
ON RIGID UNDIRECTED GRAPHS 

Z. HEDRLÎN AND A, PULTR 

By an undirected graph we mean a couple (X, R), where X is a set and R 
is a subset of X X X such that (x, 3/) 6 i? implies (y, x) G i£. The cardinal of 
X, denoted by |X|, will be called the cardinal of the graph. 

A mapping f:X —> X is called an endomorphism of (X, i£) if (x, 3;) £ i? 
implies that (f(x),f(y)) £ i£ for all x, y Ç i£. 

An undirected graph (X, i?) is called rigid if there is only one endomorphism 
of (X, R), namely the identity mapping of X. 

P. Erdôs communicated orally that, using probability methods, it is possible 
to prove that almost all finite undirected graphs are rigid. 

The aim of this note is to prove the following statement: Let n be a natural 
number, n > 2. There exists a rigid undirected graph with the cardinality n 
if and only if n > 7. 

We remark that there exist rigid undirected graphs with any infinite cardinal, 
as follows from (1 and 3). Undirected graphs rigid under automorphisms were 
studied in (2). 

The proof of the statement will be done in two sections. First, we prove that 
there is no rigid undirected graph (X, R) with 2 < |X| < 7. In the second 
part we construct a rigid undirected graph with any prescribed cardinality 
greater than 7. 

Proof of the necessity. As there are only finitely many non-isomorphic graphs 
(X, R) such that 2 < |X| < 7, the proof of the necessity can be given by 
checking all possible cases. Actually, we did not find any other proof. The only 
improvement is that we can give an approach which makes the checking simple 
enough. 

Further, we shall always assume that all graphs under consideration are 
undirected. We shall use the following notation and conventions: 
If (X, R) is a graph, put 

R(x) = {y\(x,y) e R}, N(x) = (R(x),Rn (R(x) X £ (* ) ) ) , 

i(x) = \R(x)\, i(X) = max {i(x)\x G X}. 

The expression / = {xi —> 3>i, . . . , xm —> ym} denotes that / : X —>X is a 
mapping defined by / (x t ) = yt (i = 1, 2, . . . , m), / (x) = x otherwise. The 
symbol {x —•» y, y —» x, . . .} is usually abbreviated by {x <-> y, . . .}. We usually 
say that x is joined with y if (x, y) Ç R. 
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LEMMA 1. Let (X, R) be a rigid graph ,\X\ = n > 1. Then 
(a) (x, x) # R and i(x) 9e 0 for all x f l , 
(b) if i(%o) = n — 1, then N(XQ) is rigid, 
(c) i{x) 9^ n — 2/or a// x £ X, 
(d) i(x) 9e I for all x £ X, 
(e) *(*) ^ 2, 
(f) if (X, i£) is k-colourable, i.e. it is possible to colour (X, R) by k colours, 

then it does not contain a complete k-vertex subgraph. 

The proof is simple. We prove, for example, assertion (c). Let i(xQ) = n — 2. 
Then there is only one vertex y y^ x0 such that (x0, y) $ R. Bearing in mind 
that (y, y) d R and (x0, x0) $ R, by (a), we readily see that / = {y —» xo} is 
an endomorphism of the graph, which yields a contradiction. 

From Lemma 1 wre obtain immediately: 

LEMMA 2. If 2 < |X| < 5, then (X, R) is not rigid. 

LEMMA 3. There is no rigid graph (X, R) such that \X\ = 6. 

Proof. Let \X\ = 6, (X, R) being rigid. By Lemma 1, i(X) = 3. Let x0 G X 
be such that i(x0) = 3. We shall consider N(x0). There are only four non-
isomorphic graphs with three vertices, namely the graphs of Figure 1. We may 
designate the vertices of R(xQ) by u, v, w in such a way thar N(xo) is one of 
the graphs I-IV. Let {y, z] = X\(R(x0)\J {x0}). Evidently, (y,z)eR\ 
otherwise {y —> Xo] is an endomorphism. 

i ,u n °u nr 

. r ^ .w JL. 

FIGURE 1 

In Case IV, {y <-> z] is an endomorphism, as i(X) = 3. In Case III, (X, R) 
is evidently 3-colourable and contains a three-vertex complete graph. The 
same holds in Case II. In Case I, it is easy to show that we may redesignate 
the vertices in R(xo) in such a way that \u —•> v] is an endomorphism. 

LEMMA 4. If \X\ = 7, i(X) = 4, then (X, R) is never rigid. 

Proof. Let \X\ = 7, (X,R) being rigid, i(X) = 4. Let i(x0) = 4. The 
elements in R(xo) are denoted by t, u, v, w; the elements in X\(R(x0) ^J {x0}) 
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by y, z. We may denote the vertices in R(x0) in such a way that N(XQ) is one 
of the graphs I-XI of Figure 2. 

I 

oW 

EI 

o ^ 

ÎL i* 

BE 

HI it 

Similarly, as in the proof of Lemma 3, (y, z) £ R. Cases I and XI cannot 
occur (see Cases I and IV in the previous lemma). Considering colouring in 
the cases V, IX, and X we easily obtain a contradiction to Lemma 1 (f). 

Case II. Evidently (X,R) is 4-colourable; hence, the vertices t, u, yy z 
cannot form a complete graph. Thus, we may assume that (y, u) (? R. We 
define a function x on X by x(#o) = x0&) = 1> x(u) = xiy) = 2, x(#) = 3 
otherwise; x is a colouring and we obtain a contradiction to Lemma 1(f). 

In Case VII, u cannot be joined to both y and z, as i(u) < 4. Then we use 
the same idea as in the previous case. We dispose of Case III similarly. 

Case VIII. The graph cannot be 3-colourable by Lemma 1(f). Therefore 
clearly i(y) > 3 and i(z) > 3. Since i{X) = 4, it follows that i(y) = i(z) = 3 
and hence that each of the vertices t, u, v, w is joined to exactly one of the 
vertices y, z. It is now easy to see that the graph admits a non-identical 
automorphism. 

Case VI is the most complicated. It is easy to show (considering colouring 
and symmetries) that we may designate the vertices in such a way that 
(y, t) Ç R and (y, u) g R. Further, considering colouring, it is possible to 
show that (z, w) (E R—using now the same designation—and that either 
(v, z) e R or (t, z) e R. 

First, assume that (v, z) G R. If the graph has only the edges described 
so far, {y <r+ z, t *-* w, u <-> v} is an automorphism. Hence, R must contain at 
least one other edge. Considering i(u) and i(v), we see that there are only two 
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possible edges, namely (/, z) and (y, w). If both of them belong to R, then the 
described mapping remains an automorphism. By symmetry, we may assume 
that (t, z) G 22. Then {xo <-> u, t <r+ v, w <-> y} is an automorphism. 

If (v, z) G 22, it is easy to exclude all possibilities in a similar way. 
It remains to investigate Case IV. First, considering colouring, we can show 

that either (t, y) G 22, (u, y) G R or (v, y) G 22, (w, y) G R. The same must 
hold if y is replaced by z. We may assume that (t, y) G 22, (u, y) G R. If 
(t,z) G R and (u, z) G 22, i (0 = 4 and 2V(0 is isomorphic to IX. Hence, 
(v, z) G R, (w, z) G R. If no other edges are present, the graph is not rigid. 
Thus, we may assume that (/, z) G R and (u, z) G R. Then i{t) = 4 and 
N(t) is isomorphic to VI. The proof is complete. 

LEMMA 5. If \X\ = 7, i (Z ) = 3, then (X, 22) w w^ rigid. 

Proof. If i(-X") = 3, then there exists a vertex Xo £ X such that i(*o) < 2. 
By Lemma 1, i(x0) = 2. 

The proof will be divided into sections according to the minimal length of a 
cycle containing XQ (if such a cycle exists). 

Let (xo, y) G -R, (#0, *) € 2?, z T^ y. First, let (y, z) G 2?. Considering i(y) 
and {xo*-*y}, we see that there is exactly one t, t 9e Xo, t ?£ z such that 
(y, t) G R. Similarly, we find a vertex u for z. If u — t, then {;y <-» z} is an 
automorphism. Il u j* t, (u, t) G 22, the graph is 3-colourable. If (w, /) G 2?, 
the graph is evidently not rigid. 

If (x0, J, /, z) is the minimal cycle containing Xo, {Xo —* i\ is an endomor-
phism. 

Let (x0, y, t, u, z) be a minimal cycle containing x0, the remaining vertices 
being v, w. If (v, w) G 22, then one of the previous cases occurs, where v or w 
plays the role of Xo. Hence, (v, w) G 22. Now, we can easily investigate all the 
remaining possibilities. (Note that the minimality of (x0, y, t, u, z) implies that 
(ji u), (y, 2), (/, z) cannot belong to 22, that (v, y), (v, z) cannot belong to Ry 

and that (w, y), (w, z) cannot both belong to 22.) 
Let the minimal cycle containing x0 consist of six vertices. Let w be the 

remaining vertex. Evidently, the graph is 3-colourable. Hence, w cannot be 
joined with two joined vertices. Consequently, i(w) = 2. Replacing x0 by w, 
we obtain one of the previous cases. 

If either the minimal cycle is of length seven or if there is no cycle containing 
Xo, then the graph (Xy 22) is evidently not rigid. The proof is complete. 

The preceding lemmas imply: 

THEOREM 1. There is no rigid undirected graph (X, 22) such that 2 < \X\ < 7. 

Proof of the sufficiency. 

THEOREM 2. If n is a natural number, n > 8, then there exists a rigid undirected 
graph (X, 22) such that \X\ = n. 
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Proof. The proof will be based on properties of endomorphisms of cycles in 
undirected graphs without loops (1 ). 

Let p = |(w — 4) if n is even and let p = \(n — 5) if n is odd; thus p > 2. 
Put C = {0, 1, 2, . . . , 2^}. The elements of C will be considered as representa­
tives of residue classes (mod 2p + 1)- The symbols i + j , —i, etc., should be 
understood in this sense. Put X = C U {a, ft, c] if n is even and 

X = C U {a, b,c,d} 

if w is odd, where a, b, c, d are different elements, which are not contained in 
C. Let R be a symmetric relation generated by: (i, i + 1) £ i?, (c, i) G 12 for 
all i € C, (a, 0) G 12, (a, 2) 6 12, (a, 3) G 12, (a, ft) G 22, (J, 0) G R, (ft, 1) G 12 
(moreover, (d, a) G 12, (J, ft) G 12, (J, 2) G 12 if n is odd) ; see Figure 3. 

FIGURE 3 

We are going to prove that (X, R) is rigid. L e t / be an endomorphism of 
(X, 12). Thus/(22(x)) C R(f(x)) for all x £ X. There is only one x £ X such 
that R(x) contains the set of vertices of a proper cycle of odd length, namely 
x = c. We have R(c) = C and C is the set of vertices of a proper cycle of odd 
length. Moreover, no proper subset of C has this property. As the length is odd 
(1) and/(12(c)) C 12(/(c)), we obtain/(c) = c,/(C) = C, and there is a * G C 
such that either f(i) = k + i for all i G C or / ( i ) = k — i for all i G C. If 
/ ( a ) 6 C (/(ft) G C), we have/({a, 2, 3}) C C (/({0, 1, ft}) C C), which is not 
possible owing to the length of the cycles. Consequently, / (a) ^ c, /(ft) F^ C. 
I f / (a) = ft (or/(a) = d if « is odd), we have 

/({0, 2, 3}) = f(R(a) HOC R(b) H C = {0,1} 
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(or . . . C R(d) C\ C = {2}). As / is 1-1 on C, we obtain a contradiction. 
Similarly, we can show that / (6) ^ d. Hence, f(a) = a. As (a, b) G R, we have 
f(b) ^ a and, hence, f(b) — b. 

Further, / (0) = 0 because R(a) C\ R(b) H C = {0}. Thus, either / ( i ) = i 
or f(i) = -i for all i € C. / ( i ) = -i implies t h a t / ( l ) = 2p, but (1, 6) G R, 
and (2£, J) € R. We infer tha t /0 ' ) = i for all i G C. 

If w is odd, {d} = R(a)n R(b) Pi 22(2) and we obtain f{d) = d. Hence, 
(X, R) is rigid. If n is even, \X\ =2p + l + 3 = n and, if w is odd, 

\X\ = 2£ + 1 + 4 = n. 

COROLLARY Let X be a set. The following assertions are equivalent: 
(1) there exists a symmetric relation R on X such that (X, R) is rigid, 
(2) either \X\ = 1 or \X\ > 8. 

Proof. If |X| is finite, the statement is an immediate consequence of the 
preceding theorems. By (1 and 3), the statement holds for any infinite \X\. 
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