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EQUATION OF ISOTOPE FRACTIONATION BETWEEN ICE 
AND WATER IN A MELTING S OW COLUMN WITH 

CO TI DODS RAI AND PERCOLA TION* 

By THORVALDUR BUASON 

(Raunvisindastofnun, H ask6lans, Reykjavik, I celandt) 

ABSTRACT. Partial differential equations are derived to describc isotope fractionation between ice and 
water phases in temperate snow caps and glaciers. Numerical solutions are obtained a nd shown to be 
consisten t with laboratory experiments and measurements of d euterium concentrations in tempera te glac iers . 
The process of iso tope fractionation as described is manifested by application of the model to tritium frac­
tionation in temperate snow caps. 

R EsuME. Equation de la distribution des isotopes entre l' eau et la glace dans une colonne de neige fondante avec pluie ou 
percolation continues. Nous derivons des equations differentielles pa rtieUes qui sont reputees decrire la reparti­
tion isotopique entre la glace et l'eau dans les couvertures temperees d e glace ou d e neige. On obtient d es 
solutions numeriques qui se montrent coherentes avec des experiences de laboratoire et d es mesures de 
concen trations en deuterium dans d es glaciers temperes. Le processus decrit pour la repa rtition d es isotopes 
se veri fie par a pplication du modeIe a la repar tition du tritium d ans les couver tures temperees d e neige. 

ZUSAMMENFASSUNG. Eine Gleichzwg der IsotoJ)enfraktionierung zwischen Eis lInd Wasser in einer unter Dallerregen 
zwd Durchtrtinkzmg schmelzenden Schneestiule. Es werden partielle Different ialgleic hungen a bgeleite t, welche die 
Isotopenfraktion ierung zwischen den Phasen Eis und W asser in temperierten Schneekappen und Gletschern 
beschreiben. Die gewonnenen numerischen Losungen zeigen Ubereinstimmung mit Laborversuchen und 
Messungen der D euteriumkonzentrationen in temperierten Gletschern. Der Vorgang d er Isotopenfrak­
tion ierung wird durch Anwendung des hier entwickelten Modells a uf die Tritiumfraktionierung in tem­
perierten Schneekappen verdeutlicht. 

INTRODUCTION 

This article is divided in four parts . In part I we derive a sys tem of partial differential 
equations, which describe fractionation between ideal solid and liquid solutions in a melting 
column with percolating liquid phase. Although the equations apply equally well to all ideal 
solutions, we es tablish the nomenclature of the problem suitable for the present work. So we 
consider particularly the exchange of HDO and H 2 0 molecules between ice and water in a 
snow column of a melting temperate glacier. 

In part II we present finite difference equations deduced from the partial differential 
equations and give a precise description of the method of numerical solution. 

Part III deals with the comparison of numerical solutions of the equations with measure­
ments in the laboratory and on glaciers. Special attention is drawn to the exchanges ofHTO 
and H 2 0 in glaciers. The results of the computation are in good agreement with m easure­
ments . 

In part IV we discuss the quality of the model and equations and some possible improve­
ments are considered. 

LIST OF MAIN SYMBOLS 

X D epth in snow column measured as a fraction of total height (solid-phase pre­
cipitation) . 
Time measured in units of total melting time. x and t are the independent 
variables . 

N (x, t ) Number ofHDO molecules in the liquid phase per unit height in snow column at 
depth x and time t. 

* Paper presented a t j oint mee ting of the Glaciological Society a nd J oklaranns6kna felag Islands in Sk6gar, 
I celand, June 1970. 

t Present address: P.O. Box 273, R eykjavik, I celand. 
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M (x, t ) Number of H 2 0 molecules in the liquid phase per unit height in snow column at 
depth x and time t . 

N' (x, t ) Number ofHDO molecules in the solid phase per unit height in snow column at 
depth x and time t. 

M' (x, t ) Number of H 20 molecules in the solid phase per unit height in snow column at 
depth x and time t. 

u(x, t ) = N (x, t )/NI (x, t ), deuterium ratio of liquid phase at depth x and time t. 
v(x, t ) = N' (x, t )/M '(x, t ), deuterium ratio of solid phase at depth x and time t. 

01. Equilibrium constant of deuterium ratios [or ice and water. So in equilibrium of 
phases we have v = OI.u . W e use the value 01. = 1.0208 as m easured by Arnason 
(Ig6g[ aJ ) . 

N"(t ) Number ofHDO molecules in liquid precipitation per unit time at time t. 
M" (t ) Number of H 20 molecules in liquid precipitation per unit of time at time t . 

w(t) = N" (t )/M "(t ), deuterium ratio of rain at time t . 

1. THE PARTIAL DIFFERE NTIAL E QUATION 

Ideal solid column, melting, precipitation and percolation 

vVe make the following assumptions 
(a ) Melting is occurring only at the top of the column. W e let the coordinate system 

move to mainta in x = 0 a t the top of the column [or a ll t. 
(b) vVe assume the same tota l number of H 20 and HDO molecules per unit height for all 

sections of the column : 

M (x, t )+N (x, t ) = K, (I) 
M ' (x, t )+N' (x, t ) = K ', 

where K is the total number of HDO and H 20 molecules in the liquid phase per unit height, 
K' is the total number of HDO and H 20 in the solid phase per unit height, K and K' being 
constants. 

(c) The precipitation is uniform for all t: 

M "(t )+N "(t ) = Kt 

where Kt is the total number o[water molecules in liquid precipitation filtering into the column 
in unit time, Kt being constant. W e do not expect sublimation from the top surface of the 
column to be of any importance. 

(d ) M elting is uniform for a ll t. With (a )-(c) this m eans that the column in the defined 
coordinate system is moving upwards with constant velocity c', It I = c' . Also the percolating 
liquid is flowing down the column with constant velocity c, Icl = c. This gives us the con­
tinuity equation: 

cK = c'K'+ Kt . 

For convenience we let 

c K' K ' 
? = K , K = 'Y"j , c'K' = ? = v, 

Kt 
c'K ' = ,\ and 

,\ 
11- = ­

v 

thus v is the ratio of solid precipitation to total melting of the solid phase, ,\ is the ratio of total 
liquid precipitation to total melting, 'YJ is the ratio of solid phase to liquid phase in the section, 
11- is the ratio of total liquid precipitation to total solid precipitation. 

(e) Along with the percolation ofliquid phase there is continuous exchange ofHDO and 
H 20 between the solid phase and the liquid phase. The equation of continuity gives in every 
section : 
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!:!.N = - !:!.M, !:!.N' = - !:!.M' 

and 

!:!.N =- !:!.N' . (6) 

We use the bar to indicate changes due to fractionation in the time t-t!:!.t to t+ t ~t for a 
section !:!.X thick at depth x. The foll owing simple law for the fractionation is assumed: 

where T is a time constant. 

!:!' (au- v) 
!:!.t 

(au -v) 
=----

T 

Equation (7) is a crucial assumption for our derivation, and is equivalent to assuming 
exponential decay into phase equilibrium, which is the simples t approximation to make. 
This may seem a very awkward assumption, since molecular diffusion in ice crystals is known 
to be extremely slow, which should render this process irreleva nt (Itagaki, 1967) . The 
mechanism despite this is suggested to be continuous melting and recrys tallization of the 
solid phase along with percolation of the liquid phase under adiaba tic conditions. Cha nges in 
the grain size of the snow are actually observed both on tempera te glaciers and in laboratory 
experiments, supporting the hypothesis of melting and recrystallization. 

Now 

and 

!:!.U !:!.Nj(K - N ) 
!:!.t - !:!.t 

!:!.V ( l + v) !:!.N 
!:!.t - (K' - N ' ) !:!.t· 

( I + u) !:!.N 
(K - N ) !:!.t 

Equations (7a), (7b) and (7) combine to give 

{
a (1 + u) + (I + v) } !:!.N = _ (au - v) 
K - N K ' - N' !1t T ' 

(8) 

In natural water N jK ~ 150 X 10- 6 ~ N ' jK' , sugges ting the approximations K - N ~ K, 
K' - N' ~ K ', and I + u ~ 1 ~ I + v be made, implying 

K ' (au-v) 
T(a1) + I) . (9) 

As before we use the bar to indicate the changes due to the fractionation law described by 
Equation (7). 

The equation of isotope fraction at ion in a melting ideal solid column with percolating liquid phase 

Consider the varia tion of the number N !:!.x of HDO molecules in the liquid phase in the 
section x - t !1x to x+ t !1x in time t - t !:!.t to t+ t !1t (Fig. I). The time variation of the number 
is caused by : 

(a) The different isotope ratios for the liquid phase flowing into the section and ou t of the 
section, and 

(b) Fractiona tion as described by Equation (9). 
We then have 

aN aN K' (au -v) 
!:!.x!:!.t -;::;- = - !:!.x!:!.t c --:;;- - !:!.x!:!.t ( ) . 

ut uX T (1) + I 
( 10) 
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Surface 

.... 
Cl> 

0 

1 f x-~ X + I 2 

I + X+~ 
~ I~ 2 

c: 
CJ) 

X=I-c -t 

Fig. I. Coordinates used ill deriving the equations. 

Dividing by 6.x6.t K :::::: 6.x6.t (K -N) and using the same approximation as in Equation 
(9), 

In a similar way we obtain for the HDO molecules in the solid phase: 

av , av 
- -c -at ox 

I 

( +) 
(au -v) = o. 

T a'Y} I 

(1I ) 

Choosing the total melting h eight of the snow column as unit height y = vx, (Fig. 2) the 
equations become 

ov ov I 

at ay T(a'l) + r) (au-v) = o. 

Spring 

Surface t"""-""'--'--- X = 0 

Considered 
¥ Snow Column 

X 

--'----'---- X= I 

Last Years Fall Surface 

1=0 

Fall 

Surface ~r--r---r--- x =0 
Cons idered 

¥ Snow Column 

X 
--'----'----x = Ill/ 

1= I 

Fig . 2. ComjJarison of the spring and fall values of coordinates used in deriving the equations. 

(I I') 

(12') 
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The boundary values and initial conditions for the isotope ratios 

The boundary values of isotope ratios in our case are determined by the isotope composi­
tion of the precipitation W (t), the isotope ratios of the solid phase on top of the column 
v(o, t ), and the ratio of the amount of precipitation per unit time to the amount of melted 
solid phase per unit time. This ratio is A. 

The equation of continuity (for the rarer isotope) at the top of the column implies: 

cKu(o, t ) = c'K'v(o, t )+KtW (t), 
7] 

u(o, t ) = - (v(o, t )+AW (t )) . 
K 

7], K, ,\ and J) are not independent parameters as may be seen from Equation (3) and (4). 

K' K' K K 

7] = K = IJc(c'K' + Kt ) = I+ Kt/c'K' = 1+ '\' 
K = 7] ( 1+ '\) . 

It is convenient to choose 7] , ,\ and J) as parameters of the equations and conditions, thus 

u(o, t ) = (v(o, t )+ ,\w( t)) J(1 + ,\). 

The natural initial condition is a pure solid-phase column (no liquid phase). No changes take 
place in any section before the percolating liquid phase reaches that section. This frontier of 
percolating liquid phase determines an initial boundary of the domain of the equations. At 
the time the percolating liquid phase reaches a particular section, the height of the column 
may have diminished. * This can be described by the initial condition for our equations. 

v(ct, t ) = v(x, 0) 

where ct = x -c't or x = (c+ c' ) t 

(
cx X) 

v c+ c" c+ c' = v(x , 0), 

( 
KX J)X) 

V r + K'r + K = v(X, 0), 

for 0 ~ x ~ I. 

Summary of the partial differential equations, boundary values and initial conditions 

The partial differential equations : 

ou ou 7] 
~+7] ( I + '\) -::;- + ( +) (IXU - V) = 0, ut ay 'T IX7] I 

ov 
at 

ov I 

~ (+) (IXU - V) = 0 , ay 'T IX7] I 

(Il ' ) 

* The case with no melt water and only precipita tion percola ting down the columns needs a special con­
sideration since c' = 0 and K cannot be defined. 
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° ~y ~ v-t, 

7) (I + ,\)(t- l ) ~y ~ v- t, 

The domain of the equations is shown in Figures 3 and 4. 

r-­
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

t=1 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

~------~--------------------~\---.y 
dry spring snow y = v 

Fig. 3. The domain of the equations is shaded. In the case illustrated the column does not melt totally. 

Boundary value: 
I 

u(o, t ) = 1+ '\ (v(o, t )+,\w(t )); o ~ t ~ I. 

Initial condition: 

( 
7) (I + ,\) j 1 _) _ 

V 7) (1+ '\)+ 1' 7) (I + '\)+ I· Y = v(y, 0) ; ° ~j ~ v. 

Isotope ratio of draining water 

(15') 

The isotope ratio of the liquid phase draining from the bottom of the column is given by 
u(y, t ) on line segment: 

y = v- t, 
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t=1 

, , , 
\ 

\ 
\ 

\ 
\ , 

\ , 
\ 

\ , , 
~~--------d~r-Y--S-n-o-w--c-o7Iu-m--n----------~Y~=-I-' y 

Fig. 4. The domain of the equations is shaded. In this case the coluInn melts totally. 

Solutions of the partial differential equations 

393 

The equations are the well-known telegraph equations, but the above mixed boundary 
and initial-value conditions are unusual. We have proved the existence a nd uniqueness of 
the solutions with these conditions. 

In the proof use is made of Riemann's method. D efine h = v for x = o. Using Riemann's 

method there emerges an integral equation for h of the type (I - K ) h = 1, wherefis a known 
function and K is an integral operator: 

K : GO[o, a] -+ GI[O, a]. 

W e use the norm Ilhll = sup 0 ~ x ~ a h(x). The operator ( I - K ) has an unique continuous 
inverse if 

IIK II < I. 

I t was shown that 11 k 11 < I for all a < amax where amax > I. 

II . DIFFERENCE EQUATIONS 

Equation of finite differences 

Finite difference methods will now be employed to produce a numerical solu tion of the 
partial differentia l equations. The difference equations can be derived directly from the 
differential equations. Let us first make the transformation : 

(y, t ) -+ (s, t' ) ; s = y + t and t ' = t. 
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The differential equations become 

au au 'Y] 
a?+(1 + K) as T(ex'Y] + I) (exU- V ) = 0 (16") 

oV I 

':l , ( +) (exU- V ) = 0 ut T exTJ r 

where U (s, t' ) = u(y, t ) and V (s, t' ) = v(y, t ). In this coordinate system the bottom of the 
solid phase column will remain fixed. The liquid phase is percolating with velocity 1 + K. 

Consider all points with coordinates ((k- t )h, (i + t )g), where k and i are integers 
(> r) and hand g positive numbers. We define two neighbours to an arbitrary point 
p = ((k- t )h, (i+ t )g) namely: 

ps = ((k- t )h, (i - t )g) 

and 

psw = ((k- ! )h, (i - t )g). 

Equations of finite differences may then be written as 

U (P) - U (PS ) U (PS) - U (psw) 'Yl 

--'---'----'-...:.. +( r + K) + '( (exU (psw)- V(psw) = 0 
g h T(ex'Y] + r) 

U (P) = U (psw) 'Y]g (exU (psw) _ V (psw)) 
T(ex'Y] + r) 

( r 6') 

where we have chosen hlg = ( r + K) implying that P and PSIV become points on the same 
characteristic line. 

These equations make it possible to compute U and V for all points t = (i + t )g, when the 
values for t = (i-t)g are known (Fig. 5). Note that P and ps are also points of the same 
characteristic line. The Equations ( r 6' ) and (17') can easily be translated into physical 
language. Equation (16') tells us that a liquid phase cell at point P was at point psw g time 
units earlier. The changes of the isotope ratio of the water are due to the decay towards 
equilibrium with the solid phase at psw. 

A general computer programme for solving the differential equations was not available 
at the Computer Center of the University of Iceland. A programme had therefore to be 
written. In describing the difference scheme it is found useful to rely heavily on the physical 
characteristics of the problem rather than follow the equations in a straightforward manner. 

Description of the computations 

Let us divide the length dimension (depth of the snow column) into R increments (R > 2) 
and the time dimension (the melting period) into S increments. The R increments will be 
termed cells of the column and the S increments showers. The rain is modelled as a row of 
showers. The ratio of the length and time increments is chosen such that the water column 
moves down a cell during a shower. At same time I!(K+ I) of the top snow cell is melting 
(K is an integer > I) . We choose Sand Q.such that S = (K+ I) Q.. Q.is the total number of 
snow cells melting during whole process. If Q. = R the column is completely melted. 

Initially the column consists of solid phase only. 
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v(k , 0), where ( r ~ k ~ R ) is the isotope ratio of the kth cell from the top at the start of 
the process . v(k , i ) is the isotope ratio of solid phase in the kth cell after the ith time interval. 
u(k, i ) is the isotope ratio of the water phase in the kth cell after the ith time interval. w(i ) is 
the isotope ratio of the ith shower. x(i) is the isotope ratio of the liquid draining from the 
column in the ith time interval. 

Let i = I: 

v(k , r) = v(k, 0), r ~ k ~ R , 

r 
u(r, I ) = 1+ '\ (V( I, 0) + '\W( I )) . 

r----------- - -----
1 ++ + 
I 

i ~ 
}--1 

~bottom 

++ 
~~~--~------------~~~--~S 

Fig. 5. When applying the dijference scheme the domain can be described by meshes as illustrated. 

During the first shower r / (K+ r) units of the top cell will melt and mix with the liquid pre­
cipitation filling up K/( K+ r) of the top cell with liquid phase. 

Let i = 2: 

(IXU ( I, I) -v( I, I )) 
v ( I , 2) = v ( I, I) + ( 1X7) + I) TS ' 

v(k,2) = v(k , I ), 2 ~ k ~ R , 

1 ( (IXU ( r, r) - v ( r, r)) ) 
u ( r, 2) = I +,\ v ( r, r) + (1X7) + r) TS + ,\w (2) , 

r (( 7) (lXu ( r, I) - V( I, I))) ) 
u (2, 2) = I +,\ I( u ( r, I) - (1X7) + r) TS + u ( r, 2) . 
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I t is convenient to use following notations: 

A(k 
.) = (k .)_ 'Y/ (lXu (k, i)-v(k, i )) 

, ~ u , ~ (IX?) + I ) TS ' 

B (k .) = (k .)+(lXu (k,i )-v(k, i )) 
, t V, t ( IX'Y/ + I ) TS ' 

I 
C(k, i) = I + A (B (k, i - I)+AW(i)), 

I 
D (k, i) = -+ (( I+ K- P) A (k, i- I)+pu (k, i )) , 

I K 

wherep and q are defined by i = q( I+ K)+P+ I, 0 ~ p ~ K. 
Let q+ 2 ~ R, i > 2, p =1= K , 

then 
V( q+ l, i ) = B(q+ l, i - I ), 

U(q+ l, i) = C(q+ l , i ), 

V( q+ 2, i ) = B (q+ 2, i-I ), 

U(q+2, i) = D (q+ I, i ). 

(28) 

(29) 

(30 ) 

(3 I) 

Forp = K , the top cell is emptying and therefore it makes nonsense to compute using Equations 
(28) and (29). To find the isotope ratios for the lower cells, we have two possibilities : 
(I ) i ~ R, and (II ) i > R. 

11-' r k .1 __ 1 

, 2 ' 
1--: 

.., 
I I ~ 
r-""1 '" 
, 'E ,--, ,q-" 
1---1 
, q , TOP-8 

~jj 
k- ffi 

41 
Cl! 
C 

.&: 
0.. 
41 

. ~ 

~ 
I<R H 

~ th-shower 

8'1,1:.....-qt2 ,--, "2 
,1-1.: E 

go tj:.2' ~ 
':. ... 1..:.._1 g 
0., u 
'0 0 

ffi r~ 

41 
Cl! 
C 

.&: 
0.. 

Fig. 6. The difference scheme makes uses of "eeUs" and "showers", which can be made plausible by columlls of squares as shown 
in the drawing. In the situation illustrated the percolating liquid phase has not reached the bottom cif the column. 
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(I ) i ~ R (Fig. 6) 
The percolating liquid phase has not yet reached the bottom of the column and the rest 

of the column must be treated in three different sections : 

(a) q+ 2 < k < i ~ R 

(b) q+ 2 < i = k ~ R 

(c) q+ 2 < i < k ~ R 

v(k, i ) = B (k, i-I ), 

u(k, i ) = A(k- I , i - I ). 

u(k, k) = A(k- I , k-i ), 

v(k, k) = v(k, k- I ). 

v(k, i) = v(k, i - I ). 

(II ) R < i (Fig. 7) 
The percolating liquid has reached the bottom of the column and liquid is draining from 

the column. 
(a) q+ 2 < k ~ R < i 

v(k, i ) = B (k, i - I ), (32 ) 

u(k, i ) = A(k- I , i - I ), (33) 

x(i ) = A(R, i - I ) . (37) 

~-, 1 
~ 

k - I I I ,...--< , 2 I 
~- ... 
I I 

"" i>R , ~., ,- 'ii 

Ht-:---i 
I q I 
~--< B th showe rs 

Top -- + 

~r 'f q+2 G:,1 
~_.J 

c: 
I I 

E r- -i 
" 

I I 
"0 r -'" 
u :J ~-~ 
:J 

~I 
I I 

0 r - -1 c: 
Cl) 

I 'l 
I 

,--, 
:0 ... 
c: 

R· I 
0 u 

k-
R 

th ce ll k- ~ • ~ 
., 
:J 
0 

.r.:. 
I 2 '" HI i .~ r-..J et ~ ~.J 
,2 , .- 8. I 2 I 
.. _.I e ~-.I 

t..U; I I I 
~ -.I 

Q) 
If) 

Q) C 
If) ~ 
c a. 
~ 

L. a. Q) c: 
Q) 0 
U ~ C 

L. 

Fig. 7. The liquid phase has reached the bottom of the column and drained liquid portions are present. 
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We must take special care of the case when the column melts totally, i.e. q+2 = Rand 
q+ I = R may be satisfied . 

(b) q+ 2 = R < i 
The column has only two cells left . Isotope ratios of these cells are already determined 

by Equations (28) to (31). The isotope ratios of the draining liquid is as before: 

x(i ) = A(R, i - I ). (37) 
We are now left with the case q+ I = R < i, which means that the last cell is melting: 

V(q+ l , i) = B (q+ l , i-I ),) (28) 
p =I- K 

u(q+ l ,i) = C (q+ l ,i), (29 ) 

x(i) = D (q+ l, i) = D (R, i). (38) 
The case Q. = R, i = S leaves us with the column filled up with liquid phase. To find 

the final pure solid-phase column we must let the liquid percolate through. 
D efine i = S+ j, I < j < R - Q.. The upper boundary of the liquid phase divides the 

column into three sections : 

(a) Q. < k < Q.+ j ~ R 

v(k, i) = v(k, i-I ). 

(b) Q.+ j ~ k ~ R 

v(k, i) = B(k, i-I ). 

(c) Q.+j < k ~ R 

u(k, i) = A(k-I, i-I ). 

For all is we have : 

x(i ) = A(R, i- I). 

Commentary on the computer programme 

The programme needs considerably less core storage if we define the vectors: 

vl (k) = v(k, i ) ; v2 (k) = v(k, i - I ), 
u, (k) = u(k, i ) ; u2 (k) = u(k, i - I ) . 

The vectors vl (k) may at every time instant be computed from the known vectors v2 (k), u2 (k ). 
Before advancing in time the old vectors may be replaced by the new ones, i.e. 

v[ (k) --+ V2 (k), ) 

u[ (k) --+ u2 (k) 

without destroying any information essential for further computation. 
The following changes of formulas are necessary: 

I 
UI ( I ) = 1+ >' (V2 (1)+>'W( I )) , 

(au2 ( I) - V 2 ( I )) 
VI( I) = V2(1)+ (a'1 + I) -rS ' 

I ( (au2(1) - V2( 1)) ) 
U, ( I) = 1+ >' V2(1)+ (a'1 + I) -rS + >'W (2) , 

I (( (au2 (1) -V2 (1))) ) 
UI(2) = I + K K U2(1) (a'1 + I) -rS + UI(I) , 
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Fig. 8. The flow chart of the computer programme. 
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I 
C(k) = I + A (B (k)+AW(i)) , 

r 
D (k) = -+ (( 1 + K- P) A (k) + puI (k)) . 

I K 

A flow chart for the programme is shown in Figure 8. 
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Fig. 9. Comparison of results from laboratory experiment and the equations. The concentration if drain water samples is shown 
versus fraction of melted snow. The fit is excellent except for the first three observations. This discrepancy could be caused 
by some portion of the first melt water flowing down the inner surface of the glass tube instead if percolating down the snow 
column. 
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Ill. A COMPARISON OF COMPUTED RESULTS AND MEASUREMENTS 

I. Melting snow column in laboratory 

A glass cylinder (60 cm high) was filled with fine-grained soft snow. The ou ter surface of 
the tube was insu lated with asbe tos fibres and kept at 0° C (Arnason, Ig6g[b] ). T he column 
melted gradually from the top. When about a fifth of the column had melted, water started 
to drip from the bottom of the column. This determines the parameter YJ in our equations 
for this model ; YJ = 4.0. The ratio ,\ = 0.0 since rain was not simulated. In the laboratory 
experiment the column melted totally so v = 1.0. The only remaining parameter of our 
equations is T , the time constant. From computations we got the best fit with the measure­
ments when T = 0.18 (Figure g). The total melting time was about 3 h so T is near 30 min 
in this case. The agreement with experiment is excellent. 

2. Measurements of deuterium ratios on temperate glaciers 

Consider a snow column of a temperate glacier. Measurements of springtime samples 
show a considerable variation of deuterium ratios in winter precipitation. During summer, 
the snow melts on top of the column, and rain, condensation and melt water percolate down 
the column. Our model should be applicable to these conditions. 

Figure 10 shows the results of computations for three different pairs of the parameters ,\ 
and 11 . YJ is assumed to be 8.0 in all cases. Deuterium ratios of winter and summer precipita­
tion are assumed to be constant: 

N N ' N' 
u = K = v = K' ~ M' = ( 1+ 0) VSMOW, where 0 = -88.1 %0 

(SMOW = standard mean ocean water) . 
T is also assumed to be the same [or all cases T = o. I. 

.. 
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:> .;: .. 
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o .5 
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11 =2 . A= 1. 

11=3. \= 1. 5 

11=3. A= . 75 

---- v - 3. \0 .75 

Re lotive depth 

Fig. la. The drawing shows the influence of changing parameters of the equations. The concentration of snow samples is drawn 
versus relative depth. 
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Actuallv there is considerable difference between deuterium concentrations of winter and 
summer p;eclpltation. On Vatnajokull (site VI) the mean deuterium concentration of 
winter precipitation is OW = -81.4%0 and the mean concentration of the annual precipita­
tion is estimated to be oy = - 78.2 %0 (Arnason, Ig6g[b] ) . This implies the relation: 

,.\ oY- ow 3.2%0 
jJ- = ~ = 08_ OY = 08 + 78.2 %0' 

where jJ- is the ratio of summer precipitation to winter precipitation and OS is the mean 
deuterium concentration of summer precipitation. Figure I I shows results of computations 
following our model for four pairs of J) and J1, and for comparison the results of measurements 
of samples from site VI on Vatnajokull (7 = 0.01 ). 

-65 

.~-70 
E 
~ 

E 
.~ 
!!. 
~ 

'" Cl 

-75 

o .5 

v =2 fL =.5 

V=3 fL =.375 

V=3 fL =.5 

Relative depth 

Fig. lI . The figure demonstrates the best fit to observations ill a sectioll ill a bore hole 071 Vatnajokull. Concentration is drawn 
versus relative depth. 

3. Measurements of tritium concentrations 

Concentration of tritium in precipitation is independent of the concentration of deuterium. 
The periodic variation of tritium concentrations is a very marked feature. The fractionation 
constant is assumed C(T = 1.024* (Jones, 1968). Oomparison of the results of our model for 
these two isotope exchanges is therefore a crucial test of the applicability of our model. Unfor­
tunately we do not have the data needed for both isotopes from any single place. 

Figure 12 shows the results of our model applied to the precipitation on the glacier 
Langjokull in the period O ctober Ig65 to September 1966. We use information on tritium 
concentration of precipitation at Vegatunga in central southern Iceland,t and assume 
accumulation of snow on the glacier at 1 300 m above sea-level to start in October and end 
in May. The mean tritium concentration of the snowfall column for 1966 is shown in the 
figure for comparison. The parameters used are 'T] = 8.0, J) = 3.0, ,.\ = 0.583 and 7 = 0.01. 

• " T = I .024 is obtained by crude approximation on vapour pressures. 
t Personal communication from P. Theod6rsson, Raunvisindastofnun H ask61ans, Reykjavik, Iceland . 
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Bearing in mind, that information from Vegatunga and Vatnajokull are not to be expected to 
be completely applicable for Langjokull , the result is only expected to be qualitative and the 
result is striking. 

T U. Sep1.l0cl. 196 5 May/June Sep1.l0cl. 1966 

500 

400 

300 

200 

100 

\ all concentroti\ bserved 

Cancentrolion af 
" summer precipita tion 

14----- Drain water --- -ll¥---Accumulat io n of snow ---lM4-- Summer precipitoliOn 

o 1 .5 0 

I<II"---Relat ive sca le ---- •• ,..I .. t-----Relative depth -----l ... I .. _ --t<Relative scale -----.j 

Fig. 12. The equations give a satisfactory qualitative explanation of the trends of tritium concentration in snow samples on 
Langjokull. The changes of the tritium concentration of the snow as shown in the central/Jart of the figure are marked. 

IV. DISCUSSION AND CONCLUSIONS 

(a ) The parameter '7 is the ratio between total number of water molecules in the liquid and 
solid phase in a section of the column. We assume '7 to be constant throughout. Nature does 
not satisfy this condition. In heavy rainfall this ratio becomes much higher at the top of the 
column than deeper under the surface, where it is reasonable to make this assumption. '7 will 
depend heavily on the grain size and will therefore change with time, since according to 
observations the grain size increases with percolation and time. This parameter in the 
equations must therefore represent a mean value and should be expected to remain similar for 
all cases on temperate glaciers. O ccasional ice layers will of course influence the applicability 
of our model. It is reasonable to assume 2.0 < '7 < 20.0. 

(b ) The parameter A is the ratio of liquid precipitation per unit time to quantity m elted 
per unit time. An effective factor in the melting of glaciers is condensation of moisture onto 
the cold surface of the snow. This effect per se would imply A to be a simple funct ion of total 
melting. Melting by convection destroys this relation and therefore we must depend on 
approximation, experience, or direct measurement. 

(c) The parameter 7". For convenience the total melting time was selected as unit time. 
Any other choice of time unit would only affect the Equations ( II ) and (12) by a factor of 7". 

A straightforward interpretation of 7" in the context presented is to assume the value of 7" 

simply as a fraction of the total melting time. One has to bear in mind the simplifications 
assumed. First melting and liquid precipitation are assumed continuous and constant. Of 
course both are discontinuous. Due to the hyperbolic character of the differential equations 
the discontinuous periods can be assumed to follow each other closely without destroying any 
physical details of the column. Adding up the (most effective) discontinuous melting periods 
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the effective melting time ( T en) is obtained. The condition of continuous and cons tant rate of 
melting and precipitation implies constant percolation, which again implies another possible 
approach to the problem. The essentials of the fractionation process depends on the time T ' 
it takes a single drop of liquid to percolate from top to bottom of the solid column or the time 
of contact between the drop considered and the solid-phase column. The first liquid to drain 
from the melting column is expected I/( K+ I) time units after the start of m elting. Implying 
the relation 

T ell = K+ r T = 1') ( I + A)+ r T. 
v v 

T' will depend on the total height h and the velocity of percolation v, say T ell = K+ 1 . ~ const. 
v v 

Comparing two cases with different characteristic parameters and different actual heights, 
the two time constants should be related: 

T Z 

hzv, (1') z( r+ Az)+ I) v, 
hzVz(1')I ( I + A, )+ I) vz· 

The velocity of percolation depends on grain size and packing and therefore changes with 
time. It also depends on the rate of melting and volume of precipitation. Altogether we may 
conclude that T must be a complicated function of physical characteristics of the melting 
condi tions. Though Equation (41 ) is expected to be an applicable approximation containing 
only fairly well defined quantities. For example, compare T, = 0. 18 as considered in part ID , 
case I , a nd T z = 0.0 1 considered in part Ill , case 3. Other parameters are 

v, = I, Tt, = 4.0, AI = 0, 
and 

respectively. h, was 60 cm, hz may be assumed to be about 5 m. Using Equation (41 ) we 
find the ratio of T j to T z to be 7.6 vl / V Z' 

The order of magnitude is r ight, and the difference may be explained as due to different 
velocities of percolation. A factor two for the ratio vl /v2 seems to be reasonable because the 
percolation in the laboratory experiment is forced by fairly fast melting (reflected in a small 
value of1')[ ) . 

(d) The parameter v. The parameters 1') , A a nd v should be easily estimated for each parti­
cular case, when some experience has been gathered in using the equations. Measurements 
of isotope concentrations of samples collected in autumn should then be sufficient to determine 
v, and then also the solid precipitation of the previous winter. By looking for bes t possible 
fit, the value of A could be corrected, and the precipi tation of the whole year estimated . 

(e) The equilibrium constant Cl. As stated above we use the value Cl = 1.0208 (Arnason, 
Ig6g[a] ) . The constant as measured under ideal condition in the laboratory is not necessarily 
an appropriate choice. Measurement of deuterium concentra tions of ice at the side of 
fountains in winter gave lower concentrations than expected from the laboratory experiment. 
Thus we obtained CXell = 1.014. This can be understood as a result of quicker freezing than 
the diffusion in solid ice and movement of water in the fountain can cope with to maintain 
equilibrium conditions. This may be described by assuming the decay time constant involved . 

Considering the problem of ice at the side of foun tains, for a crude description assume the 
simple law expressed in Equation (7) 

d (cxu - v) 
dt 

to be valid. L et u be constant. Then 

(cxu - v) 
T 

v(t ) = u[CX -(CX - I ) exp (- tjT) l 
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Define the mean time of exposure, tmean, as the time each crystal unit is exposed to water 
before it is covered by a solid film and define "'eff as the ratio 

vCtmean) 
"'eft = = "'- ("'-1 ) exp (- tm ean/T) . u 

Obviously I :::;; "'efr :::;; '" since t mean will depend on the rate of freez ing. We choose to operate 
with an ideal value of "'. 

When the difference between isotope ratios of percolating liquid and the solid column is 
small, the most obvious effect of the present model of fractionation processes is to affect the 
difference such that the isotope ratio of the solid phase tends to be about 2% higher than in 
the liquid phase, even though one does not expect equilibrium conditions to be reached. 

If the difference on the other hand is large and isotope ratios variable the most striking 
effect is to level the variations and reduce the difference. 

Only the first effect is due to the presence of fractionation constant. The second effect is 
also implied when", = I .00 and is effected by continuous abiabatic melting and recrys talliza­
tion. The latter effect is the most important one in the case of tritium. Observing the funda­
mental law assumed (Equation (7 )) , it is clear that in this case the time constant T is expected 
to be the determining parameter in describing the process . 

(f ) The importance of changing grain size in the snow column. Evidently the conditions for 
fractionation become unfavo urable with increasing grain size. The mechanism of recrystalli­
zation must then become considerably slower. Our model could be improved to meet these 
conditions by simple amendments. We could assume a definite part of every solid-phase 
section not to participate in frac tionation . This would not cause any difficulties in our 
equations nor the difference scheme. 

Concluding remarks 

Up to the present we have only applied our model to a very few cases. Considerably more 
information and experience is to be gathered. VVe can, however, already state that fraction a­
tion is occurring in melting snow columns. This is especially clear from comparison of 
measurements and computed results for laboratory experiments on deuterium concentration 
and for tritium concentrations on glaciers . The model should of course also apply to fractiona­
tion of 180 . 
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