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A THEORY OP POLYTOPES

W.A. COPPEL

The basic properties of polytopes and their faces are derived from a set of
axioms which are satisfied, in particular, by polytopes in Euclidean, hyperbolic
or (hemi-)spherical space. The underlying space is not assumed to be either dense
or unbounded.

1. INTRODUCTION

A polytope is the convex hull of a finite set of points. This definition makes sense in
any set on which there is defined a hull operator, or closure operator in the terminology
of Cohn [3]. However, polytopes in n-dimensional Euclidean space have a richer theory,
relating to their faces and thus involving linearity. It is of interest to study also the facial
properties of polytopes in n-dimensional hyperbolic space or in an open hemisphere of
n-dimensional spherical space. What, then, is the natural framework for a theory of
polytopes?

The polytopes studied here include the examples just mentioned, but also include
examples with only finitely many points. Using axioms taken from our previous paper
[4], we establish the basic facial properties of polytopes. It is noteworthy that we do
not assume either density (a ^ b implies c € [a, b] for some c ^ a, 6) or unboundedness
(a ^ b implies a £ [6, c] for some c ^ a, 6), although these properties are liberally
used in the standard treatments of polytopes, such as Br0ndsted [2], Grunbaum [5] or
Prenowitz and Jantosciak [7].

2. CONVEXITY

Suppose that with any unordered pair {a, 6} of elements of a set X there is
associated a segment, that is a subset [a, b] of X containing a and 6. We shall say
that a linear geometry is defined on X if the following six axioms are satisfied:

(C) if c £ [a, 6i] and d £ [c, 62] i then d 6 [a, 6] for some b £ [61, 62],
(P) if Cl G [a, 61] and c2 € [o, 62], then [bu c2] D [62, c{\ £ 0,

(LI ) [a)a} = {a}>

(L2) if b £ [a, c], c £ [b, d] and b ^ c, then 6 £ [a, d],

(L3) if c $ [a, 6] and b £ [a, c], then [a, 6] D [a, c] = {0},

(L4) if c £ [a, b], and [a, b) = [a, c] U [c, b].
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2 W.A. Coppel [2]

The axioms (C) and (P) were first used by Peano in 1889 in an analysis of Pasch's
axiom for plane geometry. The axioms (L1)-(L4), as we shall see, enable the points of
a line to be totally ordered. Simple examples, with |X| ^ 5, show that each of the six
axioms is independent of the others. An example of a linear geometry with only finitely
many points is the set X = {a, a', b, b', c} with [o, a'] = {a, a', c}, [b, b'} = {b, b', c}

and [x, y] — {x, y} otherwise.

We do not intend to study here all the properties of linear geometries, but shall
concentrate attention on those which are needed for our ultimate goal. Some properties
will not require all six axioms, but we prefer not to clutter the development by specifying
the axioms actually required for each result.

P R O P O S I T I O N 1 . If c1} c2 G [a, 6], then [cx, c2] c [a, 6].

PROOF: Let c G [CI, c2]. From Ci G [a, b] and c £ [c\, c2] we obtain, by (C),
c G [a, 6'] for some b' £ [b, c2]. From c2 6 [a, b] and b' G [6, c2] we obtain, by (C) and
(LI) , b' G [a, 6]. From b' G [a, 6] and c G [a, b'] we obtain, by (C) and (LI) again,
cE[a,b}. D

P R O P O S I T I O N 2 . If cx G [a, 61], c2 £ [a, b2] and c e [cly c2], then c G [a, b]

for some b G [61, b2].

PROOF: Applying (C) twice, we obtain c £ [a, 6'] for some b' G [61, c2] and
b' G [a, b] for some b G [61, b2). From c G [a, b'] and a, b' G [a, b] we now obtain
c G [a, b], by Proposition 1. D

We define a subset C of X to be convex if x, y G C implies [a;, y] C C. For
example, the segment [x, y] is itself convex, by Proposition 1.

PROPOSITION 3 . For any convex set C and any point a £ C, the set

D = U [a, b]
bee

is convex, and is contained in every convex set which contains both C and a.

PROOF: Suppose Xi £ [a, 61] and x2 G [a, b2], where 61, b2 G C. If x G [xi, x2]

then, by Proposition 2, x G [a, 6] for some b G [61, b2] C C. Thus x £ D, and hence
D is convex. The second statement of the proposition is obvious. D

It follows at once from the definition that convex sets have the following properties:

(i) the empty set 0 and the whole space X are convex sets,
(ii) the intersection of any family of convex sets is again a convex set,

(iii) the union of any family of convex sets which is totally ordered by inclusion
is again a convex set.
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[3] A theory of polytopes 3

Consequently the collection of all convex sets, partially ordered by inclusion, is a
complete lattice, since any family {Ca} of convex sets has an infimum, namely (~| Ca,
and a supremum, namely the intersection of all convex sets which contain (J Ca •

For any set S C X , we define its convex hull \S] to be the intersection of all
convex sets which contain S. Thus [S] is itself a convex set. Moreover our notations
are consistent, since the convex hull of the set {a;, y) is the segment [x, y].

PROPOSITION 4 . Convex hulls have t i e following properties:

(o) [0] = 0,
(i) SC[S],

(ii) SCT implies [S]C[T],
(iii) [[5]] = [5],
(iv) x € [5] implies x € [F] for some finite set F C S.

PROOF: The only property whose derivation is not immediate is (iv). To prove
(iv), call a set S C. X admissible if [5] is the union of all sets [F], where F runs
through the finite subsets of 5 . Thus any finite set is admissible. We show first that if
T is a family of admissible sets which is totally ordered by inclusion, then S = (J T

is also admissible.

Since the family {[T]: T G T} is also totally ordered, the set C = |J [T] is convex.
T6T

Moreover S CC, since T C [T] C C for every T GT. Since [C] = C, it follows that
[S] C C. On the other hand, [T] C [S] for every T £ T , and hence C C [S]. Thus
C = [5]. Evidently

U [*1 ^ PI-
FCS, |F|<oo

On the other hand, for each T e T ,

m = U ^ U iFi
FCT,|F|<oo FCS, |F|<oo

and hence
[S} = C= \J[T]C | J [F].

FCS, |F|<oo

Thus [5] = (J [F], as we wished to show.
FCS, |F|<oo

Now let S be an arbitrary nonempty subset of X and consider the family J- of all
admissible subsets of 5 . The family T is not empty, since it contains every finite subset
of 5 . If we regard T as partially ordered by inclusion then, by Hausdorff 's maximality
theorem, T contains a maximal totally ordered subfamily T . The union R of all sets
in T is an admissible subset of 5 , by what we have just proved. Moreover R £ T,
since T is maximal. We wish to show that R — S.
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4 W.A. Coppel [4]

Assume on the contrary that there exists a point x £ S\R. By Proposition 3, the
set D = (J [x, y] is convex and in fact D = [x U R]. Since R is admissible, it follows

that x U R is also admissible. This is the required contradiction. D

Since [x U [5"]] = [a; U 5 ] , it follows from Proposition 3 that

[xUS} = (J [*>»]•

In particular, if x £ [a, b, c], then x £ [o, d] for some d £ [b, c]. However, much more

is true:

PROPOSITION 5. For any sets S, T c X,

[SUT}= |J [*,„].

P R O O F : Put

R=

Since 5 U T C J? C [S U T] , we need only prove that R is convex. Thus we wish to
show that if z' 6 [x1, y'] and z" G [a;", j /"] , where x', x" £ [5] and i/', y" G [T], and if
z E[Z', z"\, then z G [x, t/] for some x 6 [5] and y £ [T].

Since z £ [a;', y', z"] C [a;1, x", i/', y" ] , we have z £ [x1, w'] for some to £
[x",y',y"]. Then w £ [as", y] for some y £ [y'.y"] C [T]. Thus z £ [x',x",y],

and hence z £ [x, y] for some x £ [x', x"] C [5]. D

The next result is a counterpart to Proposition 2:

PROPOSITION 6 . If cj £ [a, 6^, c2 £ [a, b2] and b £ [6l5 i 2 ] , t ien there exists
a point c £ [a, 6] fl [cj, c2] .

PROOF: By (P ) , there exists a point c' £ [a, b] D [c\, 62] and a point c £ [a, c'] D
[ci > c2] . Since [a, c'] C [a, 6], the result follows. D

For convenience of reference, we now bring together several elementary properties:

P R O P O S I T I O N 7 . For any a,b,c,deX,

(i) it c £ [a, 6] and d £ [a, c], then c £ [b, d];

(ii) if c £ [a, 6] and 6 £ [a, c], then b = c;
(iii) if c £ [a, 6], then [a, c] D [6, c] = {c}.

PROOF: (i) There exists a point e £ [6, d] D [c, c], by (P ) , and e = c, by (LI) ,

(ii) Take d = b in (i).
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[5] A theory of polytopes 5

(iii) If d G [a, c] n [6, c], then c E [b, d], by (i), and hence d = c, by (ii). D

It is worth remarking that Proposition 7 can also be deduced from the axioms

PROPOSITION 8 . Ifx&[a,a']n [b, b'} and y e [a, b], then x G [y, y'] for some

y'£[a',b'}.

PROOF: Since x G [a, a'] and y E [a, 6] there exists, by (P ) , a point z G [a', y] D
[6, x]. From x € [b, b'} and z G [b, x] we obtain, by Proposition 7(i), x G [b', z] C
[y, a1, b']. Hence x G [y, y'} for some y' G [o1, b']. U

P R O P O S I T I O N 9 . For any set S c x and any c G [5],

PROOF: It is sufficient to prove the result for finite sets 5 , by Proposition 4(iv).
Suppose 5 = {si, . . . , sn}. The result is trivial for n = 1 and it holds for n = 2 , by
(L4). We use induction and assume that the result holds for all finite sets containing
at most n elements, where n ^ 2. Let T = s0 U S and suppose d G [T]. Then, by
Proposition 5, d G [so, c] for some c G [S]. Hence, by Proposition 5 and the induction
hypothesis,

[T]= (J lso,z} = \J[cl)(T\si)}.

But, by Proposition 5, [c U (T \ Si)] is the union of all segments [x, y], with x G [so, c]

and y G [5 \ s,-]. Since [so, c] = [so, d] U [d, c], it follows from Proposition 5 again that

[cU (T \ Si)} = [d\J(T\ 3,)} u [c U dU (S \ sO] (i = 1, . . . , n) .

Hence
n n

[r] = U[du(r\so]u(J[cU<*u(5\sO]
1=1 i=l

Thus the result holds also for all finite sets containing n + 1 elements. D

PROPOSITION 1 0 . Let S = {si, ..., sn} be a finite set and let d, e be distinct
n

elements oi [5]. Then [d, e] C [p, q}, where p, q G U [5 \ a,].

PROOF: By Proposition 9,

[S}=(j[dU(S\si)}=\J[eU(S\si)}.
i= l t=l
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6 W.A. Coppel [6]

Thus e £ [dU(S \ SJ)] and d £ [eU(5 \ sk)] for some j , k £ {1, ... ,n}. It follows from
Proposition 5 that e £ [d, p] for some p £ [S \ SJ] and d £ [e, q] for some 9 G [5 \ sk].

Hence d, e £ [p, q], by (L2), and [d, e] C [p, q], by Proposition 1. D

In agreement with the usual notation for intervals in K we set, for any a, b £ X,

[a, b) = [a, 6] \ b, (a, b] = [a, b] \ a, (a, b) = [a, b) \ {a, b}.

It is easily shown (see [4]) that (a, b] and (a, 6) are convex, for any a, b £ X.

3. LINEARITY

If a and 6 are distinct points, we define the line {a, b) to be the set of all points
c such that either c 6 [a, 6] or a £ [b, c] or b £ [c, a]. H a — b v/e set (a, b) = {a}.

Clearly (a, b) = (b, a) and [a, b] C (a, 6). In particular, a, b £ {a, b). Fur-
thermore, if a, b, c are distinct points such that c £ (a, b), then also a £ (b, c) and
b£{c,a).

P R O P O S I T I O N 1 1 . If c, d £ (a, 6) and c ^ d, then (c, d) = {a, b).

PROOF: Clearly we must have a ^ b. It is sufficient to show that if c ^ a, b then
(a, c) = (a, b). In fact, by symmetry we need only show that (a, c) C (a, b). The
following proof is arranged so as to appeal to Proposition 7(i) rather than (L4), as far
as possible.

Let x £ (a, c), so that either x £ [a, c] or a £ [c, x] or c £ [a, x]. We wish to
show that either x £ [a, b] or a £ [b, x) or b £ [a, x]. Evidently we may assume that
x^a,b, c.

Suppose first that c £ [a,b]. If a £ [c, x] then a £ [b, x], by (L2). If c £ [a, x)

then x £ [a, b] or b £ [a, x], by (L3). If x £ [a, c] then c £ [b, x], by Proposition 7(i),
and hence x £ [a, b], by (L2).

Suppose next that a £ [b, c]. If x £ [a, c] then o £ [b, x), by Proposition 7(i). If
a £ [c, x] then 6 £ [c, x] or x £ [b, c], by (L3). Moreover, by Proposition 7(i), b £ [c, x]
implies b £ [a, x] and x £ [b, c] implies x £ [a, b]. If c £ [a, x] then a £ [b, x], by
(L2).

Suppose finally that b £ [a, c]. If a £ [c, x], then a £ [b, x] by Proposition
7(i). If c £ [a, x] then c £ [b, x], by Proposition 7(i), and hence 6 £ [a, x], by (L2).
If x £ [a, c] then x £ [a, b] or x £ [b, c], by (L4). Moreover, by Proposition 7(i),
x £ [b, c] implies 6 g [ a , x ] . U

We show next how the points of each line may be totally ordered:

PROPOSITION 1 2 . Given any two distinct points x, y £ X, the points of the
line I = (x, y) may be totally ordered so that x ^ y and so that, for any points a, b £ £
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[7] A theory of polytopes 7

vrith a ^ b, the segment [a, b] consists of all c £ I such that a ^ c ^ 6. Moreover, this

total ordering is unique.

PROOF: For any a, b £ i, we write a ^ 6 if either of the following conditions is

satisfied:

(i) a £ [x, b] and either y G [x, b] or b G [z, y],

(ii) x G [a, y] and either 6 G [a, y] or y G [a, 6].

It should be noted that (i) and (ii) say the same thing if a — x and that they cannot
both hold if a ^ z .

The definition obviously implies x ^ y. Also, from the definition of a line it is
clear that for any a G I we have a ^ a. Let a, b be points of I such that both a ^ b

and 6 ^ o. We wish to show that this implies b = a.

Assume first that a G [x, b] and either y G [x, b] or b G [as, y]. Since x ^ y, this
implies z ^ [6, y]. Since 6 ^ a, it follows that 6 G [x, a]. Hence 6 = a, by Proposition
7(ii). The case 6 G [z, a] and either y G [z, a] or a G [z, y] may be discussed similarly.
Suppose finally that a; G [a, y] and z G [b, y]. Then either a £ [6, y] or 6 G [a, y], by
(L3). We cannot have also y G [a, 6], since this would imply y = a, respectively y = b,

and hence x = y. Consequently we must have 6 G [a, y] and a G [6, y], which implies
b = a.

• Suppose next that a, b, c are distinct points of I such that a ^ b and b ^ c. We
wish to show that this implies a ^ c.

Assume first that 6 G [s, c] and either y £ [z, c] or c G [z, y]. If a G [z, 6] then
a G [z, c] and hence a ^ c. If z G [a, y] then y G [z, c] implies y G [a, c], by (L2),
and c G [z, y] implies c £ [a, y], by (L4). In both cases o ^ c. Assume next that
z G [6, y] and either c G [6, y] or y G [6, c]. If z G [a, y] and 6 G [a, y] then c G [a, y],

respectively y G [a, c]. Thus again a ^ c. AD remaining cases may be discussed
similarly.

It remains to show that if a, b are distinct points of t then either a ^ b or b ^ o.
Assume that neither relation holds. Then if a G [z, 6] we must have z G [b, y], and if
x £ [&> y]> a n d if a; 6 [6, y] we must have 6 G [a, y]. Hence 6 G [z, y], by (L2), and
6 — x, by Proposition 7(ii). But this implies b = a, which contradicts our assumption.
Therefore a £ [x,b]. Similarly we can show that b £ [a, z] . Consequently z G [a, h\.

If z G [a, y] we must have o G [b, y] and hence z £ [6, y], and if z G [b, y] we must
have b G [a, y]. Therefore z ^ [a, y], and similarly z $ [6, y]. Thus either a £ [z, y]
or y G [a, z] . But a £ [z, y] would imply z G [b, y], by (L2), and y G [a, z] would
imply z G [6, y], by Proposition 7(i). Thus we cannot escape a contradiction.

This proves that the relation ^ is a total ordering of the line I such that x ^y.

Suppose now that a ^ b and c G [a, b}. If (i) holds, then c £ [z, 6] and hence c ^ b.
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8 W.A. Coppel [8]

Moreover a 6 [x, c] and either y £ [x, c] or c £ [x, y], so that a ^ c. Similarly it may
be seen that a ^ c < b if (ii) holds.

Suppose on the other hand that c £ I and a ^ c ^ b. We shall show that c £ [a, b].

Indeed, if a £ [c, b] then, by what we have just proved, c < a ^ 6 and hence c = a.
Similarly if 6 € [a, c], then c = b.

Finally suppose that ^ is any total ordering of t with the properties in the state-
ment of the proposition. Let a, b be any distinct elements of I and assume first that
(i) holds. If b ^ x, then 6 ^ a ^ x and x ^ b ^ y, since y £ [x, b]. Hence b = a,

which is a contradiction. Consequently x ^ b and x ^ a < 6. Assume next that (ii)
holds. Then a ^ x ^ y and either o ^ f c ^ j / or a ^ y ^ b, since y ^ a. In any event
a ^ 6, and so the total ordering is the one originally defined. U

Points which he on the same line will be said to be collinear. The concept of

collineaxity makes it possible to obtain sharper forms for some of our earlier results.

For example, the following result may be used in conjunction with the axiom (P), and

will then be called ( P ) ' :

(a) Let a,bx,b2 be non-collinear points and let c\ £ (a, b\), ci 6 (a, b2). If

d £ [bi, c2] D [b2, ci], then actually d € ( i u c 2 ) n ( i 2 , Ci).

PROOF: It is sufficient to show that d ^ by, C\. By Proposition 11, d = b\ implies
b2 € (bi, ci) — (a, bi), which is a contradiction. Similarly d = c\ implies c2 G (a, b\)
and again b2 6 (a, b\). D

Similarly we can prove the following results, which may be used in combination

with Propositions 2, 6 and 8 respectively, and will then be called Propositions 2 ' , 6 ' ,

8 ' :

(b) Let a, b\t b2 be non-collinear points and let ci G (a, 6i), c2 £ (a, b2], c G

(ci, c2) . If c £ [a, b] for some 6 £ [6j, b2], then actually c £ (a, b) and b £ (&!, b2).

(c) Let a, bi, 62 be non-collinear points and let ci £ (a, &i), c2 £ (a, b2], 6 £

(&!, b2). If there exists a point c £ [a, b] C\ [a, c2], then actually c £ (a, b) f"l (cj, c2) .

(d) Let a, a', b, b' be non-collinear points and let x £ (a, a')fi(6, b'). If x £ [y, y'}

for some y £ (a, 6) and y' £ [a', 6'], then actually x G (y, y') and y' £ (a', b').

We define a subset A of X to be affint if x, y £ A implies {x, y) C A. For example,

the line {x, y) is itself affine, by Proposition 11. The next result is of fundamental

importance:

PROPOSITION 13 . If C is a convex set, then the set

is affine, and is contained in every affine set which contains C.
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[9] A theory of polytopes 9

PROOF: Only the first statement of the proposition requires proof. Obviously

we may assume that C contains more than one point. Thus we wish to show that

if b £ (x\, x 2 ) , c £ (X3, 34), and a £ (b, c), where x i , . . . , X4 6 C and xi ^ x2,

xs j 1 34 i 6 ^ c, then there exist X5, i j 6 C with X5 ^ xg such that a £ (xs, XQ).

This is evident if c 6 (xlt x 2 ) , since then also a £ (xi, x2). Consequently we assume

c $ (xi, X2), and similarly b (£ (13, X4).

By symmetry, and the convexity of C , we need only consider the following five

cases:

(A) x2 6 [6, xi], x4 £ [c, x 3 ] , c £ [b, a];

(B) x2 £ [6, x i ] , * 4 € [c, x3] , a £ [b, c];

(C) x2 £ [6, x i ] , c 6 [x3, x 4 ] , a £ [b, c];

(D) x2 £ [6, x i ] , c e [x3, x 4 ] , c £ [a, 6];

(E) x2£[b,x1},c£[x3,xi},b£[a,c\.

Consider first case (A). By ( P ) there exists a point y £ [a, x2] fl [c, x\}. Since
c ^ (xi, x 2 ) , we have y ^ x2 and hence a £ (x2, y). Consequently we may assume
y (/• C. By ( P ) also there exists a point 15 £ [y, x3] (1 [xi, X4]. Then 15 6 C and
X5 £ [a, x2, X3). Hence X5 £ [a, xg] for some Xe £ [x 2 ) x 3 ] . Thus xe £ C and
o £ (X5, xe) if xs 7̂  xa. We can now assume X5 = xe £ [x2, x3] . If x3 ^ xs then
x2 £ (X3, xs), y £ (xj, Xs), and hence a £ (x3, X5). Consequently we can now assume
x3 = xs £ [xi, x4] . Then by (L2), x4 £ [c, xi] . Since y $. C it follows from (L4)
that y £ [c, X4] and then from Proposition 7(i) that X4 £ [xi, y] C [a, Xj, x2] . Hence
X4 £ [0, X7] for some x^ £ [xi, x2] . Then xj £ C and a £ (x4, X7) if 1 4 ^ x 7 . In fact
we cannot have 1 4 = 1 7 , since this would imply X4 £ [xi, x2] , x3 £ [xi, x2] and hence

c £ (x3, x4) C (xi, x2).

Similarly in case (B) there exist points y £ [b, x4] n [a, x3] and x5 £ [y, xi] D

[x2, X4]. The argument can now be completed as in the previous case.

In case (C) there exists a point X5 £ [c, x2] D [a, x i ] . Moreover X5 £ C, since

c £ C, and X5 ^ x j , since c ^ (xi, x 2 ) . Hence a £ (xi, xs).

Similarly in case (D) there exists a point xs £ [a, x2] D [c, Xi] and the argument

can be completed as in the previous case.

Finally in case (E) we have c £ C and x2 £ [a, c, x\\. Hence x2 £ [a, X5] for some

xs £ [c, xi]. Then x5 £ C, x5 ^ x2 and a£ {x2, x 5 ) . D

It follows at once from the definition that affine sets have the following properties:

(i) the empty set 0 and the whole space X are affine sets,

(ii) the intersection of any family of affine sets is again an affine set,

(iii) the union of any family of affine sets which is totally ordered by inclusion

is again an affine set.
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10 W.A. Coppel [10]

For any set 5 C X, we define its affine hull (5) to be the intersection of all
affine sets which contain S. Thus (5) is itself an affine set. Moreover our notations are
consistent, since the affine hull of the set {x, y} is the line (x, y). It follows immediately
from the definition that the properties (o)-(iii) in Proposition 4 continue to hold with
'[ ]' replaced by ' ( ) ' . We are going to show that this is true also for the property (iv).

For any set 5 C I we have 5 C [5] C (5) and hence

(S) = ([S]).

Consequently, by Proposition 13,

( 5 ) = ( J (x,x').

But for given x, x' £ [5] there exists a finite set F C S such that x, x' £ [F], and so
(x, x') C {F). Hence

(S) = U (F).
FCS,\F\<oo

From Proposition 13 we can derive the exchange property of affine sets, which was

first stated by Grassmann in 1862:

PROPOSITION 14 . For an arbitrary set S C X, if y £ (S U x) but y £ (S),

then x £ (SUy).

PROOF: Obviously we may assume that x £ [Sliy]. By Proposition 13, y £

{zi, z2), where zi} z2 £ [5 U x]. Therefore, by Proposition 5, zi £ [x, wi] and z2 £

[x, w2] for some Wi,w2 £ [S].

If y £ [zi, z2], then y £ [x, w\, wt] and hence y £ [x, w] for some w £ [vi\, w2] C

[S]. Thus y / t o a n d i 6 (y,w) C (SUy).

By symmetry it only remains to consider the case z% £ (y, Z\). We shall assume

x ^ (y, W\, w2) and derive a contradiction.

Since x (f: {y, wi, w2), we must have z\ ^ x, w\. Thus z\ £ (x, w\) and hence, by

Proposition 2 ' , z2 £ (x, w) fcr some t« £ (y, tuj). Hence u; £ (x, z2) — (x, w2). Since

x ^ (y, Wi, w2), we must have w — w2 . Since y £ (tu, ii>i), this is a contradiction. U

We say that a set S C X is affine independent if, for every x £ S , x $ ( 5 \ x ) . A
subset T of a set 5 is an affine generator of S if (T) = (S) and an affine basis of S
if, in addition, T is affine independent.

It is easily seen that an infinite set is affine independent if every finite subset is
affine independent, and any affine independent set is contained in a maximal affine
independent set. From the exchange property we can deduce in the usual way that
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[11] A theory of polytopes 11

T is an affine basis of 5 if and only if it is a maximal affine independent subset of
5 . Furthermore, if T and T' are subsets of 5 such that T is affine independent and
(T1) = (S), then there exists a subset T" of T, with T n T" = 0, such that T U T"
is affine independent and (T U T") = (S). It follows that if a set S has a finite affine
basis, then all affine bases of S are finite and have the same cardinality.

We shall say that a set 5 has dimension d if all affine bases of 5 are finite and have
cardinality d + 1, and that it is infinite-dimensional if its affine bases are all infinite.
In particular, the empty set 0 has dimension —1, a point has dimension 0 and a line
has dimension 1. An affine set of dimension 2 will be called a plane.

An affine set H is said to be a hyperplane of X if H ^ X and if X is the only
affine set which properly contains H. Equivalently, an affine set H C X is a hyperplane
if {x U H) = X for every x G X \ H. It is easily shown that any affine set A C X is
contained in a hyperplane.

When X is finite-dimensional, an affine set H C X is a hyperplane if and only if
dim H = dim X — 1. However, the familiar formula

dim A + dimB = dim(A \J B) + dim(A D B)

need not hold for affine sets A, B with AH B ^<b.

4. HALF-SPACES

Pasch, in 1882, pointed out the incompleteness of Euclid's axioms for geometry
and introduced the following additional axiom: "If a line in the plane of a triangle does
not pass through any of its vertices but intersects one of its sides, then it also intersects
another of its sides". It will now be shown that Pasch's axiom holds in any linear
geometry.

LEMMA 1 5 . If a, b, c, d are points such that

[a, b] n (c, d) = 0, [a, c] n (b, d) = 0, [b, c] n (a, d) = 0,

then d (f: (a, b, c).

PROOF: The hypotheses evidently imply that a, b, c are not collinear and d £

[a, b] U [a, c] U [6, c]. We shall assume d G (a, 6, c) and derive a contradiction.
It follows from Proposition 10 that if d 6 [a, b, c], then d £ [a, e] for some e G

[b, c], which contradicts [6, c] D (a, d) = 0. Thus we now suppose d $ [a, 6, c].
By Proposition 13, d G (p, q), where p, q G [a, b, c] and p ^ q. Moreover we may

choose the notation so that q G (p, d). Furthermore, by Proposition 10, we may take

p l S € [o ,6 ]U[o l c ]U[6 ,c ] .
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If p, q £ [a, 6], then d £ (a, b) and either a £ (6, d) or 6 € (a, d). In either case
(a, d) (~1 [6, c] ^ 0. It is obvious also that (a, d) D [b, c] ̂  0 if q — a and p £ [6, c] or if
p = a and g £ [6, c].

By symmetry it only remains to consider the case p £ (a, b) and q £ (6, c). Then
q £ (6, F) for some r £ (a, d). Since 9 £ (6, c) and r ̂  c, either r £ (6, c) or c £ (6, r ) .
If r £ (6, c), then (a, d) f\ (b, c) =£ 0. If c £ (6, r ) , then c £ (g, r) and hence c £ (d, e)
for some e £ (a, p) C (a, 6). Thus (c, d) H (a, 6) ^ 0. D

PROPOSITION 1 6 . Let a, b, c be non-coUinear points and let £ be a line in the
plane (a, b, c) such that a, b, c £ I. If £ intersects (a, 6), then £ also intersects either
(a, c) or (6, c), but not both.

PROOF: We show first that £ cannot intersect (a, 6), (a, c) and (6, c). By symme-
try it is sufficient to show that if d £ (a, 6), e £ (a, c) and / £ (6, c), then / ^ (d, e).

But if / £ (d, e) then, by Proposition 2 ' , / £ (a, 17) for some g £ (6, c). Hence
a £ (6, c), which is a contradiction.

It remains to show that £ intersects two 'sides' of the 'triangle' [a, 6, c]. Since
a, b, c (£ £, this follows at once from Proposition 10 if £ contains two distinct points of
[a, 6, c]. Thus we now assume that £ contains a point e ̂  [a, b, c]. Since e £ (0, b, c),
it follows from Lemma 15 that the points a, 6, c may be named so that there exists
a point p £ (a, e) D [b, c]. Thus the hypothesis is now that £ contains a point d £
(a,b)n(a,c)n(b,c).

Suppose first that d £ (a, 6), which implies p ̂  b. If a £ (e, p), then d £ (e, / )

for some / £ (6, p) . If p £ (a, e), then there exists a point / £ (d, e) fl (6, p). In both

cases / £ (d, e) C\ (b, c).

Suppose next that d £ (6, c). We may assume that p ̂  d and, without loss of

generality, that d £ (6, p) . If a £ (e, p) , then there exists a point / £ (d, e) n (a, b). If

p £ (a, e) , then d £ (e, / ) for some / £ (0, b). In both cases / £ (d, e) fl (a, 6).

The case d £ (a, c) is reduced to the case d £ (a, b) by interchanging b and c. D

Although Proposition 16 may seem rather special, we shall show that it has some
important general consequences. The statement of the following lemma is taken from
Lenz [6], but is proved here under weaker hypotheses:

LEMMA 1 7 . Let H be a hyperplane. If x\, x2, x3, x4 are points of X\H such

that

then also (z 4 , a^) l~l H ^ 0.

PROOF: Obviously we can sssume x% ̂  X\ and x± ^ x2. The lines (xj, x2),

(x2, x3) and (3:3, xt) intersect H in unique points hi, h2 and ^ 3 . Moreover /ii £

(ai!, a;2), h2 £ (z2, Z3) and h3 £ (x3, a:4).
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Suppose first that x i , x2, xs are collinear. Then hi = h2 and either X\ £ [h2, x3)

or X3 £ (h2, Xi). If i i G (h2, *s) then, by (P) , there exists a point h G [/i2, ^3] f~l
(asj, X4). If X3 £ (/12, Xi) then, by (C), there exists a point h £ [xi, X4] such that
h3 G [h2, h]. If h3 = h2, then h2 G ( i i , x 4 ) . If h3^h2, then /i G ffn(xi, x 4 ) .

Thus we may assume that xi} x2, x3 are not collinear, and hence hi ^ h2. Sup-
pose now that x\, x3, x± are collinear, so that h3 £ (xi, x3). Since (Ai, h2, h3) ^
(xi, X2, X3), we must have h3 G (hi, h2). By Proposition 16, h3 £ (xi , 2:3). Since
xi , X3, Xi are collinear, it follows that h3 G (xi, X4).

Thus we may assume that x\t x3, X4 are not collinear and indeed, by similar ar-
guments, we may assume that no three of the points xi, x2, x3, x\ are collinear.

Suppose next that (x2, x4) flff / i . Then the line (x2, X4) intersects H in
a unique point h. We show first that h <fc {x2, 3:4). Assume on the contrary that
h G (x2> X4). Since x2, x3, x^ are not collinear, it follows from Proposition 16 that
h £ (/i2> ^s)- Hence {h2, h3, h) = (x2, X3, X4), which is a contradiction.

Thus either x4 G (x2, h) or x2 G (x4, h). If x4 G {x2, h) then, by ( P ) ' , there
exists a point h' G (h, hi) PI (xi , X4). If X2 G (X4, h) then, by Proposition 2 ' , there
exists a point h' G (xi, X4) such that hi G (h, h').

Thus we may assume that (x2, X4) DH = 0, and similarly also that (xi, x3)C\E =

0. By ( P ) ' , there exists a point x £ (X2, h3) f~l (14, h2) and a point h G (a;, x3) D

(h2, h3). Since (x2j x) D JJ ^ 0, it follows from the previous part of the proof (with
X4 replaced by x) that (xi, x)C\H ^ 0. Since (x, Xi) D H =fc 0, it further follows from
the previous part of the proof (with x2 replaced by x) that (xi, x4) fl H ^ 0. D

PROPOSITION 18. Let H be a hyperplane such that X\H is not convex. Then
there exist unique nonempty convex sets H+ and H- such that X \ H — H+ U H- .
Furthermore,

(i) H+nH-=®,

(ii) if y G F+ and z £ fl_ , then (y, z) H H £ 0,
(iii) H U H+ and H U H- are also convex.

PROOF: Since X\H is not convex, there exist points a, b G X\H and c G H such
that c G (a, b). Let ff+ denote the set of all points x e X such that (i, i ) n 5 / 8 ,
and let H- denote the set of all points x £ X such that ( o , m ) n l / 9 . Then o e 5 + ,
be H- and F + n # = 0, fi_n# = 0.

We are going to show that also H+ D JJ_ = 0. Assume on the contrary that there
exists apoint x G H+DH-. If x G (a, 6) then c G (a, x)D(6, x), since (a, b)C\H = {c}.
But this is impossible, since also c £ (a, 6). Thus a, b, x are not collinear. If (o, x),
(b, x) intersect H in h, h' respectively, then c $ (h, h') by Proposition 16. Hence
(c, h, h') = (a, b, x), which is a contradiction.

https://doi.org/10.1017/S0004972700014416 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014416


14 W.A. Coppel [14]

We show next that H- is convex. Assume on the contrary that there exist points
x', x" £ H- and a point x £ (x', x") such that x £ H-. Then there exist points
h', h" £ H such that h' G (a, x'), h" G (a, x"). Hence a, x', x" are not collinear and
h' ^ h". By Proposition 6' the segment (h1, h") contains a point h £ (a, x). Then
h £ H and x G 27_, which is contradiction. Thus H- is convex, and similarly also
H+.

It follows at once from Lemma 17 that if y G 27+ and z e 27_ , then (y, z)C\H ^ 0.
It will now be shown that X = H U 27+ U 27_ . Since H is a hyperplane, it is sufficient
to show that X' := 27U27+ U27_ is affine. In fact it is enough to show that if x' G 27+ ,
x" G X' and x G (a;', x"), then x £ X'. Since a;' G H+, the segment (6, x') contains
a point h' G H •

Suppose first that x" = h" G H. If h" G (x, a;') then x G 27_, since a;' G 27+. If
x G (x', A") then, by (P), there exists a point h G [h1, h"] H (6, a;) and hence x G 27+.
If x' G (x, /i") and b, x, x' are colh'near, then h' = h" G (b, x) and hence a; G H+.

If a:' G (a;, h") and 6, x, x' are not colh'near then, by Proposition 2 ' , there exists a
point h G (b, x) such that /i' G (h, h") and again x G fi^+ • This proves that a line
containing a point of H and a point of H+ is entirely contained in X', and similarly
a line containing a point of H and a point of H- is entirely contained in X'.

Suppose next that x" G B+ U Z7_ and the line (x', x") contains no point of H.

Then x" G H+, since x" G H- would imply (a;', x") n H ^ 0. Hence the segment
(6, a;") contains a point h" £ H. If s G (a:', a;") then x G -ff +, since H+ is convex.
Now consider the case x' G (x, x"). By (P ) ' , there exists a point y G (6, x')tl(h", x).
Moreover y ^ H. If h' £ (b, y), then the segment (b, x) contains a point h such that
/i' G (h, h") and hence x £ H+. If ft' G (x(, y), then the segment (x, x') contains a
point h such that h' £ (h, h") and hence x G X' by what we have already proved.
Since the same argument applies in the case x" G (x, x'), this completes the proof that
X = H U H+ U H- .

It now follows that H U H+ and .ff U H- are convex. For if (say) x\ £ H and
x2 G # + , then (xi, x2) D Jf = 0 and hence (xi, x2) D £T_ = 0.

Finally, suppose X \ H is the union of two nonempty convex sets G+ and G- . We
may assume the notation chosen so that G+ f) H+ ^ 0. But then G+ C H+, by (ii).
Hence G-DH- ^ 0 and so, in the same way, G-QH-. Since G + U G . = H+UH-,

we must actually have C?+ = 27+ and G_ = 2?_. U

Proposition 18 says that a hyperplane has two 'sides', if its complement is not
convex. The convex sets H+ and H- in the statement of Proposition 18 will be called
the open half-spaces associated with the hyperplane H, and the convex sets H+ U H
and H- U H will be called the closed half-spaces associated with H. When X \ H is
convex, we shall call X\H and X the open and closed half-spaces associated with the
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hyperplane H.

5. FACES

If 5 C X and e G S, then e is said to be an extreme point of the subset 5 if
e £ [S \ e]. Clearly if e is an extreme point of S, then it is an extreme point of every
subset of S which contains it. Extreme points may also be characterised in the following
way:

PROPOSITION 1 9 . If S C X and e G 5 , then e is an extreme point of S if
and only if e £ [x, y], where x, y £ S, implies x — e or y = e.

PROOF: If e £ [X, y], where x, y 6 S \e, then e £ [S \ e] and hence e is not an
extreme point of 5 .

Suppose, on the other hand, that e £ [«,!/], where x, y £ 5 , implies x — e or
y — e. If e is not an extreme point of 5 , then e £ [5 \ e]. Hence e £ [F] for some
finite set F C S\e. We may assume that e $ [F'\ for every proper subset F' of F. If
u £ F then, by Proposition 5, e £ [u, v] for some v G [F \ u]. Since v ^ e, it follows
that u = e. Since u G S \e, this is a contradiction. D

PROPOSITION 20 . A set and its convex hull have t i e same extreme points.

PROOF: We need only prove that if e is an extreme point of S, then it is also an
extreme point of [S]. Assume on the contrary that e £ [x, y], where x, y £ [5] \ e. By
Proposition 5 we have a: G [e, u] and y G [e, v] for some u, v G [5 \ e]. From e G [x, y],

y £ [e, v] and y ^ e we obtain, by (L2), e £ [x, v]. From e G [x, v], x G [e, u] and
i / e w e obtain similarly e G [u, v]. Since e $ [5 \ e], this is a contradiction. D

We shall denote by E(5) the set of all extreme points of the set 5 . If 5 is finite,

then [5] = [E(5)] since, by Proposition 5, x E [ S \ i ] implies [5] = [5 \ x].

A convex set A is said to be a face of a convex set C if A C C and if a G (c, c'),

where a £ 4 and c, c' £ (7, implies c, c' £ .4..

Thus a singleton {e} is a face of C if and only if e is an extreme point of C.

It follows at once from the definition that if A is a face of C, then C \ A is convex.

Furthermore,

(i) the empty set 0 and the whole set C are faces of C,
(ii) the intersection of any family of faces of C is again a face of C,

(iii) the union of any family of faces of C which is totally ordered by inclusion
is again a face of C.

The following two properties are also immediate consequences of the definition:

PROPOSITION 2 1 . If A, B, C sure convex sets such that A is a face of B and
B is a face of C, then A is a face of C.
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PROPOSITION 22 . If B, C are convex sets such that B C C and if A is a face
of C, then A D B is a face of B. In particular, if A C B then A is a face of B.

Faces may also be characterised in the following way:

PROPOSITION 2 3 . Aset A is a face of a convex set C ifandonlyifCn(A) - A
and C \ A is convex.

PROOF: Let A be a set such that C n (A) = A and C\ A is convex. Then ACC

and A is convex, since it is the intersection of two convex sets. If a G (c, c'), where
a G A and c, c' G C, then at least one of c, c' is in A, since C \ A is convex, and in
fact they both are, since C D (A) = A. Thus J4 is a face of C.

On the other hand, if A is a face of C then C \ A is certainly convex. Put
2? = C n (A). Then A is a face of B, since 5 is convex and A C B C C. By
Proposition 13, if & G 2? then 6 G (a, a') for some a, a' £ A. If 6 € [a, a'] then 6 £ A,
since A is convex. If a' € (a, b) or a 6 (a1, 6) then 6 6 A, since .A is a face of B.

ThusB = A. U

COROLLARY 2 4 . If A and B are faces of a convex set C, then A properly
contains B if and only if (A) properly contains {B}.

PROPOSITION 25 . If a convex set C is contained in a closed half-space of (C)
associated with a hyperplane H, then C PI H is a face of C.

PROOF: Put D — C D H and let 27+ be the open half-space of (C) associated
with H such that C C H U H+. Then CC\(D) = D, since D C Cn(D) C CnH, and
C \ D is convex, since C\D = Cf\H+. D

PROPOSITION 26 . Let C be a convex set and H+ an open half-space of (C)
associated with a hyperplane H. Also, let A be a subset of B = C C\ (H U H+) such
that A D H is a face of C (possibly 0). Then A is a face of C if and only if A is a
face of B.

PROOF: By Proposition 22 we need only show that if A is a face of B, then A is
also a face of C. Put H.- = (C) \(HU H+).

We show first that C D (A) = A. Since B fl (A) = A, it is enough to show that
if y G H-, then y ^ {A). Assume on the contrary that y G (A). Then y G (x, z) for
some x, z £ A and we may choose the notation so that z G (x, y). Hence there exists
a point w G (y, z] D H. Moreover w $ A, since A n H is a face of C. Hence w ^ z
and z G (x, w). But, since A is a face of B, this contradicts w £ A.

We show next that C \ A is convex. Assume on the contrary that, for some points
x, y G C \ A, there exists a point z G (x, y) fl A. Since 5 \ A is convex, we may
assume that y G -9- • Then a; G H+, since 27 U H- is convex. Hence there exists a
point w G (x, y) D 27, and z G [tu, z), which leads to a contradiction in the same way
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as before. U

PROPOSITION 2 7 . Let C be a convex set and S an arbitrary subset of C.

Then the subset As of C, consisting of the union of C D (5) with the set of all points

x, x' £ C such that (x, x') fl (5) ^ 0, is a face of C, and is contained in every face of

C which contains S.

PROOF: We show first that .As is convex. Suppose z G (x, y), where x, y are
distinct elements of As with x £ (S) and z £ (S). Then z G C and there exist points
x' G As, a £ (S) such that a G (x, x'). If o, x, y are collinear, then a G (z, z') for
some z' G {x, y, x'} C C and so z G As- Hence we now suppose that a, x, y are not
collinear. Then, by ( P ) ' , there exists a point c G (a, y) D (x', z). If y G (S), then
c G (5) and hence z 6 i s . If y £ (S), there exist y' G As and 6 G (5) such that
be(y,y').

U b — a then, by Proposition 8 ' , a G (z, 2') for some z' G (a;', y') and hence
z G vis- Thus we now suppose b ^ a and hence y £ (a, b). By ( P ) ' , there exists a
point d G (a, 6) !~l (c, y'). Moreover d G C n (5), since a, 6 G C n (5) . Thus we may
suppose d ^ z. We may also suppose that y' £ (x', z), since otherwise <f G (z, x')

or <Z G (z, t/'). Then by Proposition 2 ' , there exists a point e G (»', j/') such that
d G (e, z). Thus z G As in every case.

We now show that As is a face of C. Suppose x G As and x G (c, c'), where
c,c'eC. U x E (S) then c, c' £ A s , by the definition of As• If x £ (S), then there
exist a;' G As and a G (S) such that o G (x, x ') . If a, c, c' are collinear, then c = a

or a G (c, x) or a G (c, x ' ) . In any event c G As, and likewise c' G As • Thus we now
suppose that a, c, c' are not collinear. Then, by Proposition 2 ' , a G (c, y) for some
2/ G (c(, x ' ) . Hence c G As, and likewise c' G As•

It follows at once from Proposition 23 that any face of C which contains S must
also contain As • D

COROLLARY 28 . Let C be a convex set and a£C. Then the set Aa consisting
of a and all points x, x' G C such that a G (x, x') is a face of C, and is contained in
every face of C which contains a.

6. POLYTOPES

We define a polytope to be the convex hull of a finite set. We shall show that the
notion of 'face' is especially significant for polytopes.

PROPOSITION 29 . Let P beapolytope and S the (finite) set of extreme points

of P. Then the faces of P are the sets [T], where T C 5 and [5 \ T] D (T) = 0.

PROOF: We show first that if F is a face of P, then F = [T] for some T C S

such that [5 \ T] n (T) = 0. Evidently we may assume that F ^ 0, P. Let T denote
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the set of all extreme points of P which are contained in F. Then [S\T] C P \F,

since P \ F is convex, and thus T is a nonempty proper subset of S. If x £ F, then
z 6 [y, z] for some 3/ 6 [5 \ T] and z e[T]. Thus y £ P\F and z e -P. Since a; ^ z

would imply y £ (F), which contradicts P fl (F) — F, we must have a; = z £ [T].
Hence F = [T] and [5 \ T] n (T) = 0.

We show next that [T] is a face of P if T is a subset of S such that [5\T]n(T) = 0.
Let a; e P n (T). Then x £ [y, z], where j / € [ 5 \ T ] and z £[T\. In fact i = z, since
x ^ z would imply y £ (T). Thus P n ( T ) = [T]. It remains to show that P \ [T] is
convex.

Suppose z £ {x, y), where x £ [S], y £ [S \ T] and z £ [T]. Then x £ [y1, z1},

where y' £ [S \ T] and z' £ [T]. Since [S\T]n (T) = 0, we must actually have
x £ (y', z') and x, y, z' are not colh'near. Hence there exists a point z" £ (y, y') such
that z £ {z\ z"). Since z" £[S\T]n (T), this is a contradiction.

If P \ [T] is not convex then, for some points x', x" £ P \ [T], there exists a point
z £ (x1, x") n [T]. Then x' £ [y\ z'}, where y1 £ [S\T] and z' £ [T]. Moreover, by
what we have already proved, x' £ (y', z') and x", y', z' are not collinear. Hence there
exists a point z" £ (x", y') such that z £ (z', z"). Since z" £ PC\(T) - [T] this yields
a contradiction, as we have already seen. U

COROLLARY 3 0 . HP is a polytope and F a face of P, then F is a polytope
and E{F) = E{P)(1F.

COROLLARY 3 1 . A polytope has only finitely many faces. More precisely, a
polytope with n extreme points has at most 2n faces.

There is one important case in which the bound 2n in Corollary 31 is actually
attained:

PROPOSITION 3 2 . Let P = [S], where S is a finite afEne independent set.

Then a set F is a face of P if and only if F = [T] for some T C 5 .

PROOF: TO show that every set [T], where T C S, is a face of P it is sufficient
to show that [S \ s] is a face of P, for every a £ S. But this follows at once from
Proposition 29. D

We establish next some further porperties, showing that the polytopes considered
here behave in the manner to which we are accustomed.

PROPOSITION 33 . If P is a polytope and £ a Une, then P D £ is a segment.

PROOF: Suppose P = [S], where 5 = {si, . . . , sn}. Since the result is obvious
if n ^ 2, we assume that n > 2 and the result holds for all smaller values of n.

Obviously we may assume also that £ contains two distinct points x, y of P. It follows
n

from Proposition 10 that P n£ - C (~\£, where C = (J [5 \ a<]. Furthermore, by
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the induction hypothesis, [S \ Si] D £ is either empty or has the form [a^, b{], for each
t G {1, ..., n}. But the points of the line £ may be totally ordered, as in Proposition
12. If we put a = minj{oi, 6,-} and b = max,{a,-, b,}, then P D £ = [a, b]. 0

PROPOSITION 3 4 . If P is a polytope and L an affine set, then P f l l is a
polytope.

PROOF: Suppose P = [5], where 5 = {x\, ..., xn}. Since the result is obvious
if n = 1, we assume that n > 1 and the result holds for all smaller values of n . Let

n

p e PDL. By Proposition 9, we have P - \J Pi, where Pi = [p U (S\aii)]. It is
»=i

enough to show that the sets Pi D L (i = 1, . . . , n) are all polytopes. For if Pi D L is
the convex hull of a finite set Si (i — 1, . . . , n), then

n

p n £ = (J Pi n £ c [Si u . . . u 5B].
t=i

Since Si U... U Sn C P n L and P n i is convex, we must in fact have [Si U . . . U Sn] =
PDL.

Without loss of generality, we show only that the set Pi fl L is a polytope. Put
P[ = [x2, . . . , xn] and P' = P[ fl L. Since P' is the convex hull of a finite set, by the
induction hypothesis, we shall complete the proof by showing that

P1nL = \pUP'].

The right side is certainly contained in the left, since p U P' = (p U P[) D L and Pi =
[pU Pj']. On the other hand, the left side is contained in the right. For if x £ Pi \p
then x e (p, y] for some y £ P[, and if x G (Pi fl L) \ p then y £ P[nL. D

PROPOSITION 3 5 . The intersection of a polytope P with a closed half-space
of (P) is again a polytope.

PROOF: Let H be a hyperplane of (P) and J?+, Z?_ the open half-spaces asso-
ciated with H. Let S' be the set of extreme points of the polytope P' — P C\ H and
let S+, S_ be the sets of extreme points of P in H+, H- respectively. Obviously we
may assume that both S+ and S_ are nonempty. Then the intersections of P with the
closed half-spaces H U H+ , H U H- are the polytopes P + = [S' U S+], P_ = [S' U S_],
since P + U P_ = P , P+ 0 P_ = P ' . D

We say that F is a facet of a polytope P if F is a face of P and dim P = dim P—1.
Equivalently, F is a facet of P if {F) is a hyperplane of (P), P D (P) = F, and P
is contained in a closed half-space of (P) associated with the hyperplane (P). We say
that F is an edge of a polytope P if F is a face of P and dim P = 1. The proper faces
of a polytope P are the faces other than P itself.
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PROPOSITION 3 6 . Any proper face F of a polytope P is contained in a facet

of P. Moreover, if dim F = dim P — 2, then F is the intersection of two facets of P.

PROOF: We begin by proving the following assertion:

Let S be the set of extreme points of P, let Si be a subset of S such that
Li = {Si} C (5) and let Fi be a facet of the polytope Pi = P D Lx. If L2 = (b, 5X),
where b £ 5 \ Lx, then the polytope P2 = P D L2 has a facet F2 such that Fi C F2.

By hypothesis Hi = (Fi) is a hyperplane of Zi and, if a £ Si \ Hi, Pi is
contained in the closed half-space of Li associated with Hi which contains a. Let T
be the set of extreme points of P2 and let M be the open half-space of L2 associated
with the hyperplane Li which contains b. We can choose &i, . . . , bm £ T (1 M so that
every element of T fl M belongs to (bi, Hi) for some i and bj ^ (bi, Hi) if j ^ i.
We shall show that the set {&i, . . . , bm} is partially ordered by writing 6; ^ bj if
[a>4i]nfc,JJi)^0.

It is evident that bi ^ 6< for every i. Suppose b, ^ bj and bj ^ bi. Then
there exist points c< £ [a, 6,] PI (6,-, Hi) and c;- £ [a, &;] D (fy, J?i). Hence there exists
a point x £ [6,-, ĉ ] D [bj, Cj] and a point y £ [6;, 6j] such that x £ [a, y]. Then
s: £ (&i, Hi) n (6j, .ffi). Moreover x £ Hi, since y £ Li. Hence (6j, Hi) — (x, Hi) —
(bj, Hi), which implies 6t- = bj .

Suppose next that bi ^ bj and bj ^ &t • We wish to show that 6,- ̂  6*. There
exist points Cj £ [a, bj} D (bi, Hi) and Cj £ [a, bk] ("1 (bj, Hi). If there exists a point x £
[bj, Cj]C\(bi, Hi), then x £ [a, y] for some y £ [6j, &*]. Moreover x £ Hi, since y £ Li,

and hence, as before, 6; = bj ^ 6^. Thus we may now assume [bj, CJ] fl (6j, JJi) = 0.
Then bj and Cj lie in the same open half-space of L2 associated with the hyperplane
(bi, Hi). Since a and bj lie in different open half-spaces, it follows that a and Cj lie in
different open half-spaces, and hence so also do a and bk • Thus [a, 6jt] D {bi, Hi) / 0
a n d bi ^ bk •

This completes the proof that the set {bi, ..., bm} is partially ordered. We now
choose the notation so that bm is a maximal element of this partial ordered set. Thus,
putting H2 — (bm, Hi), we have [a, 6,-] (1H2 = 0 for all i < m. We are going to show
that F2 = P C\H2 is a facet of the polytope P2 - P f)L2. Since (F2) - H2 is a
hyperplane of L2 , we need only show that P2 is contained in the closed half-space of
L2 associated with the hyperplane H2 which contains a.

Assume on the contrary that, for some a' £ T, there exists a point x £ (a, a')f)H2.
Then, by construction, a' ^ M. If a' £ L\ then x £ Hi, since bm £ Li. But then a
and o' lie in different open half-spaces of Li associated with the hyperplane Hi, which
is a contradiction because JF\ is a facet of Pi. Thus we now suppose a' (£ L\. Then
a' £ JV, where N is an open half-space of L2 associated with the hyperplane Li and
N 7̂  M. Thus there exists a point y £ (a1, bm) (1 Li. Hence a, a', bm are not collinear

https://doi.org/10.1017/S0004972700014416 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014416


[21] A theory of polytopes 21

and there exists a point z G (a, y) D (bm, x). Since z G L\ n JT2 , we must actually have
z 6 J?i. Since y £ Pi, this again contradicts the fact that F\ is a facet of P i . This
completes the proof that F2 is a facet of P 2 , and it is obvious that Fi C F2.

If Fi = P 0 Lx is a facet of P 2 , then F2 fl F'2 = Ft since ff2 D I i = # i . If
PC\Li is not a facet of P2 , then T D JV ^ 0 and we can in the same way choose points
di, ...,dne THN and show that F2' = Pf\H'2 , where ff£ = (<£„, # i ) , is also a facet of
P2 containing i^ . Since the segment (bm, dn) contains a point x G L\, and H'2 = H2

implies x G # 1 , the facets F2 and F2 will be distinct if (bm, dn)flHi = 0. Thus they
are certainly distinct if Fi is a face of P 2 . Again, F2 D F2 — Fi since H2H H2 = Hi.
If we take Fx = F to be a face of P such that dim F - dim P - 2, then P2 = P and
thus we obtain the second statement of the proposition.

To prove the first statement, take Fi = F to be a face of P such that d i m P <
dim P — 2 and put Hi = (Fi}. Then Hi = (R), where R is the set of extreme points
of P which are contained in F. If £1 = (a, R), where a G S\Hi, then Fi is a facet of
Pi = P fl Li. By repeatedly applying the initial assertion, we see that F is contained
in a facet of P . D

From Proposition 36 we can deduce many other properties of polytopes:

COROLLARY 37 . It F and G are faces of a polytope P such that F C G, then

there exists a Unite sequence Fo, Fi, ..., FT of faces of P, with Fo — F and Fr = G,

such that Fi-i is a facet of Fi (i = 1, . . . , r).

PROPOSITION 3 8 . Any proper face F of a polytope P is the intersection of

all facets of P which contain it.

PROOF: Put d = d imP - d i m F . If d = 1 the result is obvious and if d = 2 it
holds by Proposition 36. We assume that d > 2 and the result holds for all smaller
values of d. There exist faces G, G' of P such that G f~l G' = F and F is a facet of
both G and G'. Since, by the induction hypothesis, G and G' are the intersections of
all facets of P which contain them, so also is F. 0

PROPOSITION 3 9 . If F, G, H are faces of P such that F C G C H, then

there exists a face G' of P such that F C G' Q H, F = Gr\G', and every face of P

which contains both G and G' also contains H.

PROOF: We may suppose F C G C H, since if G = F we can take G' - H and
if G - H we can take G' - F. Put n = dimH - d i m F . If n = 2 the result holds
by Proposition 36. We assume that n > 2 and the result holds for all smaller values
of n . If m — dimG — d i m F then, since n > 2, either m > \ or m < n — 1 (or
both). Without loss of generality suppose m > 1 and let Fi be a face of P such that
F C Fi C G and F is a facet of Fi. Then by the induction hypothesis there is a face
G" of P such that Fx C G" C H, Fx = G n G" and every face which contains both
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G and G" also contains H. Since G" ^ H, there also exists a face G' of P such
that F C G' C G", F = J\ n G' and every face which contains both J i and G' also
contains G". Since G' C G",

G n G' = (G n G") n G' = Fx n G1 - F

and, since Fi C G, any face which contains both G and G' also contains G" and hence
also contains H. D

The next result shows, in particular, that polytopes are polyhedra:

PROPOSITION 4 0 . Let P be a polytope and Fx, ..., Fm its facets. If Qt is

the closed half-space of (P) associated with the hyperplane Hi = {F{) that contains P

(i = 1, • . . , m), then

m

PROOF: Put Q - f| Qt. Then obviously P C Q. We shall assume that there
i=l

exists a point a £ Q\P and derive a contradiction. Since a £ (P), we have a £ (a;, y)
for some distinct points x, y £ P, by Proposition 13. Moreover, by Proposition 33, we
may choose x, y so that P C\ (x, y) = [x, y] and we may choose the notation so that
x £ (o, y). Then x and y belong to proper faces of P, by Corollary 28. Hence, by
Proposition 36, x and y belong to facets of P. Thus x £ Hk for some k. Since a
and y cannot lie in different open half-spaces of (P) associated with the hyperplane
Hk, it follows that a, y £ Hk and hence y belongs to the same facet of P as x. Put
n = dim P . If n — 1, then P — [x, y] and we already have a contradiction. If n > 1,
then the polytope P' = PHHk has dimension n — 1 and x, y belong to facets of P'. By
the same argument as before, they must belong to the same facet of P'. This process
can be continued until we arrive at a one-dimensional polytope, and a contradiction. D

From Propositions 35 and 40 we immediately obtain

PROPOSITION 4 1 . The intersection of two polytopes is again a polytope.

We can now show also that two-dimensional polytopes are polygons:

PROPOSITION 4 2 . If P is a two-dimensional polytope, then the n ^ 3 extreme
points of P can be numbered ei, . . . , en so that the facets of P are precisely the
segments [ei, ei+1] (i — 1, . . . , n - 1) and [en, ei].

PROOF: Since the result is obvious if n — 3, we assume that n > 3 and the
result holds for two-dimensional polytopes with fewer than n extreme points. Let S
denote the set of extreme points of P . If e £ 5 then, by Proposition 36, there exist
distinct e', e" £ 5 such that [e, e'] and [e, e"] are facets of P. Suppose / £ 5 and
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/ ^ e, e', e". Then (e, e ')n[e", / ] = 0 and also (e, e")n[e', / ] = 0. Hence, by Lemma
15, (e, / ) D [e', e"] ^ 0. Since all points involved are extreme points of P , we must
actually have (e, / ) D (e', e") ^ 0. It follows that [e', e"] is a facet of the polytope
[5 \ e]. The result now follows from the induction hypothesis. u

Finally we shall show that the theorem of Balinski [1], that the graph of a d-
dimensional polytope in Euclidean space is d-connected, remains valid for the polytopes
considered here.

LEMMA 4 3 . Let P be a polytope, G a facet of P and F a face of G. Then
there exists an extreme point e' of P such that e' £ (G) and P fl (e1, F) is a face of
P.

PROOF: Put d = dim P . Since the result is trivial when d = 0 or 1, we assume
that d ^ 2 and the result holds for all smaller values of d.

Let F' be a facet of G and let G' be a facet of P such that F' = G D G'. Also,
let e' be an extreme point of G' which is not in F'. Then e' is an extreme point of
P, e' $ (G) a n d ( e ' , G ) = (P) .

Thus we may now assume that F is a proper face of G and that F' is a facet of
G which contains F. By the induction hypothesis there exists an extreme point e' of
G' such that e' $ (F1) and G' D (e1, F) is a face of G'. Then e' is an extreme point
of P, e' $ (G) and P H (e', F) = G n (e1, F) is a face of P . D

PROPOSITION 4 4 . Let P be a d-dimensional polytope, S the set of extreme

points of P and E a subset of S such that 0 ^ \S \ E\ < d. Then any two distinct

points e, e' £ E can be connected in E by edges of P, that is there exists a finite

sequence eo, e\, ..., em of elements of E, with eo = e and em = e', sucjj t ia t [e,-_i, e;]
is an edge of P for i = 1, . . . , m .

PROOF: Fix e £ E. It follows from Lemma 43, with F — {e}, that there exists
an affine independent set V of d + 1 extreme points of P , including e, such that [e, / ]
is an edge of P for every / £ V \ e. Hence we may assume that e1 ^ V and that the
result holds for all d-dimensional polytopes with fewer extreme points than P . Since
(V) = (P) , it follows that e' G (S \ e').

By applying Proposition 40 to the polytope Q = [S \ e'], we see that there exists a
facet F of Q such that e' does not lie in the closed half-space of (P) = (Q) associated
with the hyperplane (F) which contains Q. We have F - [T], where T C S \ e'. If
/ G T then [e1, / ] is an edge of the polytope [e'UT], by Proposition 29, and hence also
of P , by Proposition 26. Thus we may assume that e£U, where U = S \ (e' U T) . By
the induction hypothesis any two distinct extreme points of Q which are in E can be
connected in E by edges of Q. Hence, by Proposition 26, e can be connected in E to
some extreme point / G T D E by edges of P . Consequently e can also be connected
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to e'. D

Since this proof of Balinski's theorem appears simpler than previous proofs, and

was necessitated by our weaker hypotheses, it shows to advantage the axiomatic method.
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