respect to some basis of Z consists of k/2 diagonal blocks,

each a copy of the companion matrix C „ of / , and zeros elsewhere. This

completes the proof of Theorem 9- //

4. Extended medial systems

The class of finite medial Stein systems is not large and the spectrum

consists of all integers whose square free part does not contain any

prime p = 2, 3 (mod 5) • A closely related but much larger class is that

of extended medial (EM) systems, defined as Stein systems with the property

that any 2-element generated subsystem is medial. Stein systems

constructed by the method of block designs (see [5], Theorem l) with medial

block systems are EM-systems,and since there are medial systems of orders

h, 5, 11, it follows by ([5], Theorems 6 and 7) that EM-systems exist for

all orders greater than or equal to 1198 , a figure which can probably be

improved. All EK-systems satisfy the restricted modular law:

x[y(xy)} = (xy)(yx) - in fact we do not know of any Stein system in which

the restricted modular law fails,although we have not proved its universal

validity.

A Stein system which satisfies either of the laws x{yx) = y ,
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[yx)x = xy satisfies the other and is an EM-system in which every

2-element generated subsystem is isomorphic to J(h) ; these subsystems

form a block design (see Stein [7]) . If a Stein system obeys the law

(xy)z - {zy)x , then (xy)y = yx , so also x(yx) = {xy)x = y holds. Then

(xy)(yt) = {{yt)y)x = tx = t[y{xy)), so that putting xy = z we see the

modular law ML holds and the system is medial. I t is easy now to verify

that the law {xy)z = {zy)x characterises the medial 2-systems S for

which 2S(a) = 0 ; hence if S is f ini te then S is isomorphic to a

cartesian product of copies of J{h) .

Finite EM-systems have the interesting property that one can always

deduce information about subsystems from a knowledge of the cycle

decomposition of a left translation T regarded as a permutation of the

system. For if T has an n-cycle Y = (yy' . . . ) then

2^y = v = F n - F T y (n even)

= F T y - F n (n odd)

(working in the associated group of the medial subsystem generated by a

and y ) where F is the nth Fibonacci number. This gives a relation

of the form my + m'Tu - 0 from which the possible types of subsystem

[a, y] can be determined.

For example if T has a 10-cycle,then

= y = 3hy - 55Tj ~ 557^ = 33y •

Since, in [a, y] , T~ = T + 1 , 33T y = 22y , and so

(2.55-3.33)7aJ/ = HJ
1^/ = 0 =* lly = 0 . The group of [a, y] is generated

by y and T y , so is of order 11 or 121 according as Ty is

linearly dependent on y or not. It follows that [a, y] c^ j(ll, 7) or

=7(11, 7) x =7(11, 3) , since the system =7(11, 3) does not have any

10-cycles.

Similarly one can show that if T has an 8-cycle then

[a, y] -' =7(9) or =7(9) x =7( 5) . As special cases of the general theory we

can obtain again [a, y] •>- J{h) for a 3-cycle and [a, y] r* =7(5) for a
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It-cycle.

5 . F u r t h e r C o n s t r u c t i o n s w i t h a b e l i a n g r o u p s

THEOREM 10. Let (5, *) be any quasigroup of order n possessing a

transitive abelian group A of n automorphisms. Then it is possible to

define an addition + on S so that (5, +) ~ A and x*y = x + U{y-x)

where U : S ->• S is a permutation of S such that U - 1 is also a

permutation. The converse is true.

Proof. Select any element of 5 as 0 and define + by

x + y = f(x) where / (. A is such that /(0) = y . Clearly

x+0=0+x=x and if g(0) = x then

y + x = g(y) = gf(0) = fg(O) = fix) = x + y .

Also if fe(0) = z then

(x+y) + z = h{x+y) = hfg(O) = gfh(o) = (z+y) + x = x + iy+z)

by commutativity of + . Finally x + /(0) = 0 if f d A is such that

f(x) = 0 so that additive inverses exist and (S, +) is an abelian group.

The group A is the set of translations x •* x + a . Define

U : S •* S by Ux = 0*x so that 0*(y-x) = U{y-x) and x*y = x + U(y-x)

on translating by x . The equation x*y = x + U(y-x) = 3 has a unique

solution for any one of x, y, z given the other two just when U and

U - 1 are permutations of 5 . The converse of the theorem can be

verified directly from this equation. //

COROLLARY. S constructed as above is a Stein system if and only if

U has the property that U x = U(-x) + x for all x € S .

Medial Stein systems are included in this construction (take U = T

in Section 3) but also some non-medial systems. For example if S is a

right-distributive near ring with unit containing an element e such that

2 —1 —1
c + e - 1 = 0 , -e = e(-l) , and cc = c e = 1 for some inverse

e , then defining x*y = x + c(y-x) turns R into a Stein system which

in general will not be medial if R is not a ring.

We have no general decomposition theorems for Stein systems

constructed in this way,but in all known examples the restricted modular
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law does hold. One may verify directly that if U{-x) = -Ux ,

i/(2x) = 2Ux , x (. S , then the restricted modular law holds.

If stronger properties of aut(S) are assumed then more can be

proved.

THEOREM 11 (see Stein [7]). Suppose (S, *) is a finite quasigroup

with a sharply 2-transitive group of automorphisms. Then S can have the

structure of a right-distributive near field imposed on it in such a way

that x*y = x + a{y-x) for some fixed c 4- 0, 1 in S . The converse is

true.

Proof. By the fundamental characterisation theorem on near fields

(see, for example, [2], p. 382) S can certainly be presented as a near

field so that the given group of automorphisms appears as the group of

linear substitutions x -+ a + xb , b # 0 . Let 0*1 = c . Then since

x -*• a + x(b-a) is an automorphism when a + b and maps 0 •*• a , 1 -»• b ,

it follows a*b = a + c{b-a) . Also if 0*0 = d then the same

automorphism shows that a*a = a + d(b-a) - but since this can not depend

on b , d = 0 , and a*a = a = a + c(a-a) . Obviously one does not get a

quasigroup if c = 0 or a = 1 .

For the converse note that

x + c(y-x) = z <=> c{y-x) = (z-x) <=3' [a-X){y-x) = (s-y) ,

so that provided e # 0, 1 one can always solve x*y = z for any one of

x, y, z, given the other two. //

COROLLARY. 5 constructed as above is a Stein system if and only if

c2 + a - 1 = 0 .

We now proceed to construct a class of Stein systems on the basis of

the preceding theorem and corollary. Any finite near field, excluding

seven exceptional cases, can be constructed as follows (see, for example,

[2], p. 390).

Let a = p be a power of a prime p and let " v be an integer all

of whose prime factors divide q - 1 , where also v ^ 0 (mod h) if

q = 3 (mod U) . Then with hv = r a near field K of pV elements can

be defined thus:

III. the elements of K are the elements of the Galois field

https://doi.org/10.1017/S0004972700011059 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011059


340 M.J. Pell ing and D.G. Rogers

N2. addition in K is the same as addition in GF[p J ;

W3- the product w ° u in K is defined in terms of the

product x.y in GF(p ) in the following way: let s be

a fixed primitive root of GF(p ) ; then if u = z 3 ,

an integer i is uniquely determined (mod v) by

q = 1 + j(q-l) (mod v(q-l)] and the product w ° u is

a1
given by w ° u = w.w ;

NU. the centre of K is GF(c?) .

THEOREM 12. The finite near fields K of the type described by

Nl-Sk and which contain an element c such that c°c+c-\=0 and

c ° c = c.o are precisely the following:

(i) those with p = 0, 1, h (mod 5) ;

(ii) those with p B 2, 3 (mod 5) and 2\h ;

(Hi) those with p = 2, 3 (mod 5) and p = 1 (mod h) and

2 \ h , 2\v .

Proof. Cases (i) and (ii) are immediate since then c exists in the

centre of K . Suppose then that p = 2, 3 (mod 5) and 2 j h . If o

exists then c = GF(p ) , so 2\r and 2\v , which excludes p = 2 , since

then 2 | (t?-l) .

If 3 is the primitive root of GF(p ) defining K , suppose

c = z and c o a = c.c . Then q 5 1 + j{q-X) (mod v{q-X)) and

2\i (since / = < / = c in GF(pr)) ~ 2|j <=̂  a^~X) = i

in GF[p J . Conversely if this last equation holds then c ° c = c.c .

If e is a root of x + x - 1 in GF(p ) then the other root is

<? , so that & = -1 and
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i f and only i f p = 1 (mod h) or k\r . But i f 1* \r then U |u , and

q = p ^ 3 (mod *0 =* p B 1 (mod U) . So in a l l cases p = 1 (mod it) ,

which completes t h e proof. / /

COROLLARY. If p is a prime such that p = 2, 3 (mod 5) and

p = 1 (mod i|) there exists a minimal Stein system of order p which is

neither medial nor left-distributive. The system has a sharply

2- transitive automorphism group. This follows on taking h = 1, v = r = 2
o

in the theorem - the smallest systems of this kind have orders 13 = 169

and IT2 = 289 .

6. A system with trivial automorphism group

In contrast to the systems of the preceding section we conclude the

paper by constructing a Stein system of order 21 which admits only the

identity automorphism. As a set S is defined as J[h) x j( 5) 'j {e}

where e is an adjoined element and the multiplication is defined as

follows.

(i) If ate, b + d , then (a, b).(c, d) = (ac, bd) where ac

is multiplied in c/(1t) and bd in J(5) .

(ii) Suppose J(h) = {a^ a2, a^, a^} , J"(5) = {b±, b2, b , b^, b }

Let {a.} x J(5) be made into a copy C. of t/(5) by imposing any
1r If

suitable multiplication and similarly let c/(U) x {b .} u {e} be made in+.o
J

a copy R . of J(5) .
3

Then fa., b] .[a., b') = (a., bb') where bb' is multiplied in C

(iii)

(a, b .) .{a', b .) = (aa', b .) if aa' multiplied in R. is not e ,
3 0 3 3

= e if aa' = e in R . .
3

(iv) [a, b.)e = [ae, b .) and e[a, b .) = [ea, b .) where ae, ea
0 0 0 0

are multiplied in R. .
0
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I t i s s t r a i g h t f o r w a r d t o check t h a t S i s a S t e i n system and t h a t t h e

c y c l e decomposi t ions a r e P = [U] + [U] + [12] , x # e , and

p = [k] + [k] + [k] + [k] + [k] . S i s 2-genera ted by any p a i r of
&

elements (a, b), (c, d) with a 1- a , bid, and its subsystems are

precisely the C. and R. , all of order 5 • S is not left-distributive

or medial and is not an EM-system; however the restricted modular law

does hold. We shall show that the multiplications in R. and C. can be

chosen in such a way that if / is any automorphism of S then / = lc .

First, f must leave e invariant and map subsystems to subsystems,

so will be of the form g x g restricted to J(k) x J(5) . The column

subsystems C. = { a . } x < / ( 5 ) , 1 S i 5 It , are permuted amongst themselves

by g. and the rows J{h) x \b .} , 1 5 j 5 5 , are permuted by £?„ ,
1 J <-

inducing a permutation of the row subsystems R . , which may also be called
0

<7p without confusion. In virtue of (i), g must be an automorphism of

c/(1t) , and since aut(<7(U)) is the alternating group on k symbols, g is

an even permutation.

Let the Stein system of order 5 be represented as Z with

multiplication x.y = kx + 2y and define the multiplications on the sub-
systems R. by mapping them onto Z as follows: for 1 5 j £ k map

J s

[a., b .) •* i and e -*• 0 , while for j = 5 map [a , b ) •*• 1 ,

[ar b5) - 2 , (a3, b5) - h , ( v fc5) + 3 , e - 0 .

Since jy must map some R. to i?., with 1 S j , j ' 5 k , g must
<- 3 0 1

induce, via the representations of R. and R., as Z an automorphism of
3 3s

Z of the form 0 -»• 0 , i •* /c , where £ (a.) = a, . But g is an even

permutation,and if not the identity,this automorphism can only be given by

x' = hx ; that is (l»t)(23) .

However if g2 maps R to i?_ then ^ via the representation of

R as Z,. would induce an automorphism (13) (21*) of Z , while if g~
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maps #_ to R. , j < 5 , then g via the representations of R and
j J J- ?

i?. as Z would induce an automorphism (ll+23) . This is contradictory,

since neither (I3)(2i() or (11(23) are in fact automorphisms of Z .

From this it follows g is the identity on j(h) and also, by a similar

argument, that g maps R to Z? .

Suppose without loss of generality that J(5) = {b. , £>„, b , b, , b }

is identifiable with 2_ by the map b. •* i , in which case, in virtue of

(i) and go[bS\ = b , g is an automorphism of j(5) which induces one

of the following automorphisms of Z : (l), (12U3), (13U2), (ll()(23) .

Now define the multiplication on C by mapping it onto Z by

1/7 , ?) I ->• 1 1/7 ?p I -• i | I £7 ?J 1 ->- 3 I £2 Z?i I "*• 2
v. ^' ^̂  ' ^ 1 2 1 3 1 4

(a , b_) •+ 0 . Then g maps C to C and g induces an

automorphism of C by [a , b .) ->• (a , g'p̂ fc .)) , which in turn, via the

representation of C as Z and the known possibilities for g , induces

an automorphism (l), (ll(23), (132U), (12) (31*) of Z . But of these only

(l) is in fact an automorphism, so that g can only be the identity.

Hence f = lc as required. //
o
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