S. Ullom Nagoya Math. J. Vol. 39 (1970), 141–148

INTEGRAL NORMAL BASES IN GALOIS EXTENSIONS OF LOCAL FIELDS

S. ULLOM

Introduction

Throughout this paper F denotes a field complete with respect to a discrete valuation, k_F the residue field of F, K/F a finite Galois extension with Galois group $G = G(K/F)^{\dagger}$. The ring of integers O_K of K contains the (unique) prime ideal \mathfrak{P} ; the collection of ideals \mathfrak{P}^n for all integers n are ambiguous ideals i.e. G-modules. E. Noether [3] showed K/F tamely ramified implies O_K has an O_F -normal basis, i.e. is isomorphic as an O_F -module to $O_F G$ itself, $O_F G$ the group ring of G over the ring O_F .

Define subgroups of G

$$G_{i^*} = \{ \sigma \in G \mid \forall \alpha \in O_K, \ \sigma \alpha - \alpha \in \mathfrak{P}^{i+1} \}, \ i \geqslant 0$$

and

$$G_i^* = \{ \sigma \in G \mid \forall \alpha \in K^\times, \sigma \alpha \mid \alpha \in 1 + \mathfrak{P}^i \}, i \geqslant 1.$$

Then $G_{i^*}\supset G_{i+1}^*\supset G_{i+1}^*$, $i\geq 0$, with $G_{i+1}^*=G_{i+1}^*$ written G_{i+1} if the residue field extension k_K/k_F is separable [2, p. 35]. We show (Theorem 3) that an ambiguous ideal $\mathfrak A$ of K has an O_F -normal basis iff the trace

$$S_{K/K_1}\mathfrak{A}=\mathfrak{A}\cap K_1,$$

where K_1 is the fixed field of the subgroup G_1^* . This result is obtained from the Galois module structure of $\mathfrak{A} \otimes_{O_F} F$ (resp. $\mathfrak{A} \otimes_{O_F} k_F$) where K/F is tamely ramified (resp. totally and wildly ramified).

Received November 11, 1968.

Revised June 6, 1969.

[†] Elements of Galois groups act on the left.

This research is supported by National Science Foundation Postdoctoral Fellowship Number 48037.

1. Tamely Ramified Extensions

The following proposition generalizes a result given by Fröhlich [2, p. 22] for rings of integers.

Proposition 1. An ambiguous ideal $\mathfrak A$ of K is O_FG -projective iff $\mathfrak A$ has an O_F -normal basis.

Proof. It suffices to consider \mathfrak{A} O_FG -projective. For any fractional ideal \mathfrak{A} of K we have $\mathfrak{A}F = K$. Further

$$\mathfrak{A}F\cong\mathfrak{A}\otimes_{o_{\mathbb{F}}}F$$
,

where G acts on the righthand side of the above equation by

$$\sigma(\alpha \otimes b) = (\sigma \alpha) \otimes b$$
, $\sigma \in G$, $\alpha \in \mathfrak{A}$, $b \in F$.

All isomorphisms are of O_FG -modules. By the normal basis theorem for fields

$$K \cong FG \cong O_FG \otimes_{O_F} F$$
.

Since O_F is a complete local domain, we may apply Swan's theorem [5, Corollary 6. 4, p. 567] to conclude

$$\mathfrak{A}\cong O_FG.$$

DEFINITION. The extension K/F is tamely ramified if the characteristic of k_F does not divide $e(\mathfrak{p}O_K = \mathfrak{P}^e)$, \mathfrak{p} the prime ideal of F) and the extension k_K/k_F is separable. We say the extension is wildly ramified if it is not tamely ramified.

Theorem 1. The extension K/F is tamely ramified iff every ambiguous ideal of K has an O_F -normal basis.

Proof. If K/F is tamely ramified, then every ambiguous ideal of K is O_FG -projective [6, Prop. 1. 3], and hence by Prop. 1 every ambiguous ideal of K has an O_F -normal basis.

Conversely, if every ambiguous ideal of K has an O_F -normal basis, then in particular O_K has a normal basis; it follows that $S_{K/F}O_K = O_F$ and so K/F is tamely ramified.

2. Wildly Ramified Extensions

The field K has a normalized valuation

$$v: K^{\times} \to \mathbf{Z}$$

with the property $v(\alpha + \beta) \ge \text{Inf } v(\alpha)$, $v(\beta)$ with equality if $v(\alpha) \ne v(\beta)$, and v extends to K by $v(0) = + \infty$. For an extension K/F define the integers $f(K/F) = [k_K : k_F]$, $e(K/F) = v(\pi_F)$, π_F a prime element of F; finally the different

$$\mathfrak{D}(K/F) = \mathfrak{P}^{m(K/F)}.$$

PROPOSITION 2. Given the extension K/F with K_1 the fixed field of G_1^* . If $f(K/K_1) > 1$, then $m(K/K_1) \ge 2e(K/K_1) - 1$.

Proof. We use induction on n, $[K:K_1]=p^n$. Of course the characteristic of k_F is p. Set n=1. Then

$$[K:K_1] = f(K/K_1) = p, e(K/K_1) = 1.$$

Since the non-trivial residue field extension is inseparable, $m(K/K_1) \ge 1$. Assume for all Galois extensions K/F with $[K:K_1] = p^n$ and $f(K/K_1) > 1$ that $m(K/K_1) \ge 2e(K/K_1) - 1$.

Consider K/K_1 Galois of order p^{n+1} , $n \ge 1$, $f(K/K_1) > 1$. There exists a subfield K', $K \supset K' \supset K_1$ with $[K : K'] = p^n$ and K'/K_1 Galois. By the tower formula for the different

(1)
$$m(K/K_1) = m(K/K') + e(K/K')m(K'/K_1).$$

If the subgroup $H \subset G$ fixes K', then [2, p. 35]

(2)
$$H_1^* = H \cap G_1^* = H$$
.

Also

(3)
$$m(K'/K_1) \geqslant \begin{cases} 2(p-1) & \text{if } e(K'/K_1) = p \\ 1 & \text{if } f(K'/K_1) = p. \end{cases}$$

Suppose f(K/K') > 1. Then by (2) we may apply the induction hypothesis to K/K'. So by (1)

$$m(K/K_1) \ge 2e(K/K') - 1 + e(K/K')m(K'/K_1)$$

 $\ge 2e(K/K_1) - 1$ by (3).

If f(K/K') = 1, then

$$[K:K'] = e(K/K') = e(K/K_1)$$

and

$$[K': K_1] = f(K'/K_1) = f(K/K_1).$$

Here $m(K/K') \ge 2(e(K/K') - 1)$ and so we have the inequality

$$m(K/K_1) \ge 3e(K/K_1) - 2.$$

COROLLARY. Given extension K/F. If for an ambiguous ideal $\mathfrak{A} = \mathfrak{P}^s$ of K we have S_{K/K_1} $\mathfrak{A} = \mathfrak{A} \cap K_1$, then $f(K/K_1) = 1$, $s \equiv 1 \mod e(K/K_1)$ and $G_2 = \{1\}$.

Proof. By [6]* we have for $m = m(K/K_1)$, etc.,

$$[(m+s)/e] = 1 + [(s-1)/e],$$

where [x] denotes the greatest integer less than or equal to x. If f > 1, then by Prop. 2

$$[(2e-1+s)/e] \le 1 + [(s-1)/e],$$

which is impossible. Hence f = 1, i.e., the residue field extension k_K/k_F is separable. The remainder of the Corollary follows from [6, Theorem 2. 1].

g. e. d.

Cardinality of a finite set S is Card S and R^t is the product of t copies of a ring R. For a G-module M, M^G denotes the group of fixed points under the action of G. When $f(K/K_1) = 1$, $G^*_{i+1} = G_{i+1}^*$, $i \ge 0$, and we write G_{i+1} .

Proposition 3. Given the extension K/K_1 with $f(K/K_1) = 1$ and $G_2 = \{1\}$.

Then the dimension of $(\mathfrak{P}/\mathfrak{P})^{G_1}$ $(\mathfrak{p}=\mathfrak{P}\cap K_1)$ as a vector space over $k=k_{K_1}$ is one.

Proof. The result is obviously true for $G_1 = \{1\}$, so take $G_1 \neq \{1\}$. Use the notation that for α , $\beta \in O_K$, $\alpha \equiv \beta$ means $\alpha \equiv \beta \mod \mathfrak{P}^{1+e}$, where $e = \operatorname{Card} G_1$; also characteristic of k is p. Choose a prime element π of K. Since $G_2 = \{1\}$, for $\sigma \neq 1$

(4)
$$\sigma \pi = \pi(1 + \alpha(\sigma)), \quad \sigma \in G_1, \quad \alpha(\sigma) \in O_K, \quad v(\alpha(\sigma)) = 1.$$

For $1 \le i \le e-1$, $i = p^c n$, $p \ne n$, we have by (4) and the binomial expansion for $\sigma \ne 1$

^{*} In [6] there is an a priori assumption of separability of residue field extensions; the results needed in this paper from [6] are seen immediately not to require this assumption.

(5)
$$\sigma \pi^{i} - \pi^{i} \equiv \pi^{i} \left(n \alpha(\sigma)^{p^{c}} + \cdots + \alpha(\sigma)^{i} \right)$$
$$= \pi^{i+p^{c}} (n \beta(\sigma)^{p^{c}}) + \text{higher order terms}$$

where $\alpha(\sigma) = \beta(\sigma)\pi$. Thus for $1 \le i \le e-1$

$$v(\sigma\pi^i - \pi^i) = i + p^c$$

and for $1 \le i \le e$

$$\sigma \pi^i - \pi^i \equiv 0$$
 iff $i = e$.

Thus the dimension of $(\mathfrak{P}/\mathfrak{P}\mathfrak{P})^{G_1}$ is at least one. It remains to show given $r \in O_K$ with $1 \leq v(r) < e$, that there exists $\sigma \in G_1$ such that $\sigma r \not\equiv r$. Since $[K:K_1]=e(K/K_1)$, the elements π, \dots, π^e are an O_{K_1} -basis of \mathfrak{P} and hence their images in $\mathfrak{P}/\mathfrak{P}\mathfrak{P}$ are a k-basis. We may write $r \equiv \sum_{i=1}^e a_i \pi^i$, $a_i = 0$ or unit of O_{K_1} . For some $\sigma \neq 1$ set

$$u = \inf_{1 \leqslant i \leqslant e-1} v(a_i(\sigma \pi^i - \pi^i)).$$

Set

$$\delta(\sigma) = \sum_{j=1}^b a_{\nu_j} (\sigma \pi^{\nu_j} - \pi^{\nu_j}), \ \nu_1 < \cdots < \nu_b \ \text{if} \ b > 1,$$

where the summation is over all $1 \le i \le e-1$ with $v(a_i(\sigma \pi^i - \pi^i)) = u$; set $\nu_j = p^{c_j} n_j$, $p \nmid n_j$. Note $c_1 > \cdots > c_b$ if b > 1. From (5)

$$\delta(\sigma) = \pi^u h(\beta(\sigma)) + \text{higher order terms } (\delta(1) = \beta(1) = 0)$$

where the polynomial

$$h(X) = \sum_{j=1}^{b} a_{\nu_j} n_j X^{p^{c_j}}.$$

Denote by $\bar{h}(X)$ the image of the polynomial h(X) in the polynomial ring k[X].

Assume $\forall \sigma \in G_1$, $\sigma \cap T = T$; then $\forall \sigma \in G_1$, $v(\delta(\sigma)) \geqslant u+1$ since $u \leqslant e$. Hence $\forall \sigma \in G_1$, $v(h(\beta(\sigma))) \geqslant 1$. In general we have the homomorphism of G_1 into the additive group of O_K/\mathfrak{P} given by $\sigma \to \bar{\beta}(\sigma)$ when $\sigma \in G_1$ and $\bar{\beta}(\sigma)$ is the image of $\beta(\sigma) \in O_K$ in O_K/\mathfrak{P} . The kernel is G_2 which is trivial by hypothesis. For another prime element π of K, the $\bar{\beta}(\sigma)$ are determined up to multiplication by a unit of O_K/\mathfrak{P} , but we are interested only in the number of distinct $\bar{\beta}(\sigma)$, $\sigma \in G_1$. The condition $\forall \sigma \in G_1$, $v(h(\beta(\sigma))) \geqslant 1$, becomes in the field O_K/\mathfrak{P}

(6)
$$\tilde{h}(\bar{\beta}(\sigma)) = 0 \quad \forall \sigma \in G_1.$$

For any choice of prime element π of K the polynomial $\bar{h}(X)$ has degree less than or equal to e/p but has e(distinct) roots by (6). This is impossible since $\bar{h}(X)$ is not the zero element of k[X]; so there exists $\sigma \in G_1$ such that $\sigma T \equiv T$.

For completeness we include a proof of the following well-known proposition; see e.g. [1, § 3, Exercise 13] for a partial statement.

PROPOSITION 4. Let R be a discrete valuation ring with residue field $k = R/\mathfrak{p}$ of characteristic p > 0. Let G be a finite p-group and M an RG-module which is R-projective and of R-rank Card G. The following are equivalent:

- (i) $dim(M/\mathfrak{p}M)^G = 1$ (dim = vector space dimension over k).
- (ii) $M \cong RG$ as RG-modules.

Proof. (ii) implies (i) is clear, so we consider only (i) implies (ii). Let W be a kG-module with dim W finite, I the two-sided nilpotent ideal which is the kernel of the augmentation homomorphism

$$\varepsilon: kG \to k$$
, $\varepsilon(\sum a_{\sigma}\sigma) = \sum a_{\sigma}$, $a_{\sigma} \in k$.

From now on we will assume $\dim W/IW$ to be one. Define the map ϕ as the composite

$$\epsilon \approx kG \xrightarrow{\varepsilon} W/IW$$
.

We have the diagram of kG-modules with exact row

$$O \longrightarrow IW \longrightarrow W \stackrel{\phi}{\longrightarrow} W/IW \longrightarrow O.$$

There exists a kG-linear map $\theta: kG \to W$ with $\phi\theta = \phi$ since kG is projective over itself. Use I nilpotent to show θ surjective. Further if dim $kG = \dim W$, θ is also injective and therefore an isomorphism.

Thus if we set M/\mathfrak{p} M = W, we have M/\mathfrak{p} $M \cong kG$. Use M is R-projective and the standard argument with Nakayama's lemma to show $M \cong RG$.

g. e. d.

Putting together Propositions 3 and 4 and noting \mathfrak{P} is O_{K_1} -projective, we have proved the following theorem.

THEOREM 2. Given the extension K/K_1 with $f(K/K_1) = 1$ and $G_2 = \{1\}$. Then the ambiguous ideal \mathfrak{P} of K has an O_{K_1} -normal basis.

3. Arbitrary Extensions

Given a commutative ring R with 1 and finite group G. An RG-module M is relatively RG-projective* if there exists an R-endomorphism ϕ of M with $S_G(\phi) = 1_M$, i.e.

$$\sum_{\sigma \in G} \sigma(\phi(\sigma^{-1}m)) = m \quad \forall m \in M.$$

PROPOSITION 5. Given an extension K/F, H a subgroup of the Galois group G with fixed field L. Suppose L/F is tamely ramified. If an ambiguous ideal $\mathfrak A$ of K is relatively O_LH -projective, then it is O_FG -projective.

Proof. By hypothesis there exists an O_L -endomorphism ψ of $\mathfrak A$ with $S_H(\psi)=1_{\mathfrak A}$. L/F tamely ramified implies there exists $\beta\in O_L$ with $S_{L/F}(\beta)=1$. Denote also by β the endomorphism of $\mathfrak A$ given by multiplication by β . Then for the O_F -endomorphism $\psi.\beta$ of $\mathfrak A$ a short computation shows $S_G(\psi.\beta)=1\mathfrak a$. So $\mathfrak A$ is relatively O_FG -projective. On the other hand, $\mathfrak A$ is O_F -projective and thus O_FG -projective [4, Prop. 2. 3, p. 702].

We can now prove the main result.

Theorem 3. An ambiguous ideal $\mathfrak A$ of the extension K over F has an O_F -normal basis iff $S_{K/K_1}\mathfrak A=\mathfrak A\cap K_1$.

Proof. If \mathfrak{A} has a normal basis, then it is easy to see that $S_{K/K_1}\mathfrak{A}=\mathfrak{A}\cap K_1$. Conversely, assume $S_{K/K_1}\mathfrak{A}=\mathfrak{A}\cap K_1$. Take $G_1^*\neq\{1\}$, otherwise we are done by Theorem 1. By the Corollary to Prop. 2, $f(K/K_1)=1$, $\mathfrak{A}=\mathfrak{B}^s\cong\mathfrak{B}$ as $O_{K_1}G_1$ -modules. By Theorem 2 $\mathfrak{B}\cong O_{K_1}G_1$. Since K_1/F is tamely ramified, we apply Prop. 5 to conclude \mathfrak{A} is O_FG -projective. Then Prop. 1 shows $\mathfrak{A}\cong O_FG$.

REFERENCES

- [1] N. Bourbaki, *Algèbre Commutative*, Actualités scientifiques et industrielles 1290, Hermann, Paris, 1961, Chapitre 2.
- [2] A. Fröhlich, Local Fields, Algebraic Number Theory, Academic Press, London, 1967.

^{*} See [4] for the needed results on relatively (weakly) projective modules over group rings.

- [3] E. Noether, Normalbasis bei Körpern ohne höhere Verzweigung, J. reine angew. Math. 167 (1931), 147–152.
- [4] D.S. Rim, Modules over finite groups, Ann. of Math. 69 (1959), 700–712.
- [5] R. Swan, Induced representations and projective modules, Ann. of Math. 71 (1960), 552-578
- [6] S. Ullom, Normal bases in Galois extensions of number fields, Nagoya Math. J. 34 (1969), 153–167.

University of Illinois Urbana, Illinois