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ON NILPOTENT PRODUCTS OF CYCLIC GROUPS— 
REEXAMINED BY THE COMMUTATOR CALCULUS 

HERMANN V. WALDINGER AND ANTHONY M. GAGLIONE 

1. Introduction. Ruth R. Struik investigated the nilpotent group Gn = 
G/Gn+i in [11 ; 12], where G is a free product of a finite number of cyclic groups, 
not all of which are of infinite order, and Gm is the rath subgroup of the lower 
central series of G. Making use of the * 'collection process" first given by Philip 
Hall in [8], she determined Gn completely for 1 ^ n ^ p + 1, where p is the 
smallest prime with the property that it divides the order of at least one of the 
free factors of G. However, she was unable to proceed beyond n = p + 1. 

Rex S. Dark [2] found all Gn when the free factors have order p, a fixed prime. 
Anthony M. Gaglione [3] did so when these orders are p or oo. But general 
results are not known yet. This paper aims to overcome in principle the obstacles 
which Struik encountered by giving a procedure, valid for n arbitrarily large, 
which expresses the elements of Gn uniquely by basic commutators. We shall 
call this procedure the "representation algorithm." 

We will conclude this paper with an example in which we determine Gb for 
G = (a, ft; a9, ft9). (Note that Struik could only find G4.) 

We hope that general results obtained from the "representation algorithm" 
will be given in a future publication. 

The "representation algorithm" is based on known methods of the com
mutator calculus. To describe it we will present a preliminary discussion of 
the commutator calculus. The notation and definitions in this discussion origi
nate to a great extent from the listed references. 

2. Preliminaries from the commutator calculus. 

2(a). The lower central series. Basic commutators. Let G be a group. Let 
a, ft Ç G. Then the commutator 

(2.1) A = (a, ft) = a-lb~lab. 

We will write a — AL and ft = AR. Also the lower central series 

(2.2) Gi 2 G2 2 . . . 2 Gn 2 . . . 

is the sequence of subgroups given by 

Definition 2.1. G\ = G. Gn is generated by all commutators (a, ftw_i), where 
a £ G and ftw_i Ç Gn-i- I n particular G2 is called the commutator subgroup. 
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We say that the element c ^ 1 has weight n = W(c) if c Ç Gn but c (? Gn+\. 
It is evident that a Ç Gn, implies that if W(a) is defined, then W(a) à w. 

The following properties of the lower central series are well-known [7; 10; 
16; 17]: 

If (a, b) 7* 1 and W((a, b)) is defined, then 

(2.3a) W((a, b)) è W(a) + W (̂ft) 

If W(a*) = wu W{bj) = w2f then 

(2.3b) ( n at
ai, I l &/') - I l I I [(ai,bj)]

aiB>'modGwl+wt+i 

If a = c mod GV(a)+i> b = d mod G^(6)+i, then 

(2.3c) (a, 6) = (c, d) mod GV(G)+Tr(6)+i. 

The Jacobi identity 

(2.3d) ((a, b), c)((b, c), a)((c, a), 6) = 1 mod G T ^ + ^ ^ + ^ O + I . 

We proceed to define basic commutators according to the natural linear 
ordering given in [14]. We will need the properties of this ordering in our 
investigation of a group, G, which is the homorphic image of a free group, 
F, of finite rank, r. To distinguish between F and G, we shall call the weight 
in F of an element a £ F, its dimension and denote it by D(a) ; we will reserve 
the phrase weight of b and the notation W(b) for the weight in G of the element 
b £ G. (G — F is a special case where dimension and weight have the same 
meaning.) 

Definition 2.2. The basic commutators of dimension one are the free genera
tors of the free group F in the order 

(2.4) a < c2 < . . . < cT. 

(The word dimension is used here with the previous meaning according to a 
remark at the end of this definition.) Having defined and ordered basic com
mutators of dimension less than ra, we use them to define and order basic 
commutators of dimension m. The basic commutators of dimension m are 
Ck = (cu cj) where ct and Cj are basic commutators such that 

(i)D(Ci) +D(cj) = m, 
(ii) c{ > cJt 

(iii) if Ci = (cs, ct), then Cj ^ ct. 
Let ckl = (ch, ch) and ck2 = (ci2, ch) such that D(ckl) = D{ck<1). Then 
ckl > Ck2 if ctl > Cq, or cix = Ci2 but cjl > cJ2. A basic commutator of dimen
sion m is greater than any of smaller dimension. Having ordered all basic com
mutators, we assume that their subscripts are chosen so that ct is the ith basic 
commutator. (In this definition we are using the word dimension according to 
its general meaning since a basic commutator of dimension m is in Fm, but 
not in Fm + 1[7;10].) 
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To proceed we introduce an auxiliary definition. 

Definition 2.3. Let G have the presentation 

(2.5) G = (ci, ci, . . . , cT; Si, ^2, . . . , st). 

(Then G is the factor group F/N, where N is the normal closure of the sub
group of ^generated by the words Si, s2, . . . , st. In particular when t = 1 and 
Si = 1, then G = F.) Let the basic commutator cm be the element of F of 
Definition 2.2, as well as its image in G under the homomorphism F —> G = 
F/N; we shall, however, always mean by the dimension of cm[ = D(cm)] the 
number of Definition 2.2. The element a Ç Gw is said to be basic commutator 
representable (b.c.-representable) if 

(2.6) a = ctl
€Ki%'* . . . ch

eh mod Gw+1 

such that: (i) the ci(r are elements of G as well as basic commutators of dimen
sion w, (ii) Cxx < . . . < Cx if h > 1, and (iii) ei, €2, . . . , eh are non-zero expo
nents. The product on the right-hand side of (2.6) will be called a basic com
mutator representation (or b.c.-representation). 

Before going further we note an important inequality which is obvious from 
Definition 2.1. If a G F and â is its image under the homomorphism F —> G = 
F/N, then 

(2.7) D(a) S W(â) 

when W(a) is defined. 
The name basic commutator is appropriate in the sense of the following 

well-known Theorem [7]. 

THEOREM 2.1. Every group Fm+i is a normal subgroup of Fk where 1 rg k ^ w, 
and every factor group Fm = Fm/Fm+i is a free abelian group. The basic com
mutators of dimension m(m ^ 1) are mapped into a basis of Fm (under the 
homomorphism Fm—>Fm = Fm/Fm+i) such that every element a G F, which 9^ 1, 
has a unique dimension and a unique b.c.-representation. If a, b are distinct basic 
commutators, then D((a,b)) = D(a) + D(b). Moreover, Fm is the normal closure 
in F of that subgroup which is generated by the basic commutators of dimension m. 

By Definition 2.1 we have the following corollary for the group G presented 
in (2.5). 

COROLLARY 2.1. Every group Gm+i is a normal subgroup of Gk where 1 ^ k ;§ 
m, and every factor group Gm = Gm/Gm+i is an abelian group. The basic com
mutators of dimension m are mapped into generators of Gm (under the homo
morphism Gm—*Gm = Gm/Gm+i) such that every element a of weight m > 0 is 
b.c.-representable. Moreover, Gm is the normal closure in G of that subgroup which is 
generated by the basic commutators of dimension m. 
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To compute a b.c.-representation of a group element, we make use of the 
well-known "collection process" [7; 8] which is discussed in Subsection 2(b). 

For the above properties of basic commutators, our natural linear ordering 
is not required [7; 10]. It is, however, order preserving under commutation [14]. 
Before stating this result we give some preliminary definitions. 

Definition 2.4. Let a £ F and have dimension n > 0. The maximal compo
nent of a, M (a) y is the largest commutator in the b.c.-representation (2.6), 
i.e. M (a) = c* . 

Definition 2.5. Let a, b £ F. The inequalities a > b and a ^ b will mean 
that M (a) > M(b) and M (a) ^ M (6), respectively. We will also write a ~ b 
and a *£ b to stand for M (a) = Mib) and M (a) ^ M(b), respectively. 

The following result [14] is of importance in this paper. 

THEOREM 2.2. Let the elements a,b, c £ F be basic commutators such that a > b, 
a 7e c, and b 9e c. Then (a, c) > (b, c). 

It is evident from Theorem 2.1 and Equations (2.3) that Theorem 2.2 has 
the alternate, more general formulation: 

Let a, b, c, £ F, such that a > b, c ^ 1, a ?£ c, b ^ c. Then (a, c) > (b, c). 

To apply Theorem 2.2 we shall need more machinery. We shall introduce for 
every basic commutator c its "regular sequence", [c], i.e., 

(2.8) [c] = [dl9 d2l . . . , dhl 

Definition 2.6. The sequence on the right-hand side of (2.8) consists of c only 
when D{c) = 1. Having defined the regular sequences of all basic commutators 
of dimension < n, we define [c] for D{c) = n. The sequence [c] = [ei,e<i,... ,eq,c

R], 
where [cL] = [>i, e2, . . . , eg]. 

At this point we are ready to conclude Subsection 2(a) with an important 
lemma first given in [16]. 

LEMMA 2.1. Let C and c be basic commutators such that (i) D{C) > 1, (ii) C > 
c, (iii) [C] = [di, d2, . . . , dh]. Then [M(C, c)] = [dly ex, e2, . . . , eh], such that 
e\ ^ e2 ^ . . . ^ eh is a rearrangement of d2, d3, . . . , dhj c. 

2(b). The collection process. The "collection process" was first given by 
Philip Hall [8]. Its use to represent group elements by basic commutators is 
discussed in [7]. We shall now generalize this discussion for application of the 
"collection process" to our "representation algorithm." 

The "collection process" is based on (2.1) and the well-known identities 
[7; 10] 

(2.9a) (ab, c) = (a, c)((a, c), b)(b, c) 

(2.9b) (a, be) = (a, c) (a, 6) ((a, b),c). 
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Let 

{Z'W) PM + 1(a, b) = ([PM(a, 6)], 6) for M = 1, 2, . . . 

Let m be a positive integer. The identities 

[ m ~1 P m ~J — 1 

n Pn(6* a) J ([P*.(&, a)l- a_1 )|_ J } i W & , a) J 
(2.11b) r x a = a(6, a) -1&_1 

r V 1 = a"1 M l P « - i ( M ) ([^2^(6, a)] , a"1)"1 

(2.11c) L w J r m 

X J ! P2*(6,a) 
L &=i 

b-1 

are easy consequences of (2.1), (2.9a), and (2.9b). (For details see section 11.1 
of [7]). T o proceed from these identities we now require the following three 
definitions: 

Definition 2.7. The basic commutator c is a F-simple commuta tor if either 
(i) D(c) = 1, or (ii) D(c) > 1, bu t D(cR) = 1. 

Definition 2.8. Let N be a positive integer. Let Ci, c2, • . • , C^AO be the basic 
commuta tors of dimension ^ N. We shall call any element 

(2.i2) n = ri c^ 

a collected-/-word, where 1 ^ J ^ g(iV). If / = q(N), then (2.12) is said to 
be a basic iV-word. lî w £ F and 

(2.13) w s ^ f i ^ C i j mod 7v+i 

then the basic TV-word, I I = I I ^ i i ct
€i is referred to as the iV-composite basic 

commuta tor representation (or N-c.b.c. representation) of w. 

Definition 2.9. The generators Ci, c2, . • • , cr of F and their inverses Ci-1, 
c2~

1, . . . , c^1 are the 1-commutators. Suppose tha t we have defined the k-
commutators for 1 ^k ^ m. An (m + 1)-commutator is any element w = (w,fl) 
such tha t w is a ^-commutator, ZJ is a /-commutator, and 5 + t = w + 1. (Note 
t ha t a ^-commutator G Fk by Definition 2.1 and inequality (2.3a).) 

Let w £ F and w ^ 1, i.e., 

(2.14) w = Il V 
;=i 

where the c^- are among the generators Ci, C2, . . . , cr. Let TV be a given positive 
integer. Let 1 ^ / ^ ç(N). Making repeated use of (2.1) and of the identities 

https://doi.org/10.4153/CJM-1975-125-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-125-9


1190 H. V. WALDINGER AND A. M. GAGLIONE 

(2.9) and (2.11), we find t ha t w has the form 

(2.15) w= ( n cS'jfjgv+uj 

such t h a t (i), (ii), and (iii) hold: 
(i) If / = q(N), then fz = 1. If / < q(N), then fj is a word in basic com

muta tors , ck, with two propert ies: 
(a) c 7 < ck ^ cqiN) 

(b) UD(ck) > 1, t h e n c e ^ c7 . 
(In part icular by Definition 2.7, / r is a word in F-simple commuta tors of 
dimension > 1.) 

(ii) gjv+i,i is a word in finitely many m-commuta tors so t h a t each m > N. 
(iii) I f / < q(N), then 

(2.16) cI+iei±ifI+1gN+ltI+1 = figN+i.i-

Having obtained the collected-7-wrord (IIf=iCie*) we thus find the collected-
(J + l ) -word (Jlj^Ci't) by a rewriting of/7 . 

We will refer to the computa t ion of e7 as the "collection of c 7 . " (See [7, 
Section 11.1.]) We note t ha t (2.15) gives a N-c.b.c. representat ion of w for 
I = q(N). 

A generalization of the above computat ion of the "col lected-/ -words," 
ITf=iCteS is required to arrive a t the "representat ion a lgor i thm." We will show 
later on t ha t every F-simple commuta to r of dimension > 1 is a word in 
"auxil iary-simple" commuta tors , not all of which are .F-simple. We will thus 
express fr (see proper ty (b) above) by "auxil iary-simple" commuta tors . For 
N > 1 we will compute in our generalization an "iV-collected-auxiliary-
commuta to r representat ion" of fr instead of its "iV-collected basic commuta to r 
representat ion." T o describe the generalization in detail we need four addi
tional definitions. 

Definition 2.10. Let cil < ci2 < . . . < cik < . . . be the .F-simple commuta
tors of dimension > 1 in the ordering of Definition 2.2. An auxiliary-simple 
commuta to r of class {k} is a commuta tor , w, with the proper ty t ha t w tt cilc. 
All of the classes {1}, {2}, . . . , {k}, . . . are non-empty and consist of finitely 
many distinct elements given by a specified rule. (See the remark a t the end of 
this definition.) The auxiliary-simple commuta tors are ordered as follows: 

(i) If d\ G {ki}, dp G {&2Î, and ki < k2, then d\ <a rfM. 
(ii) The distinct elements of a class {k} are ordered in a specified manner . 
(Note t ha t we will use <a, ûa, > a, =a for the ordering of Definitions 2.10 

and 2.11 to distinguish it from the ordering of Definition 2.2. Also note t ha t 
the elements of the classes {k} and their orderings will be specified in Definition 
2.21. Bu t specific rules are not needed in the present discussion of the collec
tion process.) 

Definition 2.11. Suppose t ha t d is an auxiliary-simple commuta to r of class 
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{k}. Then d has pseudo-dimension Dp(d) = D(cik). The auxiliary commutators 
of pseudo-dimension 2 are the auxiliary-simple commutators of pseudo-dimen
sion 2; these commutators are ordered according to Definition 2.10. Having 
denned and ordered the auxiliary commutators of pseudo-dimension < m 
but > 1, we use them to define and order the ones of pseudo-dimension m. 
The set of auxiliary commutators of pseudo-dimension m consists of two 
subsets: 

I. The auxiliary-simple commutators of pseudo-dimension m in the ordering 
of Definition 2.10. 

II. The commutators dç = (dç, dv) such that d$ and dv are auxiliary com
mutators with the following three properties: 

(i) D9(dt) + Dp(dv) = m 
(ii) dz>adv and Dp(d{) è Dp(dn) > 1 

(iii) If d% is not auxiliary-simple, then dç = (da, dp) and dp ^adv. (Here 
Dp{d) = m means that d has pseudo-dimension m.) 

An auxiliary commutator of pseudo-dimension m is >n any of smaller 
pseudo-dimension. An auxiliary-simple commutator of pseudo-dimension m is 
>a any non-simple-auxiliary commutator of the same pseudo-dimension. Let 
dxx = (dç , dVl) and dç2 = (dç2, dV2) be two non-simple-auxiliary commutators 
of pseudo-dimension m. Then d^ >adç2 if either d^ >ad^2, or d^ = d%2 but 
^ >adV2. 

Having ordered all auxiliary commutators, we assume that their subscripts 
are chosen so that dt is the ith auxiliary commutator. 

(We note that the auxiliary commutators need not be basic commutators.) 

Remark 2.1. We note by Definitions 2.1, 2.10, 2.11 and by inequality (2.3a) 
that d{ 6 Fm if Dp(dt) = m. 

Definition 2.12. Let du d2, . . . , dQa(m) be the auxiliary commutators of 
pseudo-dimension ^ m but > 1. Let qa{\) = 0. If / £ F, D(f) = m, 

qa{m) 

(2.17) rix = n ^iei 

i=qa{m— l)-f 1 

and 

(2.18) / = I L mod Fn+1 

then i l l is said to be an auxiliary commutator representation (or ax. repre
sentation) of/. We shall call any element 

(2.19) LI = IT d? 
i=l 

a collected-/a-word, where 1 ^ / ^ qa(m). If / = qa(m), then (2.19) is said 
to be an auxiliary ra-word. If w 6 F<L and 

( Qa(m) \ 

I l dt") mod Fm+1 
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then the auxiliary ra-word, i l^™ d^*, is referred to as the w-composite 
auxiliary commutator representation (or m-c.a.c. representation) of w. 

Definition 2.13. The auxiliary commutators o\, d2} . . . , #V(2) of pseudo-
dimension 2 and their inverses du~

l d2~
1

} . . . , dqa^)~l are the auxiliary 2-
commutators. Suppose that we have defined the auxiliary ^-commutators for 
2 rg k S m. The auxiliary {m + 1)-commutators are the elements of two 
categories: 

(I) The auxiliary-simple commutators of pseudo-dimension (m + 1) to
gether with their inverses. 

(II) All commutators w = (u, v) such that u is an auxiliary s-commutator, 
v is an auxiliary /-commutator, 5 and t ^ 2, and finally s + / = m + 1-

(Note that an auxiliary ^-commutator £ ^ by Definitions 2.1, 2.10, 2.13 
and by inequality (2.3a).) 

Having given Definitions 2.10-2.13, we are now ready to describe our 
generalization of the collection process in which we will work with auxiliary 
commutators just as we worked with basic commutators before. L e t / be any 
word in auxiliary-simple commutators, / ^ 1. Let TV be a given integer ^ 2. 
Let 1 ^ I ^ qa(N). Making repeated use of (2.1) and the identities (2.9) and 
(2.11), we find t h a t / has the form 

(2.2i) / = ( n ^ ) / 7 , a & r + i I / l f l 

such that (i), (ii) and (iii) hold: 
(i) If I = qa(N), t h e n / 7 a = 1. If / < qa(N), then/ / > a is a word in auxiliary 

commutators, dk, with two properties: 
(a) dr <adk Sa dqa{N)\ 
(b) If dk is not auxiliary-simple, then dk

R Sa d7. 
(ii) gN+\,i,a is a word in finitely many auxiliary ra-commutators so that each 

m > N. 
(iii) If I < qa(N), then 

(2.22) dW
f 7 + 1 / /+l fa&V+l. /+l .a = fi,agN+l,I,a-

Having obtained the collected-/a-word, (nf=i d{
€i), we thus find the collected-

(J + l)a-word, (TLjîidi'i), by a rewriting of/7,a. 
We will refer to the computation of ez- in (2.21) as the ''a-collection of dx." 

(This computation is described in Section 11.1 of [7] for basic commutators 
rather than the auxiliary commutators required here.) We note that (2.21) 
gives an N-c.a.c. representation of / for / = qa(N). Moreover, the N-c.a.c. re
presentation of / becomes identical with the N-c.b.c. representation found in 
(2.15) in the special case where all auxiliary-simple commutators are also 
.F-simple. 

2(c). Free generators of G2. The presentations (2.5) of the groups considered 
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here have the form 

(2.5a) G = (a, < * , . . . , cT; ci"1, c2
a\ . . . , c?') 

where the r exponents at are nonnegative integers so that at least one among 
them does not vanish. Their commutator subgroups are known to be free 
[4 ; 5] and sets of free generators are given for them below. For this purpose we 
require additional notation and définitions. 

Remark 2.2. From now on I ï ^ iC^O"* £ {1, 2, . . . , r}) will denote an 
element of F as well as its image in G under the homomorphism F —> G of (2.5a). 

Definition 2.14. (See Definition 2.9.) A 1-commutator u = Ci±l (i = 1, 2, 
. . . , r) has generator sequence (u) = (ct) consisting of ct. Suppose (i) e is a 
s-commutator with generator sequence (e) = (eu e2, . . . , es) and, (ii) / is a 
/-commutator with generator sequence (/) = (ju f2, . . . , ft)- Then (e, / ) is 
a (5 + ^-commutator with generator sequence ((e,f)) = (eu e2, . . . , es,fi,f2, 
. . . ,ft). (Note that (c) = [c] if c is a ^-simple commutator.) 

Definition 2.15. The generator ct has order 

0(c<) = order of ct in G = s l .f
 l 

(00 if «J = 0 

Definition 2.16. Let Cj be a F-simple commutator. Then c* is said to be 
G-simple if any generator, ck, which occurs in (ct) does so fewer than 0(ck) 
times. 

Definition 2.17. Let t > 1. A commutator 

e = (. . . (<Vif<V«), . . . , c<4
€') 

is quasi-G-simple provided it has the following four properties: 
(a) c = (. . . (ch, ch), . . . , c<4) is G-simple. 
(b) The ej = ± 1 for j = 1, 2, . . . , / . 
(c) If e;- = — 1, then'0(c iy) = 00. 
(d) If 4 = ij, then €* = e,. 

We are ready to state a theorem of Gruenberg [5] which is a special case of 
Theorem 2.1 of [4J: 

THEOREM 2.3. The quasi-G-simple commutators are free generators of G2. 

2(d). The investigation of G reduced to a special case. We will show in this 
subsection that it is sufficient to obtain the "representation algorithm" for 
the special groups, G[p], of 

Definition 2.18. Let p be a fixed prime. Suppose that every non-vanishing at 

in the presentation (2.5a) is a power of p. Then G will be denoted by G[p]. 

The above conclusion arises in part from a well-known fact stated as 
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LEMMA 2.2 [7]. Suppose c generates a cyclic group, C, of order a = p\lp2'
L. . . 

pk
r,k, where the pj are distinct primes and the rjj are positive integers. Then C is 

the direct product of the cyclic groups generated by 

a/Pi'l alV2H a / V * 

It follows from Lemma 2.2 that the group G given by (2.5a) is the free 
product of special abelian groups and has the alternative presentation 

(2.5b) G = (eu e2, . . . , et; su s2j . . . , su) 

with three properties: 
(I) Every et is a power of a Cj in (2.5a). 
(II) The relators s{ belong to categories (a) and (b): 

(a) st is the ([£(i)]Xi) power of a generator ejt where Xz- is a positive 
integer and p(i) is a prime. 

(b) st = (eu, ev) such that eu and ev are powers of the same ck. 
(III) If the generators eu and ev commute, then their orders are relatively 

prime. 
To make use of the representation (2.5b), we require the free group 

(2.23) J F = (eu e*,..., et). 

Let eu e2, . . . , eq{n) be the basic commutators of dimension ^ n in J ^ given 
by Definition 2.2. By Corollary 2.1, Gn = G/Gn+\ consists of the images in Gn 

of the basic w-words 

Q(n) 

(2.24) n *«"• 

(We are applying Definition 2.8 and Remark 2.2 to &~ in place of F.) Having 
given (2.24) we need additional definitions to continue. 

Definition 2.19. Let 

(2.25) pu p2j . . . , pz 

be the distinct primes p(i) which occur in the relators st of category (a) above. 
Let e be a /-commutator with generator sequence (e) = (ejlf eJ2, . . . , ej ). 
(We are applying Definition 2.8 to Ĵ ~ rather than F.) Then 

e is said to be of type oo , if 0(eju) = oo for 1 ^ u ^ / ; 
e is said to be of type v, if it is not of type oo and every 0(eju) is either oo or 

a power of pv, where 1 ^ u ^ / and p r is among the primes (2.25) (0(eju) 
denotes the order of eju in G.) ; 

^ is said to be of mixed type, if it is not of one of the types 1,2, . . . z, oo. 

Definition 2.20. ^ œ is the subgroup of G which is generated by the generators 
in (2.5b) of type oo. 

Let v be fixed, 1 ^ v ^ z. & v is the subgroup generated by the generators 
in (2.5b) of types v or oo. Also for m a given positive integer, &vm is the sub-
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group generated by those basic commutators, eu (in the notation of (2.24)) 
which have dimension m and are of type v. 

Known properties of G which we will combine with (2.24) follow. 

LEMMA 2.3. (See [1 ; 11 ; and 17]). Let e be a f-commutator of mixed type. Let m 
be any positive integer. Then 

(2.26) e = 1 mod Gm. 

The following result is a special case of Theorem 2.1 of [3]. 

THEOREM 2.4. Let ^ œ W = (&JJ(&Jn+i- Let ¥vm(l ^ v S z) be the 
image of & vm under the homomorphism &v —» <@v/{@v)m+\ = ( ^ J m . Then 
Gm/Gm+i is the direct product of the groups 

ĵ com, ^ im, ^2m,^_. • , y zm if ^ œ is non-empty. 
^im, ^2W , . . . , y zm if ^co is empty. 

At this point the words (2.24) can be examined. Let us divide the set of 
these words into equivalence classes according to the relation that 

Q(n) q(n) 

(2.27) n , = n^*•• ~ n 2 = n««•" 
if 

(2.28) ï l i s n 2 mod Gn+1. 

It is evident that to determine Gn we only need a rule for giving representatives 
of our equivalence classes and a multiplication table for these representatives. 
Making use of Lemma 2.3 it is sufficient to find a rule which takes for repre
sentatives only words (2.24) with the property that e* = 0 if et is of mixed 
type. But such class representatives can be constructed by Definitions 2.1, 
2.19, 2.20, Corollary 2.1, and Theorem 2.4 from class representatives for the 
factor groups of the subgroups &u ^ 2 , • . . , ^ 2 . (The class representatives 
for {&v)

n are found by working with &v in place of G.) Thus we may obtain 
a rule for Gn by giving rules for the (& v)

n. A multiplication table for the 
representatives of the equivalence classes (2.27) can then be found by the 
"collection process" and our rule for Gn. 

We have thus shown that it is sufficient to obtain the "representation 
algorithm'' for groups G[p]. 

2(e) The F-simple commutators expressed by auxiliary-simple commutators. 
Auxiliary-simple commutators were introduced in Définition 2.10. This defini
tion leads to a discussion of the collection process for auxiliary commutators 
without specifying the elements in the classes {k} or the ordering of the 
elements in a class. We cannot proceed to the "representation algorithm," 
however, without a rule which gives the elements of every class {k} and 
orders them. 
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To state this rule we first require 

Remark 2.3. Consider the /^-simple commutator, cik ,with generator sequence 

(2.29) (ctk) = (ch,ch,...,cjf) 

such that cik is not of type oo. (We are applying Definition 2.19 with the 
generators eju of &~ replaced by the generators cju of F.) Hence integers, m, 
exist which have properties (a), (b), (c), and (d): 

(a) 1 ^ m g / . 
(b)0(cjm) < o o . 
(c) If m < t ^ / , then j t ^ j m . 
(d) li jm < ju then c} occurs in {ci]c) fewer than 0(cjt) times. 

We are now ready for 

Definition 2.21. Consider the F-simple commutator, cik, of dimension > 1. 
(i) If cik is G-simple, then cik = d(0, k) is in class {k}. In particular if ct is of 
type oo, then the class {k} of Definition 2.10 consists only of cik. (ii) If ct is 
not of type oo and (cik) is given by (2.29), then the class {k} consists of 
(a) d(0, k) if cik is G-simple, and (b) the commutators, d(m, k), constructed 
as follows from the integers, m, of Remark 2.3: 

For 1 ^ H / and h ^ m, let dAmJfe = cjh. But let ^mwfc = (c^)^ where 
7m = 0(cjm). Then 

(2.30) d(w, *) = ( . . . (dlmk, d2mk), . . . , cZ/wA) 

Having given the class {&}, let us order its elements: Suppose that d(mi, k) 
and d(m2, k) G {k}. Then d(mi, k) <a d(m2} k) if mY < m2. 

The usefulness of the auxiliary commutators as given by Definitions 2.10, 
2.11, and 2.21 rests on three properties: 

(I) Those auxiliary commutators which are not basic commutators are = 1 
in G. (See also Definitions 2.2 and 2.16). 

(II) The G-simple commutators are among the free generators of G2 ac
cording to Theorem 2.3. 

(III) The truth of 

LEMMA 2.4. The subgroup of F generated by the F-simple commutators of 
dimension > 1 is also generated by the auxiliary-simple commutators. 

To establish Lemma 2.4 we must first introduce a correspondence between 
/^-simple commutators and auxiliary-simple commutators. 

Definition 2.22. Suppose that cik is a F-simple commutator which is not 
G-simple. According to Definitions 2.7, 2.14, and 2.16, the generator sequence 
(2.29) contains a unique element cjfi such that: 

(i) Cj occurs in (cije) at least a = 0(cjfi) times. 
(ii) If /x < v ^ / , then cjv occurs in {ct ) fewer than 0(cjv) times. 
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The auxiliary-simple commutator, cik, which corresponds to cik is then 
given by 

'((• • • (ch, ch), . . . , cjfi_a), cjtt_a+1«) if M = / and jM_a+i = j M 

| ( . • • (ch
a, ch), . . . , cjix_a+l) if » = f and j ^ a + l 9* j M 

(2.31) c<A; = / ( . . . ( ( ( ( . . . (ch,cJ2), . . . , ^M_J,^_ a + 1«),c^+ 1) ,^M + 2) , . . . , cif) 
if M < / and jM-a+i = j/x 

(. . . ( ( ( . . . ( C ^ a , Cj2), . . . , C^ M _ a + 1 ) , £ ^ + 1 ) , c ; M + 2 ) > • • • » c i y ) 

if /i < / and jM_«+i ^ j„ 

When c<Jfc is G-simple, however, then c^ = ci]c. 
Having introduced the c* , we observe by Definitions 2.2, 2.7, 2.10, 2.14, 

2.16, 2.21, 2.22, and by mathematical induction that Lemma 2.4 is a conse
quence of 

LEMMA 2.5. 

(2.32) ctk = ucikv 

in F, where u and v are either 1 or are in the subgroup generated by ct , ci%, . . . , 
Cifc-V 

Evidently we only need to prove Lemma 2.5 for cik not G-simple. For this 
purpose we shall require the auxiliary 

LEMMA 2.6. (See [17], Lemma 4.3.) Suppose that c and d are F-simple com
mutators such that (c) = (CJ , cJ2, . . . , cj<a), co > 1 and d < cj(a. The identity 

(2.33) (c, d) = I L M f o d)U2 

is then valid in F, where 111 and II2 are words in F-simple commutators, vu with 
the properties (i), (ii), and (iii) below: 

(i) 1 < D(vt) £ co + 1. 
(ii) If (Vf) = (w\, w2, . . . , wn)t then Wi, w2, . . . , wv is a rearrangement of a 

subsequence of cjv cJ2, . . . , cj(a, d. 
(iii) vt < (c, d). 

We are now ready for the 

Proof of Lemma 2.5. We start from the two special cases (a) and (b) given 
in the notation of (2.10): 

(a) cik = Pn(A, cjf) where /x = 0(cjf) 
(b) ch = Pv-1((ch, ch), ch) where v = 0(ch) 

But 

(2.34) 
_ ((A, Cjf) in case (a) 
~ \(<V> ch) incase (b) 

according to (2.31). Equation (2.32) is then obtained in the special cases by 
expressing cik as a unique word in F-simple commutators through the applica-
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tion of (2.1), the identities (2.9b) and 

(2.35) (M,b) = M'1]] [a,(a„&)]** 

where M — IÏ^Lia/1'. (Note that (2.35) is a consequence of (2.1).) We now 
observe by Definitions 2.7 and 2.16 that the smallest ^-simple commutator 
which is not G-simple, belongs to a special case (a) or (b). To complete our 
proof by mathematical induction on the place of ct in the ordering of Defini
tion 2.2, it is therefore sufficient to establish the following proposition: 

Suppose that (i) ciR is not G-simple, (ii) ciR does not belong to a special 
case (a) or (b), and (iii) cik satisfies (2.32) when 1 ^ k < K. Then (2.32) 
also holds for C = ciR. 

When CL is not G-simple, then the conclusion of the proposition is found 
easily by identity (2.35), hypothesis, Definitions 2.2, 2.7, 2.16, 2.22, Lemma 
2.6, and Theorem 2.2. When CL is G-simple, however, then C has the form 

(2.36) C = P_! ( [ ( . . . (ch, cJt),..., cjf_v+l)l ch) 

by Definitions 2.7, 2.16, and hypothesis, where v = 0(c ; i ) . Consider 

(2.37) C = P ^ ( [ ( . . . (ch, ch),..., c!f_v)}, ch) 

By hypothesis/ — v > 1 and cjh occurs in (C) fewer than 0(cjfi) times, where 
2 ^ h ^ f — v + 1. Also C satisfies the relation 

(2.32a) C = u'C'v' 

of the form (2.32) by Definitions 2.2, 2.7, 2.16 and hypothesis. Now C = 
(C, cjf_v+l) by Definition 2.22. Applying identity (2.35), Lemmas 2.1 and 2.6, 
Theorem 2.2, and Definitions 2.2 and 2.7 to the computation of (u'C'v', cjf_v+l), 
we obtain the conclusion of the proposition also for CL G-simple. 

Having established Lemmas 2.4 and 2.5, we have thus finished our prelimi
nary discussion of the commutator calculus. 

3. The representation algorithm. 

3(a). Formulation of the problem. Let G have the presentation (2.5a). The 
factor group Gn = G/Gn+i (n a fixed positive integer) consists of the cosets of 
Gn+i in G. These cosets have basic «-words 

<7(n) 

(3.D n cr 
i=l 

as their representatives according to Corollary 2.1 and Definition 2.8. (See 
Remark 2.2. Note that (2.5a) occurs in Subsection 2(c).) 

In order to investigate the nilpotent group Gn, we first analyze the groups 
Gm = Gm/Gm+i for m = 1,2, . . . , n. For this purpose let us consider the special 
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basic ra-words 

^_^ q(m) 

(3.2) E L = n ct« 
i=q(m-l) + l 

where g(0) = 0. Let IIm be a representative of a coset of Gm. It is then evident 
by Corollary 2.1 and Definition 2.1, that the representatives of all of the cosets 
of Gn are those distinct basic n-words 

(3.3) n j i 2 . . . un 

which have the property that every I l w ( l ^ m ^ n) is in a complete set of 
coset-representatives of Gm. 

Therefore to determine Gn, we will proceed as follows: First we will obtain 
a rule for choosing the representatives, Hmj in (3.2) of the cosets of Gm> Then 
we will compute a multiplication table for the group of coset representatives 
(3.3) found by our rule. 

Accordingly, we will start the first task of choosing the coset representatives, 
I l m , in (3.2) by finding those ITm which are in Gm+i- We will do this in the next 
subsection for m > 1. 

3(b) The relators of Gm expressed by relation commutators (m > 1). We begin 
this subsection with two preliminary definitions. 

Definition 3.1. Let I I = IIJ=ic^€*'. I I is said to be a relator in G if I I is 
mapped into the identity under the homorphism F —» G of (2.5a). In particu
lar, a relator cfli{ai 9^ 0) which occurs in (2.5a) is said to be a defining relator. 

Definition 3.2. (See Definitions 2.10, 2.11, 2.12, 2.21, and Remark 2.2.) The 
auxiliary-simple commutator, d(m, k), is relation-simple if m > 0. (By Defini
tion 2.21 any d(0, k) is G-simple, but any relation-simple commutator is a 
relator in G.) The relation-simple commutators of pseudo-dimension 2 are the 
relation commutators of pseudo-dimension 2. Having defined the relation 
commutators of pseudo-dimension h, we define those of pseudo-dimension 
(h + 1). Let d be an auxiliary commutator of pseudo-dimension (h + 1). 
If d is auxiliary-simple, then d is a relation commutator provided it is relation-
simple. If d is not auxiliary-simple, then d is a relation commutator provided 
at least one among dL and dR is a relation commutator. (Note by Theorem 2.3 
that an auxiliary commutator is a relator in G if and only if it is a relation 
commutator.) 

The auxiliary /^-word (h > 1) 

Qa(h) 

(3.4) n = n <*<" 
1 = 1 

is said to be a relation /z-word provided 7]t = 0 when dt is not a relation com
mutator. If w G F2 and w has the h-c.a.c. representation IT, then H is said 
to be a ^-composite relation commutator (h-c.r.c.) representation of w provided 
I I is a relation /z-word. 
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Having given our preliminary definitions, we are ready to state the important 

LEMMA 3.1. Let m > 1. Let YLm be a basic m-word of the form (3.2). Tim £ 
Gm+i if and only if it has a m-composite relation commutator representation. 

It is evident from Definitions 2.1, 2.12, and 3.2 that ITW Ç Gm+i if Ilm has 
an m-c.r.c. representation. Thus we only need to prove 

LEMMA 3.2. If YLm Ç Gm+i, then Ylm has an m-c.r.c. representation. 

The homomorphism Fm+\ —•> Gm+i induced by the presentation (2.5a), is 
onto by Definition 2.1. Hence there exists an element fm+i € Fm+i such that 
ITm/w+i is a relator in G in the sense of Definition 3.1. Thus it is sufficient to 
prove 

LEMMA 3.3. Let w G F. Suppose that D(w) — m and w is a relator in G. 
Then w has an m-c.r.c. representation. 

In the following we will establish Lemma 3.3 through the use of the collec
tion process. For this purpose we require an alternative presentation of G 
which we will construct from (2.5a). Let p be the number of those exponents at 

in (2.5a) which do not vanish. (0 < p ^ r by hypothesis.) Let H be the free 
group 

(3.5) H = (ai, a2, . . . , ar+p). 

Then G is the homomorphic image of H obtained by the presentation 

(3.6) G = (ai, a2, . . . , ar+p\ Si, s2, . . • , ^2P) 

where the st are given in Definition 3.3. below. This definition also expresses 
the generators a ; of H (or G) as words in the generators ct of F (or G). Also 
Definition 3.3 shows how to obtain the presentation (3.6) from (2.5a) by 
application of Tietze transformations [10]. 

Definition 3.3. If the generator C\ in (2.5a) has infinite order, let a\ = C\. 
If Ci has finite order ai, let a\ = Cial and a2 = C\\ also let s\ = ax and s2 = 
a\a<rai> Suppose that we have introduced (h -\- v) generators ai, a2, . . . , ah+v 

as words in the generators C\, c2, . . . , ch and have specified Si, s2, . . . , s2v when 
v > 0. Then ah+v+i — ch+i, if ch+i has infinite order. Bu t ah+v+i = ch+iah+i, 
ah+v+2 = ch+i, s2v+i = ah+v+i, and s2v+2 = ah+v+1ah+v+2~

ah+l, if ch+i has finite 
order. 

Evidently F has the presentation 

(3.7) F = (ai, a2, . . . , ar+p; s2, sA, . . . , s2p). 

Note that we are proceeding according to Remark 3.1 in analogy to Remark 
2.2. 

Remark 3.1. n* = i a ; t
e t denotes an element of H as well as its image in G or 

Sunder the homorphisms (3.6) or (3.7). 
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Having given the presentation (3.6), we must divide the ^-commutators in H 
into two categories before applying the collection process to the proof of 
Lemma 3.3. 

Definition 3.4. (We are applying Definition 2.9 to H in place of F.) The 
1-commutator a^1 is in category / , if at (as a word in the cf) is not a defining 
relator; at

±l is in category II, if a* (as a word in the Cj) is a defining relator. 
Let d be a ^-commutator, where k > 1. d is in category II, if at least one among 
dL and dR is in category II ; d is in category I, if it is not in category II. 

We are finally ready to apply the collection process to relators, w. (See 
Definition 3.1 and Lemma 3.3.) It is well-known that w is a product of con
jugates of defining relators [10]. Hence w has the form 

(3.8) w = n (wr^iWV 
3=1 

by the substitutions of Definition 3.3, where (i) the e; = ± 1 , (ii) the aij are 
generators of H of category II, (iii) the Wj are words in generators of H of 
category I. Computing the m-c.b.c. representation of w given by (3.8) as a 
first step in the proof of Lemma 3.3, we find 

LEMMA 3.4. Let ai, a2, . . . , ag(m) be the basic commutators of dimension ^ m 
in H. Let 

(3.9) g = I l a," 

be the m-c.b.c. representation of w in H. Then g has the property that rjj = 0, 
if a,j is in category I. Hence h = g~lw is a relator in G and also G Fm+1, by (3.8) 
and Definitions 2.1, 2.8, 3.1, 3.3, and 3.4. 

Proof. Let us compute g by the collection process as discussed in subsection 
2b. Consider 

q(m) 

(3.10) gi = IT a/'1 

where 

= (vj if aJ i s i n category I 
Jl \0 if a,j is in category II. 

Then gi is an m-c.b.c. representation of 1 in F. (See (3.8) and Definitions 
2.1, 2.2, 2.8, 3.3, and 3.4.) Hence all rj^ = 0 by Definition 2.1 and Theorem 2.1. 
We then obtain our conclusion according to (3.11). 

To establish Lemma 3.3 as a consequence of Lemma 3.4 we require the 
auxiliary 
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LEMMA 3.5. Let u = I T ^ C D + I a / ' be a basic m-word in H. Then u is a word 
in F-simple commutators of dimension > 1, when u is rewritten as a word in 
Ci j c2, . . . , cr. Hence u is also a word in auxiliary-simple commutators. 

To derive this lemma we first express the generators of H by generators of F 
according to Definition 3.3. We then apply the techniques of the proof of 
Lemma 2.5 repeatedly to express u as a word in F-simple commutators of 
dimension > 1. Finally making use of Lemma 2.4 we find that u is a word in 
auxiliary-simple commutators. 

To apply Lemmas 3.4 and 3.5 to the proof of Lemma 3.3 we need additional 
terminology. 

Definition 3.5. The relation commutators of pseudo-dimension 2 and their 
inverses are the relation 2-commutators. Suppose that we have defined the 
relation ^-commutators for 2 ^ k rg m- The relation (m + 1)-commutators 
are the elements of two categories: 

(I) The relation-simple commutators of pseudo-dimension (m + 1) together 
with their inverses. 

(II) All auxiliary (m + 1)-commutators w = (u, v) such that u is a relation 
s-commutator, v is a relation /-commutator, 5 and / ^ 2, and finally (s + t) = 
m + 1. (See Définition 2.13.) 

We are finally ready for the 

Proof of Lemma 3.3. 

w = g mod Fm+1 

(3.12) J 

g = n v 
by Lemmas 3.4 and 3.5, where g is a relator and the dtj are auxiliary-simple 
commutators of pseudo-dimension > 1. Let us rewrite g by the collection 
process as described in subsection 2.b. We then find in the notation of (2.21) 
that 

QaXm) 

(3.13) g = I l die%gm+l,Qa(m),a 
z=l 

where gm+i,Qa(m),a is a word in finitely many auxiliary ^-commutators, uz, so 
that each s > m. But all relation commutators and relation ^-commutators 
are relators in G by Definitions 3.1, 3.2, and 3.5. Hence 

qa(m) 

(3.14) g! = EI di'^m+l.l 

is a relator in G where 

, . _ (€f if dt is not a relation commutator 
11 {0 if dt is a relation commutator 
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and gm+iti is obtained from gm+i,qa(m),a by replacing those auxiliary s-commuta-
tors, uz, which are relation ^-commutators, by the identity. Thus gi is a word 
in G-simple commutators by Definitions 2.2, 2.8, 2.12, 2.13, 2.16, 2.21, 3.2, 
and 3.5. But the G-simple commutators are according to Theorem 2.3, free 
generators of subgroups of F as well as of G, in the sense of Remark 2.2. 
Since gi is a relator in G, we conclude that 

Qa(m) 

(3.16) 1 = Hdi'
ilmodFm+1 

1=1 

Hence all e*i = 0 by Theorem 2.1 and Definition 2.1. Applying Definition 3.2 
we then obtain our conclusion, i.e., Tlil[m)diei is an m-c.r.c. representation of g 
as well as of w. 

We have now established Lemmas 3.1, 3.2, and 3.3. By the discussion of 
Subsection 3(a) and by Corollary 2.1, we easily obtain 

THEOREM 3.1. (See Definition 2.8.) Let m > 1. Gm = Gm/Gm+i is the abelian 
group generated by cç(w_i)+i, cff(TO_i)+2, . . . , cq(m) subject to the additional relations 
that 

Q(m) 

(3.i7) n = n cr = i 
i= f f(m-l) + l 

in Gm if and only if I I has an m-c.r.c. representation as an element of F. 
3(c) Gm = Gm/Gm+i determined by ideal theory for m > 1. We will obtain a 

rule for choosing the representatives of the cosets of Gm{m > 1) by ideal theory 
[13]. 

We start out by dividing the relators which occur in (3.17) into [q(m) — 
q{m - 1)] relator-classes &q(m-1)+1, <%'Q(m_1)+2, . . . , ^ ( w ) . 

Definition 3.6. YL = n?£™(m_i)+i ct
H is a relator in Gm if IT = 1 mod Gm+i. 

(II is a relator in Gm, according to Theorem 3.1, if and only if it has an m-c.r.c. 
representation.) 

Definition 3.7. Consider the basic m-word 

g(m) 

(3.18) w = t l c^. 
1 = 1 

w is in the class ^ ; ( 1 < j Û q(m)), if it has two properties: (i) ei = €2 = 
. . . = e;-_i = 0, and (ii) If e; = 0, then w = 1 in F. 

If w G 0j, then the exponent e;- in (3.18) which we shall denote by Ej(w) 
is said to be the minimal exponent of w. 

The element w of class 2iïj is in the relator-class *$j(q(m — 1) < j ^ q(m)), 
if it is a relator in Gm. We will refer to the elements of ^ ; as relators of *&jt 

It is evident that every relator in Gm is in a unique 'if j . A class fé% may, 
however, consist only of 1. 

https://doi.org/10.4153/CJM-1975-125-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-125-9


1204 H. V. WALDINGER AND A. M. GAGLIONE 

Definition 3.8. The class *$j is said to be trivial if it contains only the 
identity. Any class *$$ which contains a non-identity element is said to be 
non-trivial. 

Before proceeding to Lemma 3.6, let us state the classical 

Definition 3.9. [13]. Let 3% be the ring of integers. The subset J C 3% is 
said to be an ideal in 3% if it satisfies two requirements: (I) If a and b £ J?, 
then (a + 6) 6 J. (II) If a £ J and a Ç 3?, then (aa) G . / . 

LEMMA 3.6. Suppose that *$;- (q(m — 1) < j ^ <z(#0) contains the relators 

(3.19a) W l = IT Ci"'1 

?(w) 

(3.19b) ^2 = n cr 

such that 6ji + €j2 5* 0. JTzew 

(3.20) w3 = I l c,a,« 

and 

q(m) 

(3.2i) Wi = n «e"+e" 

are elements of *$$, where the integer a F^ 0. Hence the set of minimal exponents, 
EJ(W)J of elements of fé% constitutes an ideal, J ;-, in 3%. 

This lemma is an immediate consequence of Definitions 3.6-3.9 and of 
Theorem 3.1. 

To proceed from Lemma 3.6 we now require a classical property of 3$. 

THEOREM 3.2 [13]. Let J be an ideal in 3%. Then J is a principal ideal, i.e., 
it consists of all integral mulitples $A of the unique generating element A, where 
A ^0. 

By Definitions 3.6-3.9, Lemma 3.6, and Theorem 3.2, we easily find 

LEMMA 3.7. Let q(m — 1) < j S q(m) where m > 1. Suppose that the class 
fëj is non-trivial. The ideal J' j is then generated by a positive integer, Aj:j. 
Hence there exists a relator 

q(m) 

(3.22) R, = I l ct
Aii 

1=3 

of class *£ j such that Ej(Rj) = AJJ. 
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Definition 3.10. If *$ j is non-trivial, then the Rj of Lemma 3.7 is said to be 
the representative of the relator-class fâ j . A trivial relator-class, & j} has 
representative Rj = 1 for which we take Ai5 = Ajtj+i = . . . = AjtQ(m) = 0. 
(Note that the choice of Rj is often not unique.) 

Making use of Corollary 2.1, Definitions 3.7 and 3.10, and Lemma 3.7, let us 
characterize the relators in Gm and also determine the elements of Gm. 

LEMMA 3.8. I I = (Uf^m-iw Cifi) is a relator in Gm if and only if there 
exist integers ôqim-1)+1, ôQim-i)+2, . . • , 5ff(ro) such that I I = ( I I^^ -D+i i?^») 
mod Fm+i or such that et = Z^=c(ro-i)+i àjAjt for q(m — 1) < i ^ q{m). 

THEOREM 3.3. A complete set of representatives of the cosets of Gm (mod Gm+\) 
consists of those elements 

( q(m) 

Il ci 
i=q(m-l) + l 

which have the following property: 0 ^ e* < An for q{m — 1) < i ^ q(m), 
if *€ i is non-trivial. 

We have completed our investigation of Gm. We are thus ready to determine 
Gn — G/Gn+i where n is a given positive integer. 

3(d) The group Gn = G/Gn+i. The representatives of the cosets of G (mod 
Gn+i) were discussed in subsection 3(a). To determine them we must still 
examine G\ = G/G2. It is evident from Definition 2.1 and Corollary 2.1 that 
Gi is the abelian group generated by ci, c2, . . . , cr subject to the additional 
relations that Ciai = c2

a2 = . . . = cr
ar = 1, where the at are given in the 

presentation (2.5a) of G. Applying Theorem 3.3 and recalling the discussion of 
the basic n-words (3.3), we immediately obtain Theorem 3.4 below. To state it, 
however, we require the auxiliary 

Definition 3.11. Let 1 ^j^r = g(l) . The relator-class 9% is trivial and 
consists only of the identity, if CÙJ = 0. The relator-class fë j is non-trivial and 
consists of all powers of c/*/, if otj ^ 0. If 9% is non-trivial, then Ajj = ajm 

THEOREM 3.4. A complete set of representatives of the cosets of G (mod Gn+\) 
consists of those elements (Il^Lï5 ct

u) which have the following property. 0 S et < 
A a for 1 ^ i ^ q{n), if *%' t is non-trivial. 

Having found the elements of Gn it remains to compute a multiplication 
table for this group. We will see that this can be done by the "representation 
algorithm" given below. This algorithm finds the representative, given by 
Theorem 3.4, of that coset which contains a specified freely reduced word in 
the generators Ci, c2, . . . , cr. 

To describe this algorithm, we must assign to relator-classes, &j} not only 
their representatives, Rj (given by Definitions 3.7 and 3.10), but we must also 
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assign to them elements Rj of F, which are relators in G. (See Definition 3.1.) 
We do this in 

Definition 3.12. (See Definitions 2.2, 2.12, 3.2, 3.7, 3.8, 3.10, 3.11.) If ^j 

is trivial, then Rj = Rj = 1. If ^ ; is non-trivial and 1 ^ j S r, then R3- = 
Rj = CjaL If & j is non-trivial and r = q(l) < j ^ q(n), then Rj is a (D(CJ))-

composite relation commutator representation of Rj. (Note that Rj always 
exists by Theorem 3.1. However, the choice of Rj need not be unique. That 
the Rj are relators in G is evident from Definitions 2.21, 3.1, and 3.2.) 

We are now ready to consider a freely reduced word w = YlI
i==icji

vi 9^ 1, 
where the cu are among the generators d, c2, . . . , cT. This word, when thought 
of as an element of G, is in a coset of G (mod Gn+i). This coset has a represen
tative of the form I I ^ ct

ei, as given in Theorem 3.4. In the "representation 
algorithm," we will compute the exponents ei, 62, . . . , eQ(n) in order of in
creasing subscripts. 

To find 6j(l ^ j ^ q(n)), we proceed as follows. By means of the algorithm 
to be presented, we express w in the form 

(3.23) w = Uj-iVj-ifj-! 

such that (3.23) has the three properties: 
(I): 

(3.24) Uj.^lU^ i f l < i ^ « 
( l if j = 1 

(II): VQ = w. In general Vj-i either = 1 in ForVj-i ^ Cj. (See remark 2.2, 
Definitions 2.4, 2.5, and Theorem 2.1.) 

( I l l ) : fj_i (E Gn+i, when/ ;_i is considered as an element of G. 
We then obtain the exponent e; from the expression (3.23) in the two steps 

below : 
(A): Making use of property II, we rewrite Vj-i, considered as a word in 

F, in the form 

/ <7(n) \ 

(3.25) Vj-! = [ fi c^'Jhj 

through the collection process, where hj G Fn+Ï. (See Theorem 2.1 and Sub
section 2(b)) 

(B): We take e; = e;7 and p;- = 0, when the relator-class fé% is trivial. 
When ^j is non-trivial, however, then e; and p ; are the unique solutions of the 
equations 

(3.26) n " < = P ^ + e ' 

(See Definitions 3.7, 3.8, 3.11, and Lemma 3.7.) 
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Having completed steps (A) and (B), we express the word w in the form 

(3.27) w = UjVjfj 

valid in F, such t ha t 

Uj = Uj-i Cfi 

(3.28) vj = Rrpi vn 

Vji = crtj v,-i hr1 

fj = Vji-iRfiVfrhj fj-i. 

Making use of equations (3.22), (3.25), (3.26), (3.27), and (3.28), of Defini
tions 2.1 and 3.12, and recalling tha t Vj-i has property (II) by hypothesis, 
we find t ha t v5 also has property (II) for 1 S j < q_{n) and fj 6 Gn+i, when 
considered as an element of G. Thus having expressed w in the form (3.27) for 
1 ^ j < q(n), we are ready to compute ej+i by the above steps (A) and (B) . 

We refer to our computat ion of the q(n) exponents e; by successive steps of 
two kinds as the ' ' representation algori thm." We note tha t vQ(n) = 1 mod Fn+i 
by equations (3.22), (3.25), (3.26), (3.27), (3.28), and by Definition 3.12. 
Recalling equations (3.24), (3.26), and (3.27), we conclude tha t this algorithm 
yields a coset representative as given by Theorem 3.4. 

Our algorithm evidently provides a means for obtaining a multiplication 
table of Gn; i.e., multiplication is carried out by finding the coset representa
tives of products of freely reduced words. 

T h u s we have completed both of the tasks s tated in Subsection 3 (a ) . 

3 (e) Concluding remarks. We conclude this section with two remarks. 

Remark 3.2. I t was shown in Subsection 2(d) t ha t the group Gn can be 
found from the groups ( ^ i ) w , ( ^ 2 ) w , . . . , ( ^ 2 ) n . (See Definition 2.20 and 
Theorem 2.4.) Theorem 3.4 and the "representat ion algori thm" are, however, 
given here for groups G with presentations (2.5a) in general, ra ther than the 
special groups G[p] of Definition 2.18. This was done since the assumption 
t ha t G is a special group G[p] does not simplify either the results of this section 
or their proofs. 

Nevertheless, the methods of Subsection 2(d) have considerable value for 
two purposes: 

(I) The simplification of the practical computat ion of a given group Gn. 
( I I ) The derivation of general results to be obtained in future investigations 

from our present conclusions. 

Remark 3.3. Let n > 1. To enumerate the elements of Gn according to 
Theorem 3.4, we must tabulate the representatives, Rjy of the non-trivial 
relator-classes, *i£jy which are such tha t r = q(l) < j ^ q_{n). For the "repre
sentation algori thm" we also need the corresponding relation D(Cj)-words, Rj. 
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We will now give a brief outline of a procedure for comput ing the above Rj 
and Rjm This procedure consists of satisfying conditions (i), (ii), and (iii) 
below. I t will be applied in the example of Section 4. 

Let m > 1. Let 

(3.29) dkl <adk2<a... <adkqrU) 

be the relation commuta tors of pseudo-dimension ^ m given by Definition 3.2. 
Consider the relation ra-word 

Qr(m) 

(3.30) Il = 114". 
2 = 1 

Then 

^_^ g(m)  

(3.3D n x = n cc* = n mod «̂+i 
f=r+l 

such tha t the exponents et{\ ^ i ^ (Z(m)) a r e functions 
(3.32) € i = 0*(l?l, 7̂2, . . . , î?ffr(m)) 

which are determined uniquely by the collection process. 
Let Cj be a basic commuta to r of dimension m > 1. By the preceding discus

sion we note the following: 
The relator-class *$ j consists of the elements I I i corresponding to the expo

nents ?7i, 772, . . . , Vgr(m) which are such tha t 

(3.33) (i) <j>j(ril, V2, • • • , Vqr(m)) ?* 0 

and 

(3.34) (ii) «,(171,172, . . . i ^ ) ) = 0 

for r = q{\) < i < j . 
& j is trivial if conditions (i) and (ii) have no solutions. 
Fur thermore if fëj is non-trivial, then Rj is an element I I1 of clo } which 

satisfies the additional condition 
(iii) €j is the smallest positive value of the function 4>j of the integral ex

ponents rji subject to the requirements of (3.33) and (3.34). 
T h e relation ra-word Rj is then the word (3.30) which is such t ha t the 

exponents r}t are those found for Rj by the above conditions (i), (ii), and (iii). 

4. A n e x a m p l e . In this example we will determine Gb for 

(4.1) G = (cuCiid'tCj*). 

G is evidently a homomorphic image of F = (ci, c2) which has 14 basic com
muta to r s of dimension ^ 5, i.e., the commuta to rs d < c2 < . . . < Cu in the 
ordering of Definition 2.2. We note by Definition 3.2 t ha t G gives rise to a(k) 
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relation commutators of pseudo-dimension k such that a(2) = 2, a-(3) = 4, 
a(4) = 9, and er(5) = 24. 

To determine G5, we must tabulate the representatives, Rj, of the relator-
classes, fê jm For this purpose we first compute twelve functions 0 (̂771,772,.. • ,7739) 
according to Remark 3.3 where 3 ^ j ^ 14. These functions are as follows: 

03 = 9l7i + 9T)2 

04 = 36772 + 9^3 + 9774 

05 = 36r7i + 9775 + 9776 

06 = 84772 + 36774 + 9T7IO + 97711 

07 = 36773 + 36775 + 97712 + 97713 

08 = 84T7I + 36T76 + 97714 + 97715 

09 = 84772 + 72773 + 36778 + 324^9 + 367710 

+ 9(T7I6 + 7717 + 77i8 + 7721) + 81(77i9 + 7720 + ?722 + 7723) 

+ 162T72(772 - 1) 

0io = 20477! + I2O773 + 36775 + 36777 - 324779 

+ 9(7724 + 7725 + 7726 + 7729) + 81(7727 + 7728 + 7730 + 7731) 

+ 162771(771 - 1) + 324771772 

0 i i = I26772 + 84774 + 36^11 + 9(7732 + 7733) 

012 = 84775 + 367710 + 367712 + 9(7734 + 7735) 

013 = 84773 + 36T7I3 + 36T7I4 + 9(7736 + 7737) 

014 = 126771 + 84776 + 36T71 5 + 9(7738 + 7739) 

Making use of the functions, 0;-, exhibited above, we obtain the Rj in the 
manner of Remark 3.3. We then find the following: 

Rz = c,\ RA = C49, R5 = c5
9, R* = c«8c8-

8, Ri = C79, 

R8 = c8
9, R9 = c9

9, -Kio = Cio3Cii-3Ci33, ^ n = £n9> 

Rl2 = Ci23Ci4~3, ^13 = ^139, Ru = Ci49. 

Having the above Rj at our disposal, we finally determine G5 by Theorem 3.4. 
This yields the following result: 

A complete set of coset representatives for G (mod G6) consists of those 
basic 5-words 

(4.2) ft 0" 

which are such that 

, , 0 g tt < 9 fort = 1,2, 3 ,4 ,5 , 7, 8, 9,11, 13, 14 
1 6> 0 ^ u < 3 for i = 6, 10, 12. 
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