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EQUATION OF ISOTOPE FRACTIONATION BETWEEN ICE
AND WATER IN A MELTING SNOW COLUMN WITH
CONTINUOUS RAIN AND PERCOLATION*

By THORVALDUR BuUAsoN
(Raunvisindastofnun, Haskélans, Reykjavik, Icelandt)

ApstrAcT, Partial differential equations are derived to describe isotope fractionation between ice and
water phases in temperate snow caps and glaciers. Numerical solutions are obtained and shown to be
consistent with laboratory experiments and measurements of deuterium concentrations in temperate glaciers.
The process of isotope fractionation as described is manifested by application of the model to tritium frac-
tionation in temperate snow caps.

Resume. Equation de la distribution des isotopes entre Ueau el la glace dans une colonne de neige fondanle avec pluie ou
percolation continues. Nous dérivons des équations différentielles partielles qui sont réputées décrire la réparti-
tion isotopique entre la glace et I'eau dans les couvertures tempérées de glace ou de neige. On obtient des
solutions numériques qui se montrent cohérentes avec des expériences de laboratoire et des mesures de
concentrations en deutérium dans des glaciers tempérés. Le processus décrit pour la répartition des isotopes
se vérifie par application du modéle 4 la répartition du trititum dans les couvertures tempérées de neige.

ZUSAMMENFASSUNG. Eine Gleichung der Isotopenfraktionierung zwischen Eis und Wasser in einer unter Dauerregen
und Durchtrinkung schmel zenden Schneesiule. Es werden particlle Differentialgleichungen abgeleitet, welche die
Isotopenfraktionicrung zwischen den Phasen Eis und Wasser in temperierten Schneekappen und Gletschern
beschreiben, Die gewonnenen numerischen Lésungen zeigen Ubereinstimmung mit Laborversuchen und
Messungen der Deuteriumkonzentrationen in temperierten Gletschern. Der Vorgang der Isotopenfrak-
tionierung wird durch Anwendung des hier entwickelten Modells auf die Tritiumfraktionierung in tem-
perierten Schneekappen verdeutlicht.

INTRODUCTION

This article is divided in four parts. In part I we derive a system of partial differential
equations, which describe fractionation between ideal solid and liquid solutions in a melting
column with percolating liquid phase. Although the equations apply equally well to all ideal
solutions, we establish the nomenclature of the problem suitable for the present work. So we
consider particularly the exchange of HDO and H,O molecules between ice and water in a
snow column of a melting temperate glacier.

In part IT we present finite difference equations deduced from the partial differential
equations and give a precise description of the method of numerical solution.

Part I1I deals with the comparison of numerical solutions of the equations with measure-
ments in the laboratory and on glaciers. Special attention is drawn to the exchanges of HTO
and H,O in glaciers. The results of the computation are in good agreement with measure-
ments.

In part IV we discuss the quality of the model and equations and some possible improve-
ments are considered.

LIST OF MAIN SYMBOLS
x Depth in snow column measured as a fraction of total height (solid-phase pre-
cipitation).
t Time measured in units of total melting time. x and ¢ are the independent
variables.
N(x,t) Number of HDO molecules in the liquid phase per unit height in snow column at
depth x and time ¢.

* Paper presented at joint meeting of the Glaciological Society and Jéklarannséknalélag islands in Skogar,
Iceland, June 1970.
t Present address: P.O. Box 273, Reykjavik, Iceland.
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M(x,t) Number of H,O molecules in the liquid phase per unit height in snow column at
depth x and time ¢.
N’(x,t)  Number of HDO molecules in the solid phase per unit height in snow column at
depth x and time ¢.
M'(x,t)  Number of H,O molecules in the solid phase per unit height in snow column at
depth x and time ¢.
u(x, t) = N(x, t)|M(x,t), deuterium ratio of liquid phase at depth x and time ¢.
v(x, t) = N'(x, t)[M'(x, t), deuterium ratio of solid phase at depth x and time ¢.
a  Equilibrium constant of deuterium ratios for ice and water. So in equilibrium of
phases we have v = au. We use the value « = 1.0208 as measured by Arnason
(1969[a]).
N"(t)  Number of HDO molecules in liquid precipitation per unit time at time ¢.
M"(t)  Number of H,O molecules in liquid precipitation per unit of time at time £
w(t) = N"(t)/M"(t), deuterium ratio of rain at time ¢.

1. THE PARTIAL DIFFERENTIAL EQUATION
Ldeal solid column, melting, precipitation and percolation

We make the following assumptions

(a) Melting is occurring only at the top of the column. We let the coordinate system
move to maintain x = o at the top of the column for all ¢.

(b) We assume the same total number of H,O and HDO molecules per unit height for all
sections of the column:

M(x, t)+N(xt) = K, (1)
M (x, ) +N'(x, ) = K,

where & is the total number of HDO and H,O molecules in the liquid phase per unit height,
K" is the total number of HDO and H,O in the solid phase per unit height, & and K’ being
constants.

(c) The precipitation is uniform for all ¢:

M"(t)+N"(t) = K, (2)

where A% is the total number of water molecules in liquid precipitation filtering into the column
in unit time, A} being constant. We do not expect sublimation from the top surface of the
column to be of any importance.

(d) Melting is uniform for all £. With (a)—(c) this means that the column in the defined
coordinate system is moving upwards with constant velocity &, |¢'| = ¢’. Also the percolating
liquid is flowing down the column with constant velocity ¢, || = ¢. This gives us the con-
tinuity equation:

¢k = 'K'+ K. (3)
For convenience we let
¢ K’ K 1 K " q B v
CI_K) H'_ns chr—C:_'V, C,[{,— an 'u,—v

thus v is the ratio of solid precipitation to total melting of the solid phase, A is the ratio of total
liquid precipitation to total melting,  is the ratio of solid phase to liquid phase in the section,
w is the ratio of total liquid precipitation to total solid precipitation.

(e) Along with the percolation of liquid phase there is continuous exchange of HDO and
H,O between the solid phase and the liquid phase. The equation of continuity gives in every
section:
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AN = —AM, AN = —AM’ (5)
and
AN = —AN". (6)
We use the bar to indicate changes due to fractionation in the time t—1At to t+3A¢ for a
section Ax thick at depth x. The following simple law for the fractionation is assumed:

Alou—uv) (ou—2)
e e (7)

T

where 7 is a time constant.

Equation (7) is a crucial assumption for our derivation, and is equivalent to assuming
exponential decay into phase equilibrium, which is the simplest approximation to make.
This may seem a very awkward assumption, since molecular diffusion in ice crystals is known
to be extremely slow, which should render this process irrelevant (Itagaki, 1967). The
mechanism despite this is suggested to be continuous melting and recrystallization of the
solid phase along with percolation of the liquid phase under adiabatic conditions. Changes in
the grain size of the snow are actually observed both on temperate glaciers and in laboratory
experiments, supporting the hypothesis of melting and recrystallization.

Now
Au  AN[(E=N) (u+uw) AN (1+u) AN '
AT A NN (BN A (72)
and

Av _ (1+40) AN
AT E—N) A (7b)
Equations (7a), (7b) and (7) combine to give
a(1+w)  (142) | AN (au—2)
{ KN BN A ®)
In natural water N/R & 1501076 &~ N'/K"’, suggesting the approximations K—N =~ K,
K'—N'"~ K',and 14u &~ 1 & 142 be made, implying
AN K (au—)
At —T(a:'q—i-l) ’ (9)
As before we use the bar to indicate the changes due to the fractionation law described by
Equation (7).

The equation of isotope fractionation in a melting ideal solid column with percolating liquid phase

Consider the variation of the number NAx of HDO molecules in the liquid phase in the
section x—JAx to x4 }Ax in time ¢— }Af to ¢+ }Af (Fig. 1). The time variation of the number
is caused by:

(a) The different isotope ratios for the liquid phase flowing into the section and out of the
section, and
(b) Fractionation as described by Equation (g).
We then have

N AN K'(au—2)
AxAt i —AxAte¢ e—x—/_\xﬁl m. ( IO)
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Fig. 1. Coordinales used in deriving the equations.
Dividing by AxAt £ ~ AxAt(K—N) and using the same approximation as in Equation
(9),
cu Ou 7
(au—v) = 0. (11)

ot Gg' T(an+1)

In a similar way we obtain for the HDO molecules in the solid phase:
o, o 1

= ———— (au—0) = 0. 12
ot ox t(am+1) ] ()
Choosing the total melting height of the snow column as unit height y = v, (Fig. 2) the

equations become
cu ou ] ,
8t+K aJ)—|~T((m+l) (eu—v) = o, (11')

av_az)_ I B
?t a T—_(Ot‘q+]) (cxu—v) = 0. (12

Spring Fall
Surface X=0
l Considered
" A~ | Snow Column
Surface X=0
Considered
A~ | Snow Column
X
X=1 X= '/l/
Last Years Fall Surface
t=1

t=0
Fig. 2. Comparison of the spring and fall values of coordinales used in deriving the equations.
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The boundary values and initial conditions for the isotope ratios

The boundary values of isotope ratios in our case are determined by the isotope composi-
tion of the precipitation W (t), the isotope ratios of the solid phase on top of the column
(0, t), and the ratio of the amount of precipitation per unit time to the amount of melted
solid phase per unit time. This ratio is A.

The equation of continuity (for the rarer isotope) at the top of the column implies:

cRu(o,t) = ¢'K'v(o, t)+ R W (1),

u(o, 1) =2 (ofo, 1) +u(2). (r3)
7, k, A and v are not independent parameters as may be seen from Equation (3) and (4).
PR K B K I
LA 1e(cK'+Ky)  1+EfcK 14A° (14)
k = n(14A).
It is convenient to choose 9, A and v as parameters of the equations and conditions, thus
u(0,¢) = (v(0, ) +-Aw(t))/(1+A). (13')

The natural initial condition is a pure solid-phase column (no liquid phase). No changes take
place in any section before the percolating liquid phase reaches that section. This frontier of
percolating liquid phase determines an initial boundary of the domain of the equations. At
the time the percolating liquid phase reaches a particular section, the height of the column
may have diminished.* This can be described by the initial condition for our equations.

v(ct, t) = v(X, o)

where ¢t =X—c't or X= (c+¢')t
X o _
() = us o, (15)
KX vX o :
v(I+K’ I+K) :U(X, 0)’ (15)
v( n(14A)% vX ) T ) (157)
() () T O o

foro < x < 1.

Summary of the partial differential equations, boundary values and initial conditions
The partial differential equations :

cu cu
FHH) gt (i) = o, (11)

ov v 1

Ay remtn O (12)

* The case with no melt water and only precipitation percolating down the columns needs a special con-
sideration since ¢’ = 0 and « cannot be defined.
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v

o <y <q(1+A) 4 Oétém;

v

SR g, m—————— & ST
Oy Vv—i 'q([-k/\){-l\t\]’
v—I1
—I) <y < v— sl ———,
pI4+A(E—1) <y <v—t, 1<t I+7](I—{—/\)+I
The domain of the equations is shown in Figures 3 and 4.
t
A
dry fall snow
S L R
\
\
\
\
\
\
\
t=1
‘/-bonorn
w
& wet snow
%
8 \
= \
o ") \
2 o> \
3 & \
o 0 \
a o\ \
S \
\
\
\
\ >y
e dry spring snow y=v

Fig. 3. The domain of the equations is shaded. In the case illustrated the column does not melt totally.

Boundary value:
I

uWJ%:HJ@MU+MMD: o<t 1. (137

Initial condition:
n(1+A) j I i i .
(e T Y) s e o

Isotope ratio of draining water
The isotope ratio of the liquid phase draining from the bottom of the column is given by
u(y, t) on line segment:
v n(1+A)+v
y=v—t, ————— <t
p(14+-A)+1 n(14A)+1
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boundary conditions

& dry snow column y=|
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Fig. 4. The domain of the equations is shaded. In this case the column mels totally.

Solutions of the partial differential equations
The equations are the well-known telegraph equations, but the above mixed boundary
and initial-value conditions are unusual. We have proved the existence and uniqueness of

the solutions with these conditions.
In the proof use is made of Riemann’s method. Define & = v for ¥ — o. Using Riemann’s

method there emerges an integral equation for 4 of the type (1 —K) h = f, where fis a known
function and K is an integral operator:
K :C°[o, a] = C'[o, a].
We use the norm |4 = sup o <<x < a h(x). The operator (1—K) has an unique continuous
inverse if
18] <1

It was shown that ||f?|| < 1 for all @ < apmax where amax > 1.

II. DIFFERENCE EQUATIONS

Equation of finite differences

Finite difference methods will now be employed to produce a numerical solution of the
partial differential equations. The difference equations can be derived directly from the
differential equations. Let us first make the transformation:

(3 t) = (s, 8); s=34t and ¢ ==t
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The differential equations become

o U q S ;
'ﬁ+(‘+")?{7(—a;7+_1)(°‘r"'m =0 (167)
oV I )
g‘m (DLU—V):O (17 )

where U(s, t') = u(y,t) and V (s, ) = v(,¢). In this coordinate system the bottom of the

solid phase column will remain fixed. The liquid phase is percolating with velocity 1+«.
Consider all points with coordinates ((k—4)h, (i+1})g), where £ and { are integers

(>1) and 4 and g positive numbers. We define two neighbours to an arbitrary point

P = ((k—4)h, (i-+})g) namely:

and
Pew = ((k—Dh, (i—1)g)-
Equations of finite differences may then be written as
U(P)—U(P*) U (Ps) —U(Psv) n
L e )

g
T(an+1)

where we have chosen kg = (1-4«) implying that P and Ps¥ become points on the same
characteristic line.

(7 (PsW) —V (P$%) = o0

U(F) = b} — (aU (Pew) — V' (PeW)) (16%)

g
T(am+1)

These equations make it possible to compute U and V" for all points ¢ = (i+14)g, when the
values for ¢ = (i—3)g are known (Fig. 5). Note that P and P* are also points of the same
characteristic line. The Equations (16") and (17') can easily be translated into physical
language. Equation (16) tells us that a liquid phase cell at point P was at point Ps¥ ¢ time
units earlier. The changes of the isotope ratio of the water are due to the decay towards
equilibrium with the solid phase at PsW.

A general computer programme for solving the differential equations was not available
at the Computer Center of the University of Iceland. A programme had therefore to be
written. In describing the difference scheme it is found useful to rely heavily on the physical
characteristics of the problem rather than follow the equations in a straightforward manner.

FiP) = ¥ ()t (aU (P%)—V(Pe)). (17°)

Description of the computations

Let us divide the length dimension (depth of the snow column) into R increments ({R=n)
and the time dimension (the melting period) into S increments. The R increments will be
termed cells of the column and the S increments showers. The rain is modelled as a row of
showers. The ratio of the length and time increments is chosen such that the water column
moves down a cell during a shower. At same time 1/(x+1) of the top snow cell is melting
(x is an integer >1). We choose S and 0 such that § = (k+1) Q. Q is the total number of
snow cells melting during whole process. If Q = R the column is completely melted.

Initially the column consists of solid phase only.
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v(k, 0), where (1 < k < R) is the isotope ratio of the kth cell from the top at the start of
the process. v(k, 7) is the isotope ratio of solid phase in the kth cell after the ith time interval.
u(k, 1) is the isotope ratio of the water phase in the kth cell after the ith time interval. w(7) is
the isotope ratio of the ith shower. x(i) is the isotope ratio of the liquid draining from the
column in the ith time interval.

Lete =1}

v(k, 1) =v(k,0), 1 <k<R, (18)
I

I+A

T P ————

(o1, 0) +Aw(1)). (19)

#(1, 1) =

/—bOHOI‘n

+++
£

++42++
L

++ef+

top

/

e

T g e

Fig. 5. When applving the difference scheme the domain can be described by meshes as illustrated.

During the first shower 1/(k-} 1) units of the top cell will melt and mix with the liquid pre-
cipitation filling up «/(x+1) of the top cell with liquid phase.

Letn — 2z
o(1,2) = a(s, 1)+ 2= L) (20)
ok 8) =3k 1)y 2k <R, (21)
o) =g (e 0T e a). g
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It is convenient to use following notations:

n(au(k, 1) —v(k, 7))

Ak, i) = ull, ) —TE ISR (24)
; w  (cu(ky ) —uv(k, 1))
B(k, i) = v(k, IH-Wg (25)
Clky i) = s (Blk, i—1)+hu(i), (26)
D(k,i) = 1o (-Hx—p) Alk, i—1)+pulk, D), (27)
where p and ¢ are defined by i = g(1+«)+p+1,0 < p < x.
Let g+2 <R, i > 2, p # x,
then
U(Q“}-I,‘l‘:) :B(‘g+l:i41)7 (28)
u(g+1,1) = Clg+1,1), (29)
U(f]—|—2, i) — B(q‘l'ﬁs i— l): (30)
u(g+2,1) = D(g+1,1). (31)

For p = k, the top cell is emptying and therefore it makes nonsense to compute using Equations
(28) and (29). To find the isotope ratios for the lower cells, we have two possibilities:
(I) { < R, and (II) i > R.

TR
Keimtd s
'_2_- s-1
L I<R
o
Qo
-t 3
. | E
==
19-11
==
1_1_'} i+l | th-sh
Top — . -shower
ST S
== 3
| n =) E
£ w22
55 ]
82 2
@ e O
5l HP EE
k=] | T
14 L] Fi1d
£ w-d
3
B
(3]
3
2
(7]
R-| J
k=| R &
7
] 2
o a
s 5
@ B =
2 z o

Fig. 6. The difference scheme makes uses of ““cells™ and **showers™, which can be made plausible by columns of squares as shown
in the drawing. In the situation illustrated the percolating liguid phase has not reached the bottom of the column.
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(I) « < R (Fig. 6)
The percolating liquid phase has not yet reached the bottom of the column and the rest
of the column must be treated in three different sections:

(@) gt2<k<i: <R

o(k, i) = B(k, i—1), (32)
ulk,t) = Alk—1,i—1), (33)

(b) g+2 <i=k<R
u(k, k) = A(k—1, k—1i), (34)
o(k, k) = v(k, k—1), (35)

(c) gt2<i<k<R
o(k, i) = o(k, i—1). (36)

(II) R < i (Fig. 7)
The percolating liquid has reached the bottom of the column and liquid is draining from
the column.
(a) gte <k < R<i

o(k, i) = B(k, i—1), (32)
u(k,i) = A(k—1,i—1), (33)
x(i) = A(R, i—1). (37)
|k T
"] 2
b 3 i>R :
18
K l e
——— i+l showers
TOD + +.
E I a+2 Fry
£
3
z
&

i i i e i e
1
—E L

4
1
4

D

I:u
.-JI .

=
L3

k= —1th call k=

r —»<¢—— percolating water———

T
i
3
2

28 (.

g5 e

2 3

b e L2d

12 '§§ 12!

| S | S et |

I 1!

LiaW B
@
0
o o
w =
o a
= -

- c

] B -

2 z &

Fig. 7. The liquid phase has reached the botiom of the column and drained liquid portions are present.
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We must take special care of the case when the column melts totally, i.e. ¢+2 = R and

g+1 = R may be satisfied.
(b) g+2 =R <1

The column has only two cells left. Isotope ratios of these cells are already determined
by Equations (28) to (31). The isotope ratios of the draining liquid is as before:

x(i) = AR, i—1).

We are now left with the case g+ 1 = R < ¢, which means that the last cell is melting:

v(g+1,1) = B(g+1,i—1),
p#
u(g+1,1) = C(g+1,1),

x(i) = D(g+1,i) = D(R, i).

The case Q = R, ¢ = § leaves us with the column filled up with liquid phase. To find

the final pure solid-phase column we must let the liquid percolate through.

Define ¢ = §+-j, 1 < j << R—Q. The upper boundary of the liquid phase divides the

column into three sections:
(a) O<k< O+ <R
v(k, 1) = o(k,i—1).
(b) QH/ <k <R
v(k, i) = B(k,i—1).
(@) A<k <R
u(k,i) = A(k—1,i—1).
For all s we have:

x(i) = A(R,i—1).

Commentary on the computer programme

The programme needs considerably less core storage if we define the vectors:

v (k) = v(k, 1); v, (k) = vk, i—1),
u (k) = u(k,i); u,(k) = u(k, i—1).

The vectors z,(k) may at every time instant be computed from the known vectors v,(k), u,(k).
Before advancing in time the old vectors may be replaced by the new ones, i.e.

m@+%m}
(k) = u, (k)

without destroying any information essential for further computation.
The following changes of formulas are necessary:

(1) = 175 @al)Hha(),
(ws(1) (1))
(ent1) =S °

o (0 + O ),

+A
I+.<( (st + uto)

o,(1) =

u;(2) =
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Alk) eq2d’
B(k) eq25'

Clk) eq26'
Dik] eq27"

input

0q 20,
H ag 19" Hi(l]'ullll H eq 22! H eq 33
eg 23

pri=l=glxs1)

he2
I
H lel=*

X=(1}=Clgel)

velk)ewi(h)
u2ik)eul(x) >
qel<kEi

qel ok ifp#x

o

vi{k)=B(k)
wi (k)= Alk-1)

g X (1) =A(R)

w2(k)=vl (k)
u2 (k] =ulik)
qQ+I<kSR

q lskitp#x

vi(k)eB(k}
ul{k)=Alk-1)
4
& - r
+ I kel—sk
> <

ve2(k)evi{k)
u2(kl=ul (k)
Q+|<ks R

Fig, 8. The flow chart of the compuler programme.
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n (s (k) —0,(K))

A(R) = w(k) 12 S, (24)
B = o) + S0 (25"
Ck) = o5 (B +X0(), (26)

D(K) = —— ((1+x—p) AQ)+pu,(B)). (27

1}tk
A flow chart for the programme is shown in Figure 8.

S%O nr
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- 80+

T i

~90- )

Deuterium relative to SMOW

-95-p / © Experimental
x Computed

~-100 : .

00 05 10

Fig. 9. Comparison of resulls from laboralory experiment and the equations. The concentration of drain water samples is shown

versus fraction of melled snow. The fil is excellent except for the first three observations. This discrepancy could be caused

by some portion of the first melt water flowing down the inner surface of the glass tube instead of percolating down the snow
column,
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III. A COMPARISON OF COMPUTED RESULTS AND MEASUREMENTS
1. Melting snow column in laboratory

A glass cylinder (60 cm high) was filled with fine-grained soft snow. The outer surface of
the tube was insulated with ashestos fibres and kept at 0° C (Arnason, 1969[b]). The column
melted gradually from the top. When about a fifth of the column had melted, water started
to drip from the bottom of the column. This determines the parameter 5 in our equations
for this model; » = 4.0. The ratio A = 0.0 since rain was not simulated. In the laboratory
experiment the column melted totally so v = 1.0. The only remaining parameter of our
equations is 7, the time constant. From computations we got the best fit with the measure-
ments when r = 0.18 (Figure g). The total melting time was about 3 h so = is near 30 min
in this case. The agreement with experiment is excellent.

2. Measurements of deuterium ratios on temperate glaciers

Consider a snow column of a temperate glacier. Measurements of springtime samples
show a considerable variation of deuterium ratios in winter precipitation. During summer,
the snow melts on top of the column, and rain, condensation and melt water percolate down
the column. Our model should be applicable to these conditions.

Figure 10 shows the results of computations for three different pairs of the parameters A
and v. 7 is assumed to be 8.0 in all cases. Deuterium ratios of winter and summer precipita-
tion are assumed to be constant:

N N NF
u = T{ =0 = F = 'A—J',

(SMOW = standard mean ocean water).
7 is also assumed to be the same for all cases r = o.1.

= (1+38) vsmow, where &= —88.1%,

o/ A
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Fig. 10. The drawing shows the influence of changing parameters of the equations. The concentration of snow samples is drawn
versus relative depth.
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Actually there is considerable difference between deuterium concentrations of winter and
summer precipitation. On Vatnajokull (site VI) the mean deuterium concentration of

winter precipitation is 8% = —81.4%, and the mean concentration of the annual precipita-
tion is estimated to be 8¥ = —%8.2%, (Arnason, 1969[b]). This implies the relation:
A BY—av et
== =

v -8y 85+ 78.2%)’

where p is the ratio of summer precipitation to winter precipitation and 8¢ is the mean
deuterium concentration of summer precipitation. Figure 11 shows results of computations
following our model for four pairs of v and u and for comparison the results of measurements
of samples from site VI on Vatnajékull (r = o.01).
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Fig. r1. The figure demonstrales the best fil lo observations in a section in a bore hole on Vatnajokull. Concentration is drawn
versus relalive depth.

3. Measurements of Lritium concenlrations

Concentration of tritium in precipitation is independent of the concentration of deuterium.
The periodic variation of tritium concentrations is a very marked feature. The fractionation
constant is assumed ap = 1.024% (Jones, 1968). Comparison of the results of our model for
these two isotope exchanges is therefore a crucial test of the applicability of our model. Unfor-
tunately we do not have the data needed for both isotopes from any single place.

Figure 12 shows the results of our model applied to the precipitation on the glacier
Langjokull in the period October 1965 to September 1966. We use information on tritium
concentration of precipitation at Vegatunga in central southern Iceland,f and assume
accumulation of snow on the glacier at 1 goo m above sea-level to start in October and end
in May. The mean tritium concentration of the snowfall column for 1966 is shown in the
figure for comparison. The parameters used are n = 8.0, » = 3.0, A = 0.583 and v = o0.01.

* @r = 1.024 is obtained by crude approximation on vapour pressures.
1 Personal communication from P. Theodérsson, Raunvisindastofnun Haskélans, Reykjavik, Iceland.
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Bearing in mind, that information from Vegatunga and Vatnajokull are not to be expected to
be completely applicable for Langjokull, the result is only expected to be qualitative and the
result is striking.

Tl Sept./Oct. 1965 May /June Sept./Oct. 1966
5004 Concentration of
Fall concentration observed ‘summer precipitation
400+ j— \

300+ Fall concentration
~ computed

Y Concentration of Winter

2004 precipitation
100+
¢——— Drain water ———pa————Accumulation of snow —ple—Summer precipitotion—
T
o] | 5 o} |
j¢———Relative scale l+l Relative depth ——*———Reluﬁva scale —w|

Fig. 12. The equations give a salisfactory qualitative explanation of the trends of tritium concentration in snow samples on
Lang jokull. The changes of the tritium concentration of the snow as shown in the central part of the figure are marked.

IV. DIscUSSION AND CONCLUSIONS

(a) The parameter n is the ratio between total number of water molecules in the liquid and
solid phase in a section of the column. We assume » to be constant throughout. Nature does
not satisly this condition. In heavy rainfall this ratio becomes much higher at the top of the
column than deeper under the surface, where it is reasonable to make this assumption. » will
depend heavily on the grain size and will therefore change with time, since according to
observations the grain size increases with percolation and time. This parameter in the
equations must therefore represent a mean value and should be expected to remain similar for
all cases on temperate glaciers. Occasional ice layers will of course influence the applicability
of our model. It is reasonable to assume 2.0 << n << 20.0.

(b) The parameter A is the ratio of liquid precipitation per unit time to quantity melted
per unit time. An effective factor in the melting of glaciers is condensation of moisture onto
the cold surface of the snow. This effect per se would imply A to be a simple function of total
melting. Melting by convection destroys this relation and therefore we must depend on
approximation, experience, or direct measurement.

(¢) The parameter 7. For convenience the total melting time was selected as unit time.
Any other choice of time unit would only affect the Equations (11) and (12) by a factor of .
A straightforward interpretation of 7 in the context presented is to assume the value of =
simply as a fraction of the total melting time. One has to bear in mind the simplifications
assumed. First melting and liquid precipitation are assumed continuous and constant. Of
course both are discontinuous. Due to the hyperbolic character of the differential equations
the discontinuous periods can be assumed to follow each other closely without destroying any
physical details of the column. Adding up the (most effective) discontinuous melting periods
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the effective melting time ( Terr) is obtained. The condition of continuous and constant rate of
melting and precipitation implies constant percolation, which again implies another possible
approach to the problem. The essentials of the fractionation process depends on the time T
it takes a single drop of liquid to percolate from top to bottom of the solid column or the time
of contact between the drop considered and the solid-phase column. The first liquid to drain
from the melting column is expected 1/(x-}1) time units after the start of melting. Implying
the relation

Tetr =

KA1 o n(l+’\) !_l 7 (40)
v

v

Kk+1

h
T’ will depend on the total height / and the velocity of percolation v, say Tetr = - - const.

Comparing two cases with different characteristic parameters and different actual heights,
the two time constants should be related:

. hovy(ma(144;) +1) o (41)

T2 hwa(m(1+A) +1) vy *
The velocity of percolation depends on grain size and packing and therefore changes with
time. It also depends on the rate of melting and volume of precipitation. Altogether we may
conclude that = must be a complicated function of physical characteristics of the melting
conditions. Though Equation (41) is expected to be an applicable approximation containing
only fairly well defined quantities. For example, compare 7, = 0.18 as considered in part I11,
case 1, and 7, = o0.01 considered in part III, case 3. Other parameters are

=151 NP" =40 '\1 =0
and
v, =9, 1:==80, A = 0583,
respectively. h, was 60 cm, h, may be assumed to be about 5 m. Using Equation (41) we
find the ratio of =, to 7, to be 7.6 v, /v,.

The order of magnitude is right, and the difference may be explained as due to different
velocities of percolation. A factor two for the ratio v, /v, seems to be reasonable because the
percolation in the laboratory experiment is forced by fairly fast melting (reflected in a small
value of n,).

(d) The parameter v. The parameters 7, A and v should be easily estimated for each parti-
cular case, when some experience has been gathered in using the equations. Measurements
of isotope concentrations of samples collected in autumn should then be sufficient to determine
v, and then also the solid precipitation of the previous winter. By looking for best possible
fit, the value of A could be corrected, and the precipitation of the whole year estimated.

(e) The equilibrium constant «. As stated above we use the value o = 1.0208 (Arnason,
1969[a]). The constant as measured under ideal condition in the laboratory is not necessarily
an appropriate choice. Measurement of deuterium concentrations of ice at the side of
fountains in winter gave lower concentrations than expected from the laboratory experiment.
Thus we obtained aerr = 1.014. This can be understood as a result of quicker freezing than
the diffusion in solid ice and movement of water in the fountain can cope with to maintain
equilibrium conditions. This may be described by assuming the decay time constant involved.

Considering the problem of ice at the side of fountains, for a crude description assume the
simple law expressed in Equation (7)

d{au—v)  (au—2)
& T %
to be valid. Let u be constant. Then
o(t) = u[e—(x—1) exp (—¢/7)]. (42)
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Define the mean time of exposure, fmean, as the time each crystal unit is exposed to water
before it is covered by a solid film and define aer as the ratio

v(t
dett = —(n:—m) = oo—(a—1) exp (—Imean/7)-
Obviously 1 < aep << @ since {mean Will depend on the rate of freezing. We choose to operate
with an ideal value of o.

When the difference between isotope ratios of percolating liquid and the solid column is
small, the most obvious effect of the present model of fractionation processes is to affect the
difference such that the isotope ratio of the solid phase tends to be about 29, higher than in
the liquid phase, even though one does not expect equilibrium conditions to be reached.

If the difference on the other hand is large and isotope ratios variable the most striking
effect is to level the variations and reduce the difference.

Only the first effect is due to the presence of fractionation constant. The second effect is
also implied when « = 1.00 and is effected by continuous abiabatic melting and recrystalliza-
tion. The latter effect is the most important one in the case of tritium. Observing the funda-
mental law assumed (Equation (7)), it is clear that in this case the time constant  is expected
to be the determining parameter in describing the process.

(f) The importance of changing grain size in the snow column. Evidently the conditions for
fractionation become unfavourable with increasing grain size. The mechanism of recrystalli-
zation must then become considerably slower. Our model could be improved to meet these
conditions by simple amendments. We could assume a definite part of every solid-phase
section not to participate in fractionation. This would not cause any difficulties in our
equations nor the difference scheme.

Concluding remarks

Up to the present we have only applied our model to a very few cases. Considerably more
information and experience is to be gathered. We can, however, already state that fractiona-
tion is occurring in melting snow columns. This is especially clear from comparison of
measurements and computed results for laboratory experiments on deuterium concentration
and for tritium concentrations on glaciers. The model should of course also apply to fractiona-
tion of 0.
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