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MINIMAL MODELS FOR
2-COVERINGS OF ELLIPTIC CURVES
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Abstract

This paper concerns the existence and algorithmic determination of
minimal models for curves of genus 1, given by equations of the form
y2 = Q(x), whereQ(x) has degree 4. These models are used in the
method of 2-descent for computing the rank of an elliptic curve.
The results described here are complete for unramified extensions
of Q2 andQs, and for all p-adic fields forp > 5. The primary
motivation for this work was to complete the results of Birch and
Swinnerton-Dyer, which are incomplete inthe cas®@fThe results

in this case (when applied to 2-coverings of elliptic curves @er
yield substantial improvements in the running times of the 2-descent
algorithm implemented in the programwrank. The paper ends with

a section on implementation and examples, and an appendix gives
constructive proofs in sufficient detail to be used for implementation.

1. Introduction

The method of descent has been used since classical times for studying the arithmetic
elliptic curves. More recently, explicit algorithms for determining the Mordell-Weil and
Selmer groups of elliptic curves over the rational fi@ldgeneral number fields, and other
global fields, have been developed. One of the best such general algorithms for arbitr:
elliptic curves oven is the 2-descent algorithm described by Birch and Swinnerton-Dyel
in [2], which was used by them to determine the ranks of many elliptic curves in th
work which led up to their famous (and still unproved) conjectures. A description of this
algorithm, which is implemented in the second author’s progmarrank (see [5]), may

be found in [3].

In the 2-descent algorithm (ov&r), one embed& (Q)/2E (Q) into the 2-Selmer group
S2(E/Q) of the elliptic curveE. Elements ofs? are represented by plane quartic curves
of the formY? = g(X), whereg(X) is a quartic polynomial whose classical invariants
I andJ (defined below) are related to the usualandcg invariants of the elliptic curve.

In [2], an analysis of the minimal integral models for such 2-coverings was made for ellipti
curves ovef). This is a local question: for each odd primgthere is a unique minimal pair
(1o, Jo) such that every integral quartic of the above form which represeptadically
soluble 2-covering of is isomorphic to one with this minimal pair of invariants. For primes
p > 3, the minimality condition is simply that eithey, (/) < 4 orv,(J) < 6, while for

p = 3thereis aslightly more complicated condition, equivalent to the condition that,
andJ = 2cg Where(cgs, cg) are the invariants of @-minimal integral model foi& overZ.
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2-coverings of elliptic curves

The situation at the prime 2 is more complicated: the result gived indmma 5] is that,
for a fixed elliptic curveE overQ, the 2-adically minimal quartics defining 2-coverings
of E may have either one or two different pairs of invariatksJ/): a basic or ‘small’
pair (1o, Jo), and — in some cases — also the ‘large’ @dirJ) = (2*Iq, 26J9). Sufficient
conditions on(1p, Jo) are given, under which no large quartics are required, in the sense th:
any large quartics are equivalent (in a sense to be defined below) to small ones, and he
redundant. However, these conditions are not necessary, so this result is not best poss
and one of our aims was to find best possible conditions. We solve the local problem
2-adic minimality, increasing the number of cases in which large quartics can be eliminat
by local considerations (see Lemrd and Table3). Of course, it may (and often does)
happen that there are no global (integer) quartics with the larger invariants, as this existel
cannot be completely determined by purely local considerations.

The practical consequences of our results are to reduce the running time of the 2-desc
programmwrank for many elliptic curves. In [3, p. 92], we said

Itwould appear that rational points i (Q) whose quartics have the larger
pair of invariants lie in certain components of tReadic locusE (Q2). Further
study of this would be very useful, since if the search for quartics with the larger
pair of invariants could be eliminated or curtailed, it could result in a major
saving of time in the algorithm.

The program carries out a search for quartics with given invariants for each releva
pair (1, J), and clearly we do not want to waste time searching a large region for larg
quartics if there are none (or only redundant ones). Implementing our optimal criteria f
the non-existence of large quartics is simple, and has a dramatic effect on the running ti
for the curves to which it applies (see Sectibfor details).

Secondly, when both small and large quartics exist, we had noticed (after much expe
ence of runningnwrank on many curves) that the elements of the 2-Selmer group that ar
represented by small quartics appear to form a subgroup, of index 1, 2 or 4. Our second g
was to prove that this is indeed the case, which we do (see Théogdmlow). We define
a group homomorphism fromi (Q») to (Z/27)? whose kernel, which obviously contains
2E(Q2), consists precisely of the points associated to small quartics, from which the rest
follows. Again, there are practical consequences of this in the implementation; details a
examples will be given below. For example, if we know from the start that the local inde:
is 2, then we may stop the search for further large quartics as soon as one is found. Exam|
may again be found below in Secti@n

In this paper we start by working over a genepahdic field — that is, a finite field
extension of the field op-adic numberg),. Although we prove little that is new fa@,
itself whenp > 2, we are interested in carrying out explicit 2-descents over general numbe
fields, so we also wish to consider extension&gffor generalp. Many results carry over
easily to unramified extensions. Some results of this nature were obtained by Serf in t
thesis [8] (see also [6]).

In the next section, we introduce some terminology, and state some basic results ab
minimality of quartics. Some proofs are relegated to the appendix, since we wish to gi\
them in sufficient detail to to be implementable as algorithms. Sections 3 and 4 concern't
connection with elliptic curves, including a characterization of ‘small’ quartics over a loca
field K which is an unramified extension @f,. The case of); itself is then considered
in greater detail. In the final section, implications for the global situation and practice
consequences are examined, together with examples computedusiagk. Some of
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the more technical results, which are necessary for implementation purposes, are givel
Appendix AandAppendix B.

Some of the material in Sectio2sand3 is reminiscent of [, Sections 2—4]; however,
in [1] the case of additive reduction is not covered, and in the other cases it is not clear tt
our results can easily be deduced from those of [1].

2. Basics

Let K be ap-adic field — that is, a finite extension @f,, with ring of integers®x.
The normalized (additive) valuation & will be denotedvg. We denote the ramification
index of K/Q, by ex and the residue class degree fjy. We choose a uniformizery;
for exampleyrg = p whenex = 1. The residue field is theh= Ok /7x Ok .

We consider binary quartic forms (‘quartics’ for short)

0x,2) =ax* +bx3z 4+ cx?? +dx® + et

with coefficientsa, b, ¢, d, e € K. We shall use the shorthar@ = (a, b, ¢, d, e). There
are the following well-known invariants:

1(Q) = 12ae — 3bd + ¢%;
J(Q) = T2ace + 9bcd — 27ad? — 27bh%e — 2¢3;
A(Q) =disc(Q)= 5 (41% — J?).

Throughout this paper, we shall tacitly assume that all quadi@e nondegenerate,
that is, thatA (Q) # 0.

DEerINITION 2.1. 1. Two quarticQ andQ’ will be calledK -equivalentf there is a matrix
A= (‘; §) € GL(2 K)
and some € K * such that
0 =620 A =¢e?Q(ax + Bz, yx + 82).

Note that the invariants ap and of O’ are then related by

1(Q") = ¢* det(A)*1(Q);

J(Q) = °det(4)°J (0);

A(Q") = e dett4)?A(Q).

2. AquarticQ is calledK -solubleif there exist elements, ¢ € K, not both zero, such
thatQ(¢, ¢) is a square irK .

3. AquarticQ is calledK -trivial if there exist elements, ¢ € K, not both zero, such
thatQ(&, ¢) = 0.

Both the latter properties are compatible witkrequivalence. The pair of invariants J)
of an equivalence class is well defined up to the actioki 6f given by(1, J) — (¢*I, £5J)
for e € K*. The unique class of trivial quartics with invariarts/ is represented by the
quartic(0, 1,0, —271,—27J); to see this, take the root to lég, ¢) = (0, 1), soe = 0, and
apply the transformatioq9 % ) with e = (3d4)~1.

Provided tha\ (Q) # 0, the affine equation? = Q(x, 1) defines a curvey of genus 1
overK. This curve (or, rather, its nonsingular projective model) h&smtional point, and
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hence is an elliptic curve defined ovir if and only if Q is K-soluble. Whether soluble or
not, the Jacobian at, is the elliptic curveE = E; ; with equation

Erg: y2 =x3—27Ix— 27J,

where andJ are the invariants 0@, and there is a map : € — E;; of degree 4
defined ovelk making the following diagram commute.

E——=E 1)

Here,[2] denotes the multiplication-by-2 map dfy and the vertical mag is an isomor-
phism defined over an extension fiddo) wherex is a root ofQ. Such a diagram is known
as a 2coveringof E.

If K is a number field andz an elliptic curve defined ovek, then elements of the
2-Selmer grous2(E/K) are represented by 2-coverings, and hence by such cayes
with Q(x, 1) € K[x], which areK,-soluble for all completionX, of K. Such a global
quartic is thereverywhere locally solublgor ‘ELS’, for short). Note that since the Hasse
principle fails for curves of genus 1, ELS quartics may not be globally soluble @yer
The process of 2-descent on an elliptic cuizénvolves the computation of its 2-Selmer
group, and one way to do this is therefore to find all equivalence classes of ELS quarti
with the appropriate invariants.

In general, over any field of characteristic neither 2 nor 3, we have a bijection betwee
E(K)/2E(K) (with E = E; ;) and the set of equivalence classes of soluble quartics
over K with invariantsi, J. For future reference, we now make this bijection explicit:
a point(&,n) € E; j(K) maps to the class of the quariit, 0, —6¢, 8, 1081 — 3£2),
which has rational points at infinity and invariant82r and £3%J; for proofs, see [4].

Conversely, given a soluble quartf¢ = (a, b, ¢, d, ), we may assume (applying a
suitable unimodular substitution) that the rational point is at infinity, so that the leadini
coefficienta is a square; then the corresponding point&ry is

3b? —8ac _b®+ 8a?d — dabc
& m) = (3 it 8432 )
See [4] or B] for the general formula, given an arbitrary rational point®g. In this
correspondence, the trivial cosef @) corresponds to the class of trivial quartics.

Later on, we shall be interested mainly in an elliptic cuBjevhich we shall assume to
be in the formy? = x2 + A x + B, and its 2-coverings. In this case, the correspondence is
as follows.

ProposITION 2.2. Let K be an arbitrary field of characteristic neithex nor 3, and let
E : y°> = x3+ Ax + B be an elliptic curve oveK . Then there is a map

QOr : E(K)/2E(K) — K-equivalence classes of quartics

given by mapping the class of a poif#t, n) € E(K) to the class of the quartiQ =
(1,0, —6&, 81, —3&2 — 4A). The mapQ g is injective, and the image consists exactly of
the K -solublek -equivalence classes of quartics with invariafits/) = (—3 A, (—3)3 B)
(modulo the action ok * on (I, J)). The image of the zero element undgs is the trivial
equivalence class of quartics, containit@ 1,0, A, B).
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We shall also us® g to denote the induced map froB(K) to classes of quatrtics.
We return now to the case whekeis a local field.

DEerINITION 2.3. We define théevelof a quarticQ to be an integer, as follows:
level(Q) = [minfvk (1)/4, vk (J)/6}].

In eachkK -equivalence class of quartics, there are certainly forms with coefficielg in
(replaceQ by 2 Q for suitables); these integral forms have non-negative level. We call an
integral formQ K-minimalif it satisfies leve(Q) < level(Q’) for all equivalent integral
forms Q’; otherwise we callD K-nonminimal.

Clearly, each class of forms has minimal elements. We shall be concerned with det
mining the level ofK -minimal quartics. From the formulae given in Definitidri, we have
(in the notation used there)

level(Q') = level(Q) + vk (¢ det(A)). @)

Integral forms of level 0 are clearly minimal, but the converse is false in general, as w
shall see.

3. Levels of minimal soluble quartics
Our goal in this section is to prove the following result.

THEOREM 3.1. Over ap-adic local fieldK, all soluble minimal integral quartic formg
have levels satisfying

level(Q) { < L(L+ek)/2], ifp=3;
< ek, if p=2.

In particular, if K is unramified, thettevel(Q) < 1.

Proof. By Proposition2.2, every such quartiQ belongs to a clas® g (&, n) for some
elliptic curve E over K and some point¢, n) € E(K). If this point is integral (that is,

if we haveg, n € Ok), then the given representative quarfi¢ is also integral (and vice
versa). We can choosE to be given by an equation? = x3 + Ax + B with 0 <
min{3vk (A4), 2vk (B)} < 12. Then, sincd (Q’) = —3-2* A andJ(Q’) = (-3)%. 25 B,

it follows that leve(Q’) = 0 for p > 5, levelQ’) < | (1 + ek)/2] for p = 3, and
level(Q") = ek for p = 2. Since the level of the minimal forms within an equivalence class
is uniquely determined, this proves the theorem for quartics in classes that are images
integral points as above.

Hence it remains only to prove the theorem for the images of non-integral points. The:
points (together with the zero of the group law) make up the kernel of reduction of our mod
for E. We shall use the customary notatié(K) for this kernel of reduction, and more
generally,E" (K) for thenth kernel of reduction, consisting of thig, n) € E(K) such that
v (&) < —2n, vg (n) < —3n, together with G E(K). (Caution: ifp = 2 orp = 3, our
model forE is not necessarily minimal, and therefore @ K ) may differ from the usual
definition.) Now it is a well-known fact tha (K ) is isomorphic to therx @k -points of a
certain formal group; in particulag*(K) is an® g -module. Since 2 O whenp is odd,
all quartics corresponding to non-integral points are trivial in this case. The remaining ca
follows from the following result. O
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PrOPOSITION 3.2. Let K be aZ2-adic local field, and letE : y° = x3 + Ax + B with
0 < min{3vk (A), 2vk (B)} < 12 be an elliptic curve oveK . Then the image of” (K)
under O consists of classes of level at masix{ex — n, 0}, and is just the trivial class
whenn > eg.

Proof. The points inE1(K) are parametrized byx O in the following way:
Tk O 31— P(1) = (2 f(1),17°f () € EX(K),
where
fO)=1—A*—B%+...=1+*A@0)

is a power series with coefficients @ ; see [7, Proposition VII.2.2]. The quartic repre-
sentingQ g (P (1)) is then given by

01(x,2) = (1,0, =617 21 (1), 83 f (1), =314 £ (1) — 4A).
Letn = vk (1) > 1. We scale:

Q2(x,z) = Q1(x, t2)
= (1,0, —61(1),8f (1), =3f(1)* — 4*A)

and shift:
03(x,2) = Q2(x +z,2)
= (1,4, -61* fo(t), —4* f1(1), —4° fa(r) — 32 f1(1)?),
where we have sefy (1) = —A + 12 f>(t). The valuations of the coefficients are

(=0, =2¢k, >4dn+eg, >4+ 2k, > min{bn + 2¢k, 8n}).

If n > ek, then the Newton polygon af3 has a vertex at3z; henceQ3 splits off a
linear factor ovelk , and the class a3 is the trivial class (this implies thd(z) € 2E(K)).
In particular, the image aoP (r) has level 0 in this case.

If n = ek, we can scale to get an integral quarfa(x, z) = Q3s(x, z/4) of level O;
henceQ g (P (1)) has level 0.

Inthe remaining case, & n < ex,we have 2x > 2n,4n+ex > 4n, dn+ 2e¢g > 6n;
therefore we can scale to get an integral quadii¢r, z) = Q3(x, z/12) oflevelex —n. O

Note that it is possible to have classes of leygin the image whep = 2. For example,
if there is a point(&, ) with vx () = 1 (andvg (—3£2 — 4A) < 4 if ex = 1), then the
quartic representing its image is minimal by Lemfabelow, and the class has levegl.
This means that the above result is best possible.

4. Criteria for minimality

In this section, we derive criteria that will determine when a given integral quartic
(usually supposed to bié-soluble) over g-adic local fieldK is minimal. Though parts of
the results given here follow from Theoresril or arguments similar to those used for its
proof, we shall provide alternative proofs here that are constructive and can be turned ir
an algorithm for minimizing a given quartic.
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DEFINITION 4.1. Thevaluationof a quarticQ = (a, b, ¢, d, ¢) over ap-adic local fieldk
is defined to be _
vk (Q) = min{vk (a), vk (b), vk (¢), vk (d), vk (e)}.

Note that we always haugg (Q) < 2 level Q).

We denote byk " the maximal unramified extension &f. We begin with the simplest
case.

PRrOPOSITION 4.2. Let K be ap-adic field wherep > 5, and letQ be an integral quartic
overk.

1. If vg(Q) = 2,thenQ is K-nonminimal.
2. If level(Q) = 0, thenQ is K-minimal.
3. If level(Q) = 1andvg (Q) = 0, thenQ is K-nonminimal.
4, If level(Q) = 1andvg (Q) = 1, thenQ is K-nonminimal if it isK ""-soluble.
5. If level(Q) > 2, thenQ is K-nonminimal.
In particular, a K -soluble integral quartic i€ -minimal if and only if it has leveD.

Proof. The proof of R, Lemma 3] forQ, goes over unchanged to arbitrary extensions
of Q, for p > 5; see PropositioA.3 in Appendix A for details. This proof may easily be
turned into an algorithm for reducing quartics for whigh(7) > 4 andvg (J) > 6; all

we need to be able to do is to locate multiple roots of quartics with coefficients in the finit
fie'd@l(/ﬂ’@[(. ]

Note that the solubility assumption in part 4 is necessary, as is shown by the examy
0 = (1,0,0,0, 73), which is of level 1 and -minimal by Lemmab.1 below.
The next complicated case is when the residue characteristic is 3.

PROPOSITION 4.3. Let K be an unramifie@®-adic field. Then an integral quartic which is
K"-soluble isk -nonminimal if and only i€ithervg (1) > 5andvg (J) > 9,0rvg (1) = 4,
vk (J) = 6andvg (A) > 12 In particular, minimal quartics have lev@lor 1.

Proof. For K = Qs, this is 2, Lemma 4], though the proof was omitted there. See Propo-
sition A.4 for a proof, which only usesg (3) = 1, and so applies to unramified extensions

of Qs.
The last statement also follows from Theor8nmh, sinceegy = 1. ]

In the unramified 3-adic case, the minimal level depends only on the invariants, and
at most 1. In the ramified casex(e= vk (3) > 2) we have the following generalization.

PROPOSITION 4.4. Let K be a3-adic field with ramification degreex > 1. LetQ be an
integral K -soluble quartic with invariantg, J. Assume thap is K -nonminimal. Then one
of the following conditions holds:

1. vg(I) =2i +4andvg(J) = 3i + 6, forsoma € Zwith0 < i < ex/2;
2. vg(I) > ex + 4, andvg (J) = 3i + 6 for somei € Zwitheg /2 < i < ek;
3. vg(I) > ex +4andvg (J) > 3ex + 6.
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Condition3 is always sufficient for nonminimality.

Whereg = 1, conditionlis also sufficient, provided also thag (A) > 12. (Condition2
does not occur.)

Wheneg = 2, conditionl is sufficient, provided also thalk (A) > 12, and conditior?
is sufficient, provided also thafy (A) > 15.

Proof. Forthe necessity, itis an easy exercise to show that an integral quarticwitly (c)
has invariants satisfying:

vg (1) = 2i andvg (J) = 3i for somei with0 < i < eg /2, Or

vg (1) > ex andvg (J) = 3i for somei with ex /2 < i < ek, OF

vg (1) > ex andvg (J) > 3ek.

Since any nonminimal quartic has valuationg bfJ) that are by a multiple of4, 6) larger
than those of a minimal one, necessity follows.

Wheneg = 1, the sufficiency has already been proved;dpr= 2, see 8, pp. 193—
200]. The method of proof used i8]} and inAppendix Ain the unramified case, becomes
exceedingly tedious when there are many cases to consider. Sufficiency of the third conditi
follows (though non-constructively) from a consideration of the @@apon integral points,
since the representative quarfichasvg (1(Q)) < ex + 4orvg(J(Q)) < 3¢ +6. [

Finally, we consider the hardest case of 2-adic fields, where the minimal level cal
not be determined from the invariants alone, even for an unramified 2-adic field suc
asQ». Over (@, the best previously known result that depends only on the invariaris is [
Lemma 5], which states that (ov&r= Q»), if vg (1) > 6,vx(J) > 9andvg (81+J) > 10,
then everyK -soluble quartic with invariantd, J) is nonminimal. This result was extended
to quadratic extensions @J» in [8], where fairly strong conditions were stated, which are
satisfied by minimal quartics ov&r, with level 1. In Sectiort below, we improve the result
of [2] (compare Lemm&.1).

The following result is best possible in the unramified 2-adic case. We express it in
invariant a way as possible; namely, invariant unde(Sg).

PRrROPOSITION 4.5. Let K be an unramifie®-adic field. Then an integral quarti© which
is K""-soluble isk -minimal if and only ifeitherit has level0, or it has levell and satisfies
one of the following conditions:

1. v(Q) =1, and%Q has a quadruple root modu®and no root modula;

2. v(Q) = 0, and Q has a quadruple root modukband no root moduld6.

In particular, if v(I) > 6,v(J) > 9andv (81 + J) > 10, thenQ is nonminimal; as a
special case, quartics of level at le&sare nonminimal.

The condition above can be explained as follo@s:= 2-?(?) 0 has a unique multiple
root modulo 2, which has multiplicity at least 3 (this follows from the vanishing(@?1)
and J(Q1) modulo 2 for forms of level 1). If the multiplicity is only 3, then the form is
nonminimal, while if the multiplicity is 4, then minimality depends on the valuation of the
constant term after shifting the multiple root to 0 mod 2.

An alternative formulation of the result is as followsn integral and soluble quartic of
levellis minimal if and only if it iSSL(2, Ok )-equivalent to a quartica, b, c, d, ¢) with

vk (a) <1, vk (b), vk (c), vk (d) > 2, and 2 < vk(e) < 3.
Compare Lemma.1 below.
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Proof of Propositio.5. We give the details if\ppendix A, PropositiorA.5, again in a
form that may be used as part of an algorithm for minimizing quartics Bver O

We do not have a best possible result on minimality of quartics for general 2-adic field
but at least we know by TheoreBnlthat the level of & -minimal K -soluble quartic is at
mosteg .

ReEMARK. Over an unramified 2-adic field, we may consider more general equations c
soluble 2-covering curves, of the form

Y2+ P(X)Y = Q(X),

whereQ is a quartic and deg (P« 2. Every soluble 2-covering of an elliptic curve over

has such an equation of level 0 (with an obvious extension of the definition of ‘level’ tc
such equations). However, we have found the use of such equations less convenient
computations. The situation is similar to that of minimal Weierstrass models for elliptic
curves over 2-adic fields, where equations of the f##n= cubic do not suffice.

5. Characterization of small quartics whei/Q; is unramified

In this section, we restrict to the case where= 2, andK is anunramifiedextension
of Q2. Let E be an elliptic curve oveK as above. The image @ ¢ consists of classes of
quartics of levels 0 and (possibly) 1; we call a class in the image6mallif its level is
zero, andarge otherwise.

The following lemma is also used in the proof of Propositios; seeAppendix A. The
‘only if’ direction of the lemma was proved (fdp,) in [8], but there is no proof there for the
‘if’ direction. We remedy that here. One corollary is that the algorithm for reducing quartic:
overQy, which is implicit in [8] and implemented in the second author’s prograwrank
(see [3]), is always guaranteed to produce a minimal integral quartic equivalent to a giv
one. We actually need this result only whris a 2-adic field, but we state and prove it for
generalp-adic fields.

LEMMA 5.1. LetQ = (a, b, ¢, d, e) be an integral quartic over a-adic fieldK such that
vg(a) <1, wvg(b) =22, wvk(c) =22, wvg(d) =3, wvk(e)=>2.
ThenQ is K-minimal if and only ifug (e) < 3.

Proof. If vg(e) > 4, then we can scal@ to getQ1(x, z) = Q(x, z/mk), which is still
integral and has smaller invariants, @ds nonminimal in this case.
So suppose now thak (¢) < 3. If Q were nonminimal, there would be a matrix

A= (ﬁ §) € GL(2 K)
and are € K* with vg (¢) + vk (detA) < —1 (compare equation (2)) such that
Q1(x,2) = (a1, b1, c1, d1, e1) = £°Q(ax + Bz, yx + 82)

is integral. By changinge, A) into (n,gz”e, i A) for asuitable: € Z, we can assume that

A hasintegral entries not all divisible ik . Then we haveg (¢) < —1—vg (detA) < —1.
We observe that

e %a1 = Oa,y) = aa® + bagy + cazyz + day3 + ey4;
e %1 = Q(B, 8) = ap* + bp3s + cB26% + dps> + es*.
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The first of these equations implies (considering the valuations of the various terms) th
vk (@) > 1. Similarly, we see from the second equation thats) > 1. This implies that

vg (detA) > 1, and therefore thatg (¢) < —2. Looking at the two equations again, we
see that we must now have bath(y) > 1 andvg (8) > 1, contradicting our choice of the
matrix A. HenceQ must be minimal. O

We wish to characterize the points Bf K') whose image is small. This characterization
will finally lead to the following result, which can then be used to improvertiverank
program.

THEOREM 5.2. The setof elements B K)/2E (K) that map to small classes is a subgroup,
and its index can be determined explicitly. WHér= 2, the index is at mo<t.

Thefirst stepis to get some criterion in terms of (the coordinates of) apaink (K ) for
the conditions under which its image undgg is small. We already know by Theoresl
that the levels of the classes in the image are either O or 1, and by PropGskitiat the
image of EL(K) consists of small classes. We can therefore restrict our attention to poin
with integral coordinates. For the discussion that follows, we need some more notation.

DEFINITION 5.3. We denote by the automorphism ok such that (£)2 = £ mod 2 for all
£ € Ok. We denote by the mapK 3 £ — (¢ —1(£)?)/2 € K; note that: maps@y into
itself. If K = Q», thenr is simply the identity.

LeEMMA 5.4. The automorphismand the map: have the following properties.
1. The automorphismis additive and multiplicative, and preserves the valuation.
2. Forallé, n e K:

uE+n)=u@+utm—tEn and  u(=§) =ul) -¢&.

3. Forallg, n e K:
un) =&ulm) +nu) — 2u@)u(n).

4. Forallé,n € Og andalln > 0:
£ =nmod 2 = u(&) = u(n) mod 2.

5. Forall&, n € Ok:
u( +2n) =u(&)+nmod 2

6. Forall & € O:
u(¢€) =0mod 2 < & is a square mod 4.
Proof. The proof is easy. O
Now we can formulate our criterion.
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LEMMA 5.5. LetP = (§,1) € E(K) \ EL(K) be an integral point. The® g (P) is small
if and only if
vk (uEZ— A+ 20 —1(E)° — 1B E)) > 2,

or equivalently, if and only if

uE) =t(Aymod2 and  B& =u(A)?> mod 2

Proof. The quartic representing the cla@g (P) is given as
Q1(x,2) = (1,0, —6¢,8n, —3¢% — 44),
which has level 1. We do a shift:
Q2(x,2) = Q1(x +1(§)z, 2)
= (1,4t($), —12u(§), 8(n — 1(£)% — 3t (E)u(#)),

—4(A+3uE? — 200 — 16 ~ 3 2u(©)) ).

To this quartic, we can apply Lemnfal. It tells us thatQ, is nonminimal (and hence
that the class is small) if and only if the valuation of itSterm is at least 4; this proves
the first claim. To see the equivalence, note first that a necessary condition:igstffat

A mod 2; this is equivalent ta(&) = 1 (A) mod 2. If this condition holds, it follows that
u(€)? =1(A)?2 mod 4; hence(£)2 — A = 2u(A) mod 4. In this case, the first condition is
equivalent (mod 2) to the following:

0= u(A) + &) —1(E)° — t(Eu®)
= u(A) +1(E(n* - §° — A%)
= 1 (u(A)? + Bé);
sincer is an automorphism, this is equivalent®§ = u(A)? mod 2. O

We now proceed to show that the points mapping to small classes form a subgroup. \
need a little lemma.

LEMMA 5.6. Suppose thaPy, P2, P3 € E(K) are three points such thd + P+ P3 =0
and such thaP; € EX(K), but A, P, € E(K)\ EX(K). LetP; = (&;, ;) for j = 1,2, 3.
Then we havé; = & mod 4

Proof. &; andp; are integral forj = 1, 2, while&z = £/4" with £ a unit and > 1. Set
A=(2—n)/E2—8)=m3—m)/(Ez—&)=2"¢
with ¢ a unit; now
2'(n2 — ) = &2 — &1),

so (sincen > 0) & = & mod 2. Hencep, = n1 mod 2 (from the equation foE, since
squaring is an automorphism modulo 2), and thus: &1 mod 4 from the previous equation
again. O

Sincerg = 2, the residue field i = Ok /20k.

https://doi.org/10.1112/51461157000000760 Published online by Cat@{ddge University Press


https://doi.org/10.1112/S1461157000000760

2-coverings of elliptic curves

PROPOSITION 5.7. The mapd : E(K) — k x k, defined as follows:
5. EYXK)> P — (0,0,
| EKNENK) 3 () @®?+ A, BE +u(A)P 4 w(E)? + A)ED),
is a homomorphism. It therefore induces a homomorphism
®: E(K)/(2E(K) + EX(K)) — k x k.
The kernel ofd consists exactly of those points that map ung@er to small classes of
quartics.

Proof. Take three point®1, P>, P3 € E(K) such thatP; + P, + P3 = 0. We have to show
that®(P1) + ®(P2) + d(P3) = 0.

Suppose first that two of the points arefifi(K ). Then so must the third be, aﬁI{Pj) =
Oforj=1,23.

If exactly one of the pointsPs say, is in (K ), then by Lemm&.6, thex-coordinates of
P1andP; are congruentmod 4. Hendg Py) = ®(P>) and sob(P1)+P(P2)+P(P3) = 0,
as required. (Note thab(, n) depends o mod 4 only if the point is integral; compare
Lemma5.4, part 4.)

Finally, suppose that all three points arefK) \ EX(K). ThenPy, P, and Pz lie on
a line of equatiory = Ax + p with A andyu integral. Writing P; = (&5, n;), we have the
relations

E1tE+E3=22 E&+Eititi=A—2m, &bts=p’—B.  (3)
Apply u to the first equation, and use Lema to get (mod 2)
0=u(r?) = u(t1 + & + £3)
u(€1) +u(82) +u(3) + (5152 + £283 + £361)
= u(§1) + u(§2) + u(§s) +1(A),

so that we have
u(€1) +u(&2) + u(&s) = 1(A) mod 2 (4)
Square both sides to get
Z(u(.‘;fj)2 + A)=0mod 2
j=1
this shows that the first component®fis a homomorphism.
Now apply u to the second equation irBY (and use Lemmé&.4 once more) to get
(again mod 2):
u(A) +ipn =u(A — 2hp) = u(§162 + §263 + &361)
= &§1(u(2) + u(83)) + E2(u(3) + u(é1)) + E3(u(§1) + u(62))
+1(816263)1 (51 + 62+ §3)
= §1(u(§1) +1(A)) + 52w (82) +1(A)) + E3(u(§3) + 1(A))
+1(APu®) + t((EL+ &2+ £3) B) (use identity (4))

3
= A+ Y (& WE) +1(A) + 1 (BE)).

j=1
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Squaring this, we finally get
3

> (BE + u(A? + w(§)? + A)E?) = 0 mod 2
j=1

this shows that the second componen®as also a homomorphism.

The assertion thab induces the homomorphism is clear.

Finally, the last assertion follows immediately from LemB&and the fact that points
in EL(K) map to small classes of quartics. O

The practical aspect of this result is that we can find the subgrodji &% mapping to
small classes by applying the méqo a set of representatives Bt K ) /(2E (K ) + ELX(K)).
This is easily done for any given elliptic curve. In the special ddse Q2, a very explicit
description is given below in Sectidh

We also see that this subgroup has index at mbst#4/% in E(K). This information
is interesting only whelk = 2, however (bounding the index by 4 in this case), since we
always have #(K)/2E(K) < 22t/x,

Since the image of) ¢ consists exactly of the equivalence classes of soluble 2-covering
of E, we can define a may from soluble quartics with invariants correspondingttdo
k x k by first applying the inverse af . A formula for W (Q) involving thex-coordinate
of a K-rational point on the corresponding 2-covering can easily be derived; it appear
however, that it is not possible to give a formula just in terms of the coefficients of

6. The caseK = Q>

The most important case for practical application arises wkieg Q. Our results
can then be used to improve the algorithm behindntheank program; seed]. We give
examples to illustrate the improvement in running time in the next section.

WhenkK = Q, the formulae in our results can be simplified by observingittsgimply
the identity, and that we havg&) = 0 mod 2 foré =0, 1 mod 4 and:(¢) = 1 mod 2 for
& = 2,3 mod 4. This leads to the values®fshown in Tablel. Each entry corresponds to
given residues oA mod 4,B mod 2 ands mod 4.

Table 1: Values ofb.

A, B E=0 &¢=1 £=2 £=3
A=0] (0,0 @©O0O 1,0 @121

B even A=1| 1,0 @,1) @O0 (©,0
A=2]@01 ©1H @a6,1 @0

A=3| (1 @@€0 (@©O,1 @O

A=0] (000 ©O1LH @€,0 @,0

B odd A=1| (1,0 @,0 (0,0 (021
A=2|(@01 ©O @@€1 @1,1»

A=3| (1) @1 @©O1 ©0

If we take into account the residue class Bfmod 4, then we can exclude certain
residue classes fdr, since the right-hand side of the curve equation is a non-square mod
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In Table2, each entry corresponds to given residues ahd B mod 4 and lists the residue

classes mod 4, such that a pojatn) € E(Q2) with & in one of these residue classes has
non-trivial image unde® (or, equivalently, maps to a large class of quartics urigley.

Table 2:x-coordinates of points mapping to large quartics.

A=0 A=1 A=2 A=3
B=0 2 0 0,23 01,3
B=1 2,3 0 0,2 0,1
B=2 3 1 1 2
B=3 1 1,3 3 2

The entries in boldface stand for residue classes that always contairctardinate of
some pointinE (Q») becausé3+ A& + B can always be made to be equivalentto 1 mod 8.
The entries in italics stand for pairs of residue classes such that exactly one of them gi\
rise to a point in this way (depending @nand B mod 8). The underlined entries indicate
residue classes that contain a 2-torsion point. (WhAénodd andB is even, then there is a
zero of&3 + A& + B with £ = B mod 4, as can be seen from the Newton polygon. When
A is even andB is odd, then we can apply the same argument after shiftibg 1; this
givesazerd = A+ B+2mod4.)

We proceed to show that whetr = 2 or 3 andB = 0 mod 4, there is a point with
&-coordinate of the same parity ds This then implies tha® is surjective. Consider first
the cased = 2. Then the Newton polygon gf(¢) = &3 + A& + B has alength 1 segment
of slope greater than or equal to 1; herfchas a zerg € 2Z,. In the other case4 = 3; if
A+ B+ 1= 0 mod 8, then we shi by 1 to get the same situation as before, so fhas
azerot € 1+ 27p;if A+ B+ 1= 4 mod 8, then one can see that for some 1 + 47,
we havef (¢) = 4 mod 32, so thaf (¢) is a square.

Collecting this information (and taking into account the value® ¢tdken on the various
residue classes), we get Talllewhich shows the possible values of the size of the image
of @, or the index inE (Q2) of the subgroup corresponding to small quartics.

Table 3: Size of im(®).

A=0 A=1 A=2 A=3
B=0 1,2 2 4 4
B=1 2 2 2 2
B=2 2 1,2 2 2
B=3 2 2 2 2

In the two cases where it is possible to have no large quartics, namely thoseAnisere
a square mod 4 anBl = 2A mod 4, we have to check whether the curve has a point in the
specified residue class. This can easily be done by a recursive procedure that tests whe
or not&3 + A¢ + B is a square, if this can be decided on the current knowledge gbout
If this cannot be decided, the current residue clas$ fir split into two residue classes
modulo the next higher power of 2.
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In Appendix Bwe discuss this further, and give a more efficient non-recursive algorithn
for determining the index in these two cases. Here, we can give a more specific rest
improving on an old result due to Birch and Swinnerton-Dy&r(fheir result covers the
caseA, B =0 mod 4 and 16 2A + B). The following lemma allows us to determine the
index precisely in three quarters of the ambiguous cases.

LEmMA 6.1. 1. Suppose that = B =0 mod 4

(a) If 2A + B = 0or 4 mod 16, then there are no large classes of quartibat is,
the image ofd is trivial);

(b) if (A, B) = (0, 8), (0, 12), (8, 8) or (8,12) mod 16, then there are large classes
of quartics(that is, ® is non-trivial);

2. Supposethad =1,B=2mod 4

() If A+ B =7or11 mod 16, then there are no large classes of quaitibat is,
the image ofb is trivial);

(b) if(A, B) = (1,14, (5,14), (9,6) or (13,6) mod 16, thenthere are large classes
of quartics(that is, ® is non-trivial);

Proof. 1. In case (a), we have to show thafQ,) contains no integral points with-
coordinateg = 2 mod 4. For such &, we have

g3+ Af + B=8+2A+ B mod 16.

Since 8+ 24 + B = 8 or 12 mod 16, this cannot be a square.

In case (b), we have to show th&(Q2) contains an integral point witkh-coordinate
& = 2mod 4. In the case&d, B) = (0, 12), (8,12), one may check that eithef(2)
or f(—2) is asquare, wherg(x) = x3+ Ax + B. Inthe casesA, B) = (0, 8), (8,8), the
Newton polygon forg (x) = f(4x + 2) shows thag (x) has an integral root.

2. Similarly, in case (a), we have to show that there is no integral point §vith
1 mod 4. For such &, we have

34+ As+B=1+A+ B mod 16.

(Write ¢ = 1+ 4&; and note that 3 A = 0 mod 4 to see this.) Sincet A+ B =8
mod 16 or 1+ A + B = 12 mod 186, this cannot be a square.

In case (b), wher(A, B) = (5,14), (13,6) mod 16, one may check that eithg(1)
or f(5)isasquare. IfA, B) = (1,14), (9,6) mod 16 then the Newton polygon gfx) =
f(4x 4+ 1) shows that there is an integral root, provided that B = 31 mod 32. Finally,
when(A, B) = (1,14), (9,6) mod 16 andA + B = 15 mod 32, one may check that one
of the valueg (£1), g(£3) is a square. O

Using this lemma, together with the algorithm Appendix Bfor the cases where the
lemma does not apply, we significantly increase the number of cases where large quar
do not have to be considered in a systematic enumeration of all the equivalence class
compared with2]. This has a significant effect on the average running time of the 2-descet
algorithm overQ. It does not seem possible to determine the image obmpletely in all
cases, simply in terms of 2-adic congruence conditions on the coefficleatsl B; on
the other hand, the algorithm Appendix Bresolves the ambiguity quickly for any given
curve.
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7. Implementation and examples

We conclude with some remarks about the practical consequences of our results,
ticularly those of the preceding section, for the two-descent algorithm implemented in ol
freely available programmwrank [5]. For more details of the algorithm, see [3].

We determine the Selmer group of an elliptic cuA/éy finding quartics that represent
all two-coverings ofE. In general we have to search first for ‘small’ quartics, and then for
‘large’ quartics, in the sense defined above. The search for large quartics takes considere
longer, since the search regions are larger, though we can speed up the large searcl
imposing congruence conditions on the coefficients of large quartics, which ensures tt
we find only those that art®-minimal (not equivalent to small ones).

Define the ‘local index’ of a curv& /Q to be the order of the image of the m&plefined
above, which is the indeikt (Q2) : ker(®)]. Elements ofE (Q) in ker(®) are associated
to small quartics. Define the ‘global index’ to be the indéXQ) : E(Q) Nker(®)]. Then
the local index is 1, 2 or 4, and may be determined by the results of the previous sectic
invoking Lemma6.1 or the algorithm ofAppendix Bwhen necessary. We need to search
for large quartics if and only if the local index is greater than 1, and we find any if and onl
if the global index is greater than 1.

Exact knowledge of the local index allows us to reduce the number of cases in whic
large quartics need to be considered at all. Previoosiyank used the result from2],
which applies only whemd = B = Omod 4 and 2 + B = 0 mod 16. This is one of
the cases in Lemm@.1, part 1(a). Hence by the use of Lemfa, we may increase by a
factor of 4 the proportion of curves for which we do not need to consider large quartic:
This change to the algorithm has reduced the running tinmvafank on our test data (see
below) by around 65%.

For example, consider the cur¥é = X3+ 20 with (A, B) = (0, 20), sothat 2 + B =
4 mod 16. The rank is 0. There are no non-trivial small quartics. Using the old criterior
we search for large quartics, and find two, though they aréaegoluble. Of course, for
such a small example both versions of the algorithm are very fast, taking only a fraction of
second to run. For a similar larger example, teke B) = (0, 16000004, where the curve
again has rank 0. There are no small quartics. The old algorithm finds two (equivalent) lar
quartics that are nd@»-soluble; the running time is 45 seconds. The new algorithm only
searches for small quartics, and takes just 7 seconds.

The curve with(A, B) = (40004 40004 has local index 1. (Here, Lemntal does
not apply, since 2 + B = 12 mod 16, so we have to use the algorithmAppendix B.)
Searching only for small quartics, we find the Selmer rank to be 1 after oélgeconds,
while the fruitless search for large quartics takes a furthgrséconds. (In this example,
we have excluded the time taken to findQarational point on the one locally soluble
quartic found, which ig41,—-36,—474, 1282 —982), since there are no such points of
small height, so that in fact this search for points will dominate the running time if we wist
to establish (unconditionally) that the rank is 1.)

Next, when the local index is determined to be 2, and we must search for large quartic
we may stop the search for large quartics as soon as we find one thatoisible (or just
ELS, in case we are only interested in finding the Selmer group). In many cases a lar
quartic is found early on in the search, so that this eliminates most of the time previous
spent on the large search. The situation here is entirely analogous to that which occurs wi
E has positive discriminant, so that{R) has two real components; the analogous strategy
is detailed in [3, p. 93].
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For example, consider the cur¥é = X3+ X2 —3405X+ 15280204, where the local in-
dex andthe globalindex are both 2. The rankis 8, with a contribution of 7 from small quartic:
In the search region for large quartics, the leading coefficieattisfies either &< a < 859
or 0 > a > —562. The original algorithm searches this whole region, despite quickly
finding a suitable quartic with = 1, namely(1, 0, —66116,9253784 —364263500, and
takes 36 seconds. The improved algorithm stops after finding this large quartic, and delive
the same result in under 5 seconds.

When the local index is 4, the situation is slightly more complicated. We can sto
the search for large quartics once a second one (whié$sluble or ELS) is found,
providedthat the second one is independent of the first one modulo the ‘small’ subgrou
Our implementation takes account of this. Of course, the global index may be less than 4.
which case there is no reduction in running time. To illustrate the possibilities, we consids
the following curves, which all have local index 4:

1. (A, B) = (2,4) has global index 4 also: the rank is 2 and all comes from large

quartics;

2. (A, B) = (3,8) has global index 2; the rank is 1, coming from a large quartic;

3. (A, B) = (2,8)hasglobalindex 1; therankis 0, and there are no non-tfdsbluble

quartics at all.

To estimate the average expected gain from implementing the results of the previous s
tion to ‘typical’ curves is not straightforward. For curves for which the Birch—Swinnerton-
Dyer criterion already applies, or for which the global index is strictly less than the loca
index, there is no change at all. (There is also no change for curves with rational 2-torsic
where a different descent strategy is used.) We measured the time takawrfank to
process our standard test list of curves, which are, in a sense, ‘typical’. In the list we ha
the following 474 curves, all with no rational 2-torsion: all 401 curves with conductor
N < 400 and no 2-torsion, up to isogeny; all 18 rank 2 curves with conduéter 1000,
up to isogeny; and a miscellaneous collection of 10 rank 3 curves, 10 rank 4 curves, 5ran
curves, 6 rank 6 curves, 21 rank 7 curves and 3 rank 8 curves. (These curves, together \
the curves of conducta¥ < 400 with rational 2-torsion, form the test data now distributed
with mwrank.)

The local index is 1 for 400 of these curves (which hence have global index 1 also), «
which 169 satisfy the Birch—Swinnerton-Dyer condition for non-existence of large quartics
while the remaining 231 require Lemn@al or its refinement. The other 74 curves have
local index 2, of which 13 have global index 1, and 61 have global index 2. (No curves i
this list have local index 4.) Overall, 231 curves out of 474 (or 48.7% of the relevant case
benefit from the exact computation of the 2-adic index. Of the 74 cases where the loc
index is greater than 1, we find that 61 (or 82.4%) benefit from the early exit strategy.

We give here the time taken to process these curves with our algorithm, which in all cas
determines the rank unconditionally, and also finds rational points geneatinig 2 (Q),
which therefore generate a subgrouEaf)) of finite, odd index. To see how the successive
refinements to the algorithm affect the running time, Tabigves times for four versions:

1. using only the Birch—Swinnerton-Dyer criteria;

2. using Lemmadb.1but no early exit when the index is greater than 1;

3. using the refinement to Lemnal to determine the exact local index in all cases, but

still with no early exit; and

4. as foritem 3, but with early exit during the search for large quartics when the globz

index reaches the local index.
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Table 4: Running times.

Method 1 2 3 4

Time for all 529s 189s 187s 108s
Time for 174A1 232 31s 31s 31s
Time without 174A1| 297s 158s 156s 77s

All these times are based on our development version ahtlieank code, using NTL with
gmpinteger arithmetic, compiled with GCC 2.8.1, running on a DEC alpha EV6.

From this table we see that Lemridl by itself gives a significant time-saving, as does
the early exit strategy. The identification of curves of local index 1 in cases not covered t
Lemma6.lis less significant (though it was the least simple to implement). The variation ir
times for the curves in this list is quite considerable, even amongst the curves of conduc
under 400, all but one of which has rank 0 or 1. By far the most time-consuming is th
curve with standard code 174A1 and Weierstrass coefficidnt 1, —7705,1226492,
for which the the local index is 1 by Lemnf&al, part 2.

Appendix A.

We collect here proofs of some of the results of SecfioBome of these may be found
in [2], though many (and in some cases all) of the details are omitted there. The proofs \
give may easily be turned into algorithms for minimizing a given quartic over a local field
or over a number field. In the latter case, we can minimize simultaneously at all prime
provided that the relevant primes are principal: for example, if the field has class number

In the following, K will again be a fixedp-adic field. We omit the subscript” in
order to simplify the notation, so for exampte= 7x andv = vg. Recall the notation
v(Q) = min{v(a), v(b), v(c), v(d), v(e)} for quarticsQ = (a, b, ¢, d, e) overk.

We begin with two lemmas. The first one gives conditions in terms of the valuations ¢
the coefficients that imply nonminimality. The second one will serve to eliminate some c
the cases in the results proved below, but is also of interest in itself.

LeEmMMA A.1. LetQ = (a, b, ¢, d, e) beanintegral quartic ovek . ThenQ is K -nonminimal
in any one of the following cases.
1. v(a) > 0,vb) = 1,v(c) = 2, v(d
2. v(a) > 0,v(b) > 0,v(c) > 2,v(d
3. v(Q) =2
Proof The following K -equivalent quartics are integral and of lower level in each case.
1. O(x,n 1z).
2. w2 Q(x,n_zz).
3. 7720(x,2) . o

~ ~—

LemMA A.2. Suppose thatthe residue characterigtiis not3. LetQ be anintegral quartic
overK, and setQ, = 7Y@ Q. If level(Q) > 1 and Q is K-minimal, thenQ1 has a
quadruple root, when reduced moduto (The root may be at infinity, in the sense that
01(x,z) = ez* modr.)
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Proof. We useuay, b1, ..., I1, J1 for the quantities associated @. If v(Q) = 2, thenQ
is K-nonminimal by Lemmai.1, so we have eithar(Q) = 0 orv(Q) = 1. In both cases,
v(l1) > 2 andv(Jy) > 3.

The vanishing of1 andJ/; modx implies thatQ; has a root of multiplicity at least three
mod . We therefore have to show thatis nonminimal when the multiplicity is exactly
three.

By a suitable transformation in $2, ©) (this preserves integrality and the level), we can
achieve a situation where the triple root is at zero (mpdnd where the remaining root is at
infinity (mod). This means that (in obvious notatian(us, b1, c1, d1, e1) > (1,0,1,1,1)
with v(b1) = 0.

Applying (34) € SL(2, 9), wherex € O satisfies the congruencéd = —c mod
72, we can ensure that additionallyc1) > 2. Considering the valuations of the various
terms making upgl and J, we deduce fromv(I1) > 2 thatv(dy) > 2, and then from
v(J1) > 3thatv(er) > 3. If v(Q) = 1, this means thai(a, b,c,d,e) > (2,1,3,3,4),
which shows nonminimality by LemmaA.1, partl. If v(Q) = 0, we havev(l) > 4
andv(J) > 6, from which we conclude that(d) > 4 andv(e) > 6. We then have
v(a,b,c,d,e) > (1,0, 2, 4,6), so Qis nonminimal by Lemma\.1, part2. O

Now we proceed with the proofs of the results in Sectlon

ProrosITION A.3. Let K be ap-adic field wherep > 5, and letQ be an integral quartic
overk.

1. If v(Q) > 2,thenQ is K-nonminimal.

If level(Q) = 0, thenQ is K-minimal.

If level(Q) = 1andv(Q) = 0, thenQ is K-nonminimal.

If level(Q) = 1andv(Q) = 1, thenQ is K-nonminimal if it isK""-soluble.
If level(Q) > 2, thenQ is K-nonminimal.

o~ wDn

Proof. 1. Thisis LemmaA.l, part3.

2. This s clear, since an integral quartic cannot have negative level.

3. LetQ = (a,b,c,d,e). By LemmaA.2, we can suppose thata, b, c,d,e) >
(0,1,1,1,1) with v(a) = 0. Then the valuations dfandJ imply thatv(e) > 2, and then
v(d) > 2. Next, the valuation of & — J implies thatv(c) > 2 (this observation is due
to Serf; see§, p. 148]). Finally, the valuations df and J imply in turn thatv(e) > 3,
v(d) > 3,v(e) > 4, and we may reduce the level by Lemid, partl.

4. LetQ1 =n~1Q. ThenQ1 has modulor either a triple or a quadruple root. If it has
atriple root, thernp is K-nonminimal by Lemma\.2. So suppose tha?1 has a quadruple
root modulozr. Then we can suppose thala, b, ¢, d, e) > (1,2, 2, 2, 2) with v(a) = 1.
From the invariants, we get(d) > 3 andv(e) > 3. We claim that(e) > 4. Otherwise
v(e) = 3, and it is easily seen thatQ(x, z)) is odd for all(x, z) € (K™)?\ {0}, soQ is
not K"'-soluble, a contradiction. Henaga, b, ¢, d, e) > (1,2, 2, 3,4), and the level can
be reduced by LemmaA.1, partl, again.

5. If v(Q) > 2, this follows from part 1. Otherwise, s€@1 = 7 V@ Q; then
level(Q1) > 1 andv(Q1) = 0, soQ; is K-nonminimal by part 3, and the level @
can be reduced in the same way asdur. O
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ProposITION A.4. Let K be an unramifie®-adic field. Then an integral quartic which is
K"-soluble isk -nonminimal if and only igithervg (I) > 5, vg (J) > 9,0r vx (1) = 4,
vg(J) = 6andvg(A) > 12

Proof. Thisis[2, Lemma4]. In[2]the proof was omitted. The argument only ug&8) =
1, so also applies to unramified extension§)af

For the necessity, suppose first titat= (a, b, ¢, d, ) is minimal. Then
v(I) >0 << v(c) >0 << v({J) >0,

and in this case(J) > 3, so that eithep(I) = v(J) = 0, orv(/) > 1 andv(J) > 3. In
both cases, we also have4/3 — J2) > 3, since 4% — J2 = 27A. Since any honminimal
guartic in the same class has valuationgof/, A) that are larger by a multiple ¢4, 6, 12),
the necessity of the given conditions follows.

The proof of sufficiency follows the same plan as for the preceding proposition. W
consider the casag Q) = 0 andv(Q) = 1 in turn, the case(Q) > 2 being trivial.

Suppose that(Q) = 0. After a suitable unimodular substitution, we may suppose that
the multiple root modulo 3 is at 0, and that if the multiplicity is exactly 3 then the seconc
root is atoo. In the multiplicity 3 case, we havwgb) = 0 whilev(a), v(c), v(d), v(e) > 0.
Now v(J) > 6 implies thatv(c) > 2 andv(e) > 2; thenv(l) > 4 implies thatv(d) > 3,
and therw(J) > 6 implies thatv(e) > 3

Considerthe case wherél) > 5andv(J) > 9. The conditiorv(c) > 3 can be achieved
with the unimodular transformatidry % ), wherebr = —c/9 mod 27. Ifu(1) > 5, we then
see thav(d) > 4, and thenv(J) > 9 |mpI|es thatv(e) > 6, so we can reduce the level, by
LemmaA.1, part2.

Suppose, alternatively, that/) = 4 andv(J) = 6. Now, for suitabler (satisfying
bt3 = —e/33 mod 3) the transformatio(} ¥ ) givesv(e) > 4. Now we use the fact that
v(A) > 12 to deduce thai(d) > 4, for otherwise the expression far contains a unique
term 4342 of minimal valuation 9. Alsoy(c) = 2 (exactly), and(A) > 12 now implies
thatv(e) > 6. Thus we may reduce the level by Lemiad, part2 again.

The case of a quadruple root may be handled in a similar way, leading to reduction |
LemmaA.l, partl.

Now suppose that(Q) = 1; then/; = J1 = 0 mod 3, soQ; has a root of multiplicity
atleast 3 modulo 3. Shifting this multiple root to 0, we may assumethat> 1,v(b) > 1,
v(c) = 2,v(d) > 2 andv(e) > 2. Inthe triple root case, we may suppose (after shifting the
other root taxo) thatv(b) = 1 andv(a) > 2. Inthe case wherg(I) > 5andv(J) > 9, we
obtainin successionc) > 3,v(d) > 3andfinallyv(e) > 4, sowe may reduce the level, by
LemmaA.1, partl. Now suppose that(/) = 4,v(J) = 6 andv(A) > 12. Thenv(c) = 2
exactly, and considering the termssfwe obtain successively(d) > 3 andv(e) > 4, as
required. In the quadruple root case, we hawe) = 1 while v(b), v(c), v(d), v(e) > 2.
Whenv(7) > 5 andv(J) > 9, we obtain in successiaric) > 3, v(e) > 3,v(d) > 3, and
now v(e) > 4 sincev(e) = 3 would contradictk "-solubility. Whenv(I) = 4,v(J) =6
andv(A) > 12, we havev(c) = 2, and then consideration of the termsofjivesv(e) > 3
andv(d) > 3; again, we must havee) > 4 for K""-solubility. In both cases we succeed
in reducing the level by Lemma.1, partl again. O
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ProrosiTION A.5. Let K be an unramified?-adic field. Then an integral quartiQ =
(a, b, c,d, e) which isKk™-soluble isk -minimal if and only ifeitherit has level0, or it has
levell and satisfies one of the following conditions.

1. v(Q) =1, and%Q has a quadruple root modul®and no root modul®;
2. v(Q) = 0, and Q has a quadruple root modukband no root moduld.6.

In particular, if v(I) > 6,v(J) > 9andv(81 + J) > 10, thenQ is nonminimal; as a
special case, quartics of level at leé&sare nonminimal.

The last sentence is essentially the statemer?,df¢§mma 5]. For an improvement, see
Lemma6.1.

Proof. Obviously, we have to consider only the case legel = 1 andv(Q) < 1.
Lemmab.1 shows that the given conditions are sufficient, since after applying a suitabl
element of SI(2, ©¥), we havev(a) < 1, v(b),v(c) > 2,v(d) > 3 and 2< v(e) < 3
(v(d) = 3following fromuv(d) > 2 and the other conditions, singé/) > 6). This lemma
also gives us the necessity under the assumptiordhétas a quadruple root modulo 2 or,
respectively, thaD has a quadruple root modulo 4. Lemwa tells us thatQ1 must have

a quadruple root modulo 2 in any case, immediately disposing of thev¢@dye= 1. So

we have only to show that a minimal quartic of level 1 wittQ) = 0 has a quadruple root
modulo 4.

Therefore we suppose thatQ) = 0 andQ has a quadruple root mod 2, whence we
can assume that(a) = 0 while v(b), v(c), v(d), v(e) > 1. The valuations off and’
imply thatv(d) > 2 andv(c) > 2, respectively. The assumption thae) = 1 leads (by/)
to v(b) > 2 and then to the contradictian(/) = 3, sov(e) > 2 also. This means that
modulo 4,0 has at least a triple root. i does not have a quadruple root modulo 4, then
v(b) = 1, from which we deduce that(d) > 3 andv(e) > 4, soQ is honminimal by
LemmaA.1, partl.

The last statement can be proved along these lines by observing that the given conditic
ensure that there has to be a root modulo 16 if there is a quadruple root modulo 4. We do |
give the details here, since Lemid contains this assertion as a special case anywaly.

Appendix B.

We give here an algorithm for determining the size of the index in the two ambiguou
cases from Sectiof. Recall that the problem is to determine whether the cuf/e=
x3+ Ax + B with A, B € Z, has an integral pointx, y) with x in a certain residue class
modulo 4, in two cases:

1. [Case 1A = B = 0 mod 4, withx = 2 mod 4;

2. [Case2A =1, B =2 mod 4, withx = 1 mod 4.

Replacingr by 4x + 2 or 4x + 1 respectively, this amounts to determining whether the
polynomials

(4x+23+4alx+2)+4p and (Ax+1°+ @da+ 1D +1)+ 4b+1)

(with a, b € Z) ever take on square values (including 0) for some Z,.

It is easy to write a general recursive procedure for determining whether a square-fr
polynomial f(x) € Zp[x] ever takes on square values. The answer is ‘yeg'(f) is a
square, or if the Newton Polygon g¢f allows one to conclude that has an integral root.
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Otherwise, set = f(0), v = v(c) andcg = ¢/2", and letw be the minimum valuation
of the non-constant coefficients gf Then the answer is ‘no’ if is odd andw > v (since
thenv(f(x)) = vforall x € Zy), orif vis evencog = 3 mod 4 andv > v + 1 (Since then
v(f(x)) =vandf(x)/2" = 3 mod 4forallx), orif visevengy = 5 mod 8andv > v+2
similarly. If none of these cases occurs, we recursively consider the two polynghi2als
and f(2x + 1) in turn.

However, for the special cases of concern to us here, we found it to be faster to avc
the recursive branching by means of the following two special algorithms. In each case, |
imposing congruence conditions on the parametensdb we are able either to decide the
answer, or to eliminate one parity for the variableThe resulting procedures then have a
simple loop instead of branching, and for square-ffege can bound the number of times
the loop is executed in terms of the 2-adic valuation of its discriminant.

Casel: A= B=0mod 4 withx =2 mod 4

Write A = 4a, B = 4b, and replacex by 4x + 2. Then f(x) = x3 + Ax + B
becomes 4(x) whereg(x) = 16x3 4+ 24x2 + 4(a + 3)x + (2a + b + 2). For brevity,
write g = (16,24, 4c, d), wherec = a + 3 andd = 2a + b + 2. The following should be
thought of as steps in an algorithm, so that the conditions that we impose are cumulati
the variables andd, and the current polynomigl, will change as we proceed.

1. If d = 2,3 mod 4, then return ‘no’, sincg(x) = d mod 4.

2. If d = 1 mod 4, then return ‘yes’ if either= 1 mod 2 ord = 1 mod 8; otherwise
return ‘no’, sinceg(x) = 4cx + d mod 8.

3. [Nowd = 0 mod 4.] Ifc = 1 mod 2, return ‘yes’, since the valuations of the co-
efficients are 43, 2, > 2, so the Newton polygon shows thahas an integral root.

4. [Now alsoc = 0 mod 2.] Dividec by 2 andd by 4, and divide the polynomial
by 4, so that we are now considerigg= (4, 6,2c,d). Seta = b = 1, so that
g = (4a,4b + 2, 2¢, d). The following steps should be repeated as necessary.

5. () If c =1 mod 2, then return ‘'yes’ i = 0, 1 mod 4, otherwise return ‘no’, since
gx) =2x(x+c¢)+d =d mod 4,and sd = 2,3 mod 4 is impossibleg(0) = d is
asquare it/ = 1 mod 8,¢(2) = 4c+d = 1 mod 8 ifd =5 mod 8, and the Newton
polygon gives an integral rootif = 0 mod 4.

6. [Nowc = Omod 2.] Ifd = 1 mod 2, then return ‘yes’ if eithed = 1 mod 8
or 4a + b) + 2¢c + d + 1 = 0 mod 8; otherwise return ‘no’, sincg(x) is odd,
g2x) =d mod 8, ang(2x + 1) = 4(a + b) + 2c + d + 2 mod 8.
7. [Now alsod = 0 mod 2.] Ifd = 0 mod 4, thenx must be even, since for oddwe
haveg(x) = 2 mod 4. Nowg(2x)/4 = (8a,4b+ 2, c,d/4), sowe set (a, b, ¢, d)=
(2a, b, c/2, d/4) and loop back to (*).
8. Ifd = 2 mod 4, then: must be odd, since for evarwe haveg(x) = d mod 4. Now
g2x+1)/4=(B8a,12a+4b+2,6a+4b+c+2,a+b+c/2+ (d + 2)/4), SO
we set(a, b, ¢,d) := (2a,3a+b,3a+2b+c/2+1,a+b+c/24 (d+2)/4) and
loop back to (*).
Note that 7/8 of the cases are decided before reaching the loop, Misréturning ‘no’
and 5/16 returning ‘yes’; of the/8 of cases that reach the loop43are decided in the first
pass, with half of these returning ‘no’ and half returning ‘yes’. This means that of thos
cases which reach the loop at all, half will return ‘no’ and half ‘yes’, so that overall we finc
that in 5/8 of the cases the answer is ‘no’ while in 3/8 of the cases it is ‘yes’.
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We can bound the number of passes through the loop as follows, giving at the same tim
proof that the above algorithm terminates wh) is square-free. The simple observation
is that each time we re-enter the loop (that is, from the second time that we rea&), step
the valuation of disc(ghas been decreased by 2 in stéms 8. We have

disc(g(ax))= a®disc(g(x)),
disc(ag(x)) = a*disc(g(x)), and
disc(g(x+ 1)) = disc(g(x)).

Since at the end of step
v(disc(g)) = v(disc(f))— 4,

the number of passes through the loop is bounded(bisc(f))/2— 1.

Case2: A=1,B =2mod 4 withx =1 mod 4

Write A = 4a + 1, B = 4b + 2, and replace by 4x + 1. Thenf (x) = x3+ Ax + B
becomes 4(x) with ¢ = (16,12, 4¢, d), wherec =a + 1 andd = a + b + 1.

1. Ifd = 2,3 mod 4, then return ‘no’, sincg(x) = d mod 4.

2. If d = 1 mod 4, then return ‘yes’ if either = 0 mod 2 ord = 1 mod 8; otherwise
return ‘no’, sinceg(x) = 4x(x + ¢) +d mod 8.

3. [Nowd = 0 mod 4.] Ifc = 1 mod 2, return ‘yes’, since # = 0 mod 8, then the
valuations of the coefficients are 24,2, > 3, so the Newton polygon shows that
has an integral root, while # = 4 mod 8, then one af(0), g(—¢), g(4), g(3c)is a
squared = 4,12, 20, 28 mod 32 respectively.

4. [Now alsoc = 0 mod 2.] Dividec by 2 andd by 4, and divide the polynomial
by 4, so that we are now considerigg= (4, 3,2c¢,d). Seta = 1, b = 0, so that
g = (4a, 3(4b + 1), 2¢, d). The following steps should be repeated as necessary.

5. (*) Suppose that = 1 mod 2.

e If d = 0 mod 4, then return ‘yes’, since the Newton polygon gives an integral
root.
e If d =2 mod 4, then return ‘no’, sincg(x) = 2, 3 mod 4.
e If d = 1 mod 4, then return ‘yes’ il = 1 mod 8; otherwise return ‘no’, since
g(2x +1)=2mod 4, ang;(2x) = d mod 8.
e If d = 3 mod 4, therx must be odd sincg(2x) = d mod 4, so replacg(x)
by g(2x + 1)/4: set(a, b, c,d) := (2a,a + b,3a+ 6b+ (c+ 3)/2,a+ 3b+
(c+1)/2+4 (d + 1)/4), and loop back to (*).
6. Suppose that= 0 mod 2.
« If d = 1 mod 4, then return ‘yes’, singg(2x) = 4x2 4+ d mod 8, which is a
square fore = 0 orx = 1.
e If d = 3 mod 4, then return ‘no’, sincg(x) = 3x2+d =23mod 4.
* If d =2 mod 4, thenreturn ‘yes’ iféu +b)+2c+d +2 = 0 mod 8; else return
‘no’, sinceg(2x) = 2 mod 4, whileg(2x +1) = 4(a + b) + 2c +d + 3 mod 8.
e If d = 0 mod 4, thenr must be even, sincg(2x + 1) = 3 mod 4, so replace
g(x) by g(2x)/4: set(a, b, ¢, d) := (2a, b, c/2,d/4) and loop back to (*).
As in Case 1, one can show from the above algorithm that the result is ‘yeg8inf3
the cases and ‘no’ in the remaining& and that the number of passes through the loop is
again bounded by(disc(f))/2— 1.
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