LATTICE ISOMORPHISMS OF ASSOCIATIVE ALGEBRAS

D. W. BARNES

(Received 24 April 1965)

1. Introduction and notation

Let A be an associative algebra over the field F. We denote by $\mathscr{L}(A)$ the lattice of all subalgebras of A. By an \mathscr{L}-isomorphism (lattice isomorphism) of the algebra A onto an algebra B over the same field, we mean an isomorphism

$$
\phi: \mathscr{L}(A) \rightarrow \mathscr{L}(B)
$$

of $\mathscr{L}(A)$ onto $\mathscr{L}(B)$. We investigate the extent to which the algebra B is determined by the assumption that it is \mathscr{L}-isomorphic to a given algebra A. In this paper, we are mainly concerned with the case in which A is a finitedimensional semi-simple algebra.

The one-to-one map $\sigma: A \rightarrow B$ of an algebra A over the field F onto an algebra B over F is called a semi-isomorphism ${ }^{1}$ if
(i) σ is semi-linear (that is, for some automorphism α of F,

$$
\left(\lambda_{1} a_{1}+\lambda_{2} a_{2}\right)^{\sigma}=\lambda_{1}^{\alpha} a_{1}^{\sigma}+\lambda_{2}^{\alpha} a_{2}^{\sigma}
$$

for all $a_{1}, a_{2} \in A$ and all $\lambda_{1}, \lambda_{2} \in F$), and
(ii) σ is multiplicative or anti-multiplicative (that is, either $(x y)^{\sigma}$ $=x^{\sigma} y^{\sigma}$ for all $x, y \in A$, or $(x y)^{\sigma}=y^{\sigma} x^{\sigma}$ for all $x, y \in A$).

We remark that, for maps $\sigma: A \rightarrow B$ of not necessarily associative rings, such that $(x+y)^{\sigma}=x^{\sigma}+y^{\sigma}$ for all $x, y \in A$, the apparently weaker condition
(ii') for each pair x, y of elements of A, either $(x y)^{\sigma}=x^{\sigma} y^{\sigma}$ or $(x y)^{\sigma}=y^{\sigma} x^{\sigma}$, in fact implies (ii). ${ }^{2}$

Since any semi-isomorphism of an algebra A onto an algebra B induces an \mathscr{L}-isomorphism, from the assumption that A is \mathscr{L}-isomorphic to B, we cannot in general hope to prove any stronger relationship between A and B than semi-isomorphism. However the algebra $M_{n}(F)$ of all $n \times n$ matrices over the ground field F has the property that any algebra semi-isomorphic

[^0]to $M_{n}(F)$ is in fact isomorphic to it. In §4, we prove that any algebra \mathscr{L}-isomorphic to $M_{n}(F), n \geqq 2$, is isomorphic to $M_{n}(F)$. In §5, we show that, if an algebra A is \mathscr{L}-isomorphic to the algebra $M_{n}(\Delta)$ where $n \geqq 3$ and Δ is a division algebra over F, then A is semi-isomorphic to $M_{n}(\Delta)$. In § 6, we show that, apart from certain special cases, if ϕ is an \mathscr{L}-isomorphism of a finite-dimensional semi-simple algebra A onto an algebra B, then B is also semi-simple and the images under ϕ of the simple direct summands of A of dimension greater than one are simple direct summands of B.

By "algebra" we mean "associative algebra over the field F ", and " $A \simeq B$ " means that A and B are isomorphic as algebras over F. We write mappings exponentially; thus the image of A under the map ϕ will be denoted by $A \phi$. If a_{1}, \ldots, a_{n} are elements of an algebra A, we denote by $\left\langle a_{1}, \ldots a_{n}\right\rangle$ the subspace of A spanned by a_{1}, \ldots, a_{n}. If A is a finite-dimensional algebra, we denote the radical of A by $R(A)$. For any algebra A, we put

$$
\begin{aligned}
l(A) & =\text { length of the longest chain in } \mathscr{L}(A), \\
d(A) & =\text { dimension of } A .
\end{aligned}
$$

Clearly $d(A) \geqq l(A)$. If A is. a nilpotent algebra, then the factors A^{i} / A^{i+1} of the series of ideals

$$
A>A^{2}>\ldots>A^{n}>A^{n+1}=0
$$

are all null. Every subspace of A^{i} / A^{i+1} is a subalgebra, and so

$$
l\left(A^{i} / A^{i+1}\right)=d\left(A^{i} / A^{i+1}\right)
$$

Since

$$
l(A) \geqq \sum_{i=1}^{n} l\left(A^{i} / A^{i+1}\right)
$$

and

$$
\begin{aligned}
d(A) & =\sum_{i=1}^{n} d\left(A^{i} / A^{i+1}\right) \\
& =\sum_{i=1}^{n} l\left(A^{i} / A^{i+1}\right)
\end{aligned}
$$

it follows that $l(A)=d(A)$ for any (not necessarily finite-dimensional) nilpotent algebra A.

2. Condition for finite dimension

If the algebra A is finite-dimensional, then $l(A)$ is finite. Conversely, we have

Theorem 1. Let A be an associative algebra and suppose that $l(A)$ is finite. Then $d(A)$ is finite.

Proof. Since $l(A)$ is finite, the sum of all nilpotent left ideals of A is
the sum of a finite set of nilpotent left ideals. It follows as in the usual theory of rings with minimum condition, that the radical $R(A)$, defined as the sum of all nilpotent left ideals of A, is a nilpotent two-sided ideal and that $A / R(A)$ has radical 0 . Since $R=R(A)$ is nilpotent, $d(R)=l(R)$ which is finite. Thus we need only consider the case $R(A)=0$.

From $R(A)=0$, it follows as in Artin, Nesbitt and Thrall [2], p. 29, Corollary 4.3 B , that A has an identity element 1 . The field F can be identified with the subalgebra $F 1$, and it follows that A regarded as a ring satisfies both chain conditions for left ideals, every ring left ideal being a subalgebra of A. Therefore A is a finite direct sum of simple algebras. Each of these simple algebras is a total matrix algebra $M_{n}(D)$ over a division algebra D, and $l(D)$ is finite. It remains to prove $d(D)$ finite.

Suppose K is a commutative subalgebra of D. Then K is an extension field of F. Let t be any element of K and let $P=F[t]$ be the algebra of polynomials in t. If t is transcendental over F, then $l(P)$ is infinite. Therefore K is algebraic over F. Since $l(K)$ is finite, K is finitely generated over F. Therefore K is finite-dimensional over F.

Let Z be the centre of D and let K be a maximal subfield of D. Then K is its own centraliser in D, the dimension of K over Z is finite and therefore the dimension of D over K is finite. ${ }^{3}$ Therefore the dimension of D over F is finite.

3. Algebras A with $\boldsymbol{l}(\boldsymbol{A})$ small

Lemma 1. Suppose $l(A)=1$. Then $d(A)=1$.
Proor. If A is nilpotent, then $d(A)=l(A)=1$. If A is not nilpotent, then A contains an idempotent e. But $\langle e\rangle$ is a subalgebra and therefore $A=\langle e\rangle$.

Every minimal subalgebra of an algebra A is either spanned by an idempotent or is null. Since a division algebra has no nilpotent elements and its identity is its only idempotent, a division algebra has a unique minimal subalgebra.

Lemma 2. If the finite-dimensional algebra A has a unique minimal subalgebra, then A is either nilpotent or a division algebra.

Proof. If A is not nilpotent, then it contains an idempotent e which spans the unique minimal subalgebra of A. In this case, $R(A)=0$ since otherwise $R(A)$ would contain the minimal subalgebra. Thus A is a direct sum of simple algebras. But each summand contains a minimal subalgebra and therefore A is simple.

[^1]Therefore $A \simeq M_{n}(D)$ for some n and some division algebra D. If $n>1$, then $M_{n}(D)$ has more than one minimal subalgebra. Therefore A is a division algebra.

Lemma 3.

$$
l\left(M_{2}(F)\right)=4 .
$$

Proof. Let $e_{i j}$ be the matrix with 1 in the $i j$ position and all other entries 0 . Then

$$
0<\left\langle e_{11}\right\rangle<\left\langle e_{11}, e_{22}\right\rangle<\left\langle e_{11}, e_{12}, e_{22}\right\rangle<M_{2}(F)
$$

is a chain of length 4 . Therefore $l\left(M_{2}(F)\right) \geqq 4$. But

$$
l\left(M_{2}(F)\right) \leqq d\left(M_{2}(F)\right)=4 .
$$

Therefore $l\left(M_{2}(F)\right)=4$.
Lemma 4. Suppose A is a semi-simple algebra and $l(A) \leqq 3$. Then A is a direct sum of division algebras.

Proof. A is a direct sum of simple algebras. Since $l\left(M_{2}(F)\right)=4$, each summand must be a division algebra.

Lemma 5. Suppose $l(A)=2$ and that A has at least treo minimal subalgebras. Then $d(A)=2$.

Proof. If A is nilpotent, then $d(A)=l(A)=2$. If A is not nilpotent, then $l(R(A))=0$ or $l(R(A))=1$. If $l(R)=1$, then also $l(A / R)=1$ and by Lemma $1, d(R)=d(A / R)=1$. If $l(R)=0$, then $R=0, A$ is semisimple and by Lemma 4, A is a direct sum of division algebras. Since A has at least two minimal subalgebras, A is not a division algebra. It follows that A is the direct sum of two division algebras $A=D_{1} \oplus D_{2}$. Since $l(A)=2$, $l\left(D_{1}\right)=l\left(D_{2}\right)=1$, which implies by lemma 1 , that $d\left(D_{1}\right)=d\left(D_{2}\right)=1$; and so $d(A)=2$.

Lemma 6. Let k be the cardinal of F. Suppose $l(A)=2$. Then A is isomorphic to one of the algebras listed in the following table:

Type	Defining relations	Number of minimal subalgebras
I	Extension field K of F with F as a maximal subfield	1
II	$\left\langle a, a^{2}\right\rangle, a^{3}=0$.	1
III(a)	$\langle e, r\rangle, e^{2}=e, r^{2}=0, e r=r e=0$	2
III $(b\rangle$	$\langle e, r\rangle, e^{2}=e, r^{2}=0, e r=r e=r$	2
IV	$F \oplus F$	3
V	$\left\langle a_{1}, a_{1}\right\rangle, a_{i} a_{y}=0$ for all i, j.	$k+1$
VI(a)	$\langle a, r\rangle, e^{2}=e, r^{2}=0, e r=r, r=0$	$k+1$
VI(b)	The opposed algebra of VI (a).	$k+1$

Proof. By Lemmas 2 and 5, either A is a division algebra or $d(A)=2$. If $d(A)=2$, then $d(R)=0,1$ or 2 .
(i) Suppose A is a division algebra with identity 1 . Then $F 1$ is the only minimal subalgebra of A. There exists $t \in A, t \notin F 1$. Since $l(A)=2$, $A=F[t]$, the algebra of all polynomials in t, and is therefore commutative. Thus A is an extension field of F.
(ii) Suppose A is semi-simple, but not a division algebra. Then it follows from Lemma 4 that $A \simeq F \oplus F$. If e_{1}, e_{2} are the identities of the two direct summands of A, it is easily seen that $\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle$ are all the minimal subalgebras of A.
(iii) Suppose $d(R)=1$. Then $R=\langle r\rangle$ for some r and $r^{2}=0$. Since A is not nilpotent, A contains an idempotent e and $A=\langle e, r\rangle$. Since $\langle r\rangle$ is an ideal, $e r=\lambda r$ and $r e=\mu r$ for some $\lambda, \mu \in F$. But

$$
\begin{aligned}
e(e r) & =\lambda e r=\lambda^{2} r \\
& =(e e) r=e r=\lambda r
\end{aligned}
$$

Therefore $\lambda=0,1$ and similarly $\mu=0,1$. We thus have the four types III(a), III(b), VI(a), VI(b). It remains to verify that these have the numbers of minimal subalgebras given in the table.

A has the $k+1$ one-dimensional subspaces $\langle e+\theta r\rangle,(\theta \in F)$ and $\langle r\rangle$. The subspace $\langle e+\theta r\rangle$ is a subalgebra if $(e+\theta r)^{2} \in\langle e+\theta r\rangle$. But

$$
\begin{aligned}
(e+\theta r)^{2} & =e+\theta(e r+r e) \\
& =e+\theta(\lambda+\mu) r
\end{aligned}
$$

Thus $\langle e+\theta r\rangle$ is a subalgebra if and only if

$$
\theta(\lambda+\mu)=\theta
$$

that is, if $\theta=0$ or if $\lambda+\mu=1$.
If A is of type III (whether III (a) or III(b)), then $\lambda+\mu \neq 1$ and the only minimal subalgebras of A are $\langle e\rangle,\langle r\rangle$. If A is of type VI, then $\lambda+\mu=1$, $\langle e+\theta r\rangle$ is subalgebras for all $\theta \in F$ and A has $k+1$ minimal subalgebras.
(iv) Suppose A is nilpotent. Either A is null in which case every subspace of A is a subalgebra, or $A^{2}=\langle b\rangle$ for some $b \neq 0$, and $A=\langle a, b\rangle$, $A^{3}<A^{2}$ and therefore $A^{3}=0$. Thus $a b=b a=b^{2}=0$. Since A is not null, $a^{2} \neq 0$ and therefore $A^{2}=\left\langle a^{2}\right\rangle, A$ is of type II and clearly has only one minimal subalgebra. This completes the proof of the lemma.

4. Lemmas on matrix algebras

Let $M=M_{n}(4)$ be the algebra of all $n \times n$ matrices over the finitedimensional division algebra Δ. We denote by $\eta_{i j}$ the matrix with 1 in the $i j$ position and all other entries 0 .

The subalgebra $\left\langle\eta_{11}, \eta_{22}\right\rangle$ is an algebra of type IV and has exactly three minimal subalgebras. An \mathscr{L}-isomorphism ϕ of M onto another algebra takes $\left\langle\eta_{11}, \eta_{22}\right\rangle$ to an algebra $\left\langle\eta_{11}, \eta_{22}\right\rangle^{\phi}$ with exactly three minimal subalgebras. We observe from the table in Lemma 6, that an algebra A with $l(A)=2$ and exactly three minimal subalgebras is determined to within isomorphism by these properties except when $F=G F(2)$, the field of two elements.

Lemma 7. Suppose $F=G F(2)$ and $M=M_{2}(F)$. Then

$$
\left\langle\eta_{11}+\eta_{22}, \eta_{11}+\eta_{12}+\eta_{21}\right\rangle
$$

is a maximal subalgebra of M and has only one minimal subalgebra.
Proof. Put $1=\eta_{11}+\eta_{22}, a=\eta_{11}+\eta_{12}+\eta_{21}$. Then $a^{2}+a+1=0$ and the minimum polynomial of a over the field $F 1$ is $x^{2}+x+1$, which is irreducible. Therefore $F[a]$ is a field of dimension 2 over F. Therefore $K=\left\langle\eta_{11}+\eta_{22}, \eta_{11}+\eta_{12}+\eta_{21}\right\rangle$ has only one minimal subalgebra. If N is any subalgebra of M containing K, then N can be regarded as a left vector space over K. It follows that the dimension of K over F divides the dimension of N over F. Thus $d(N)=2$ and $N=K$ or $d(N)=4$ and $N=M$. Thus K is a maximal subalgebra of M.

We now suppose that $\phi: \mathscr{L}(M) \rightarrow \mathscr{L}(A)$ is an \mathscr{L}-isomorphism of M onto an algebra A. We put $E_{i j}=\left\langle\eta_{i j}\right\rangle^{\phi}$. Then $d\left(E_{i j}\right)=1$. We take $e_{i j}$ such that $E_{i j}=\left\langle e_{i j}\right\rangle$.

Lemma 8. Let $M=M_{2}(F)$, that is $n=2, \Delta=F$. Put $I=\left\langle\eta_{11}+\eta_{22}\right\rangle^{\phi}$. Then I is in the centre of $A, I^{2}=I$ and $E_{12}^{2}=E_{21}^{2}=0$.

Proof. Since $I \cup E_{12}$ has exactly two minimal subalgebras, $I \cup E_{12}$ is commutative. Since I is in the centre of $I \cup E_{12}$ and of $I \cup E_{21}, I$ is in the centre of $I \cup E_{12} \cup E_{21}=A$. Since $I \cup E_{12}$ is of type III, we have either $I^{2}=I, E_{12}^{2}=0$ or $I^{2}=0, E_{12}^{2}=E_{12}$. We show that the latter is not possible.

Since $E_{11} \cup E_{22}$ has exactly three minimal subalgebras, $E_{11} \cup E_{22}$ is of type IV and $I^{2}=I$ if $F \neq G F(2)$. Suppose $F=G F(2)$ and $I^{2}=0$. By Lemma 7, $K=\left\langle\eta_{11}+\eta_{22}, \eta_{11}+\eta_{12}+\eta_{21}\right\rangle$ is a maximal subalgebra of M with $\left\langle\eta_{11}+\eta_{22}\right\rangle$ as its only minimal subalgebra. Therefore I is the only minimal subalgebra of K^{ϕ}. Since $I^{2}=0, K^{\phi}$ is nilpotent. $I=R\left(I \cup E_{12}\right)=R\left(I \cup E_{21}\right)$ since $I \cup E_{12}$ and $I \cup E_{21}$ are of type III. Therefore I is an ideal of $A=E_{12} \cup E_{21}$. Therefore $l(A / R(A)) \leqq 3$. By Lemma 4. $A / R(A)$ is a direct sum of division algebras and so has no nilpotent elements. All nilpotent elements of A are thus in $R(A)$. Therefore $K^{\phi} \leqq R(A)$. But A is not nilpotent since $I \cup E_{12}$ is not nilpotent. Therefore $R(A)=K^{\phi}$ since K^{ϕ} is maximal in A. But this implies $d(A / R(A))=1, d(R(A))=l\left(K^{\phi}\right)$ $=2$ and therefore $d(A)=3$ contrary to $l(A)=l(M)=4$. Therefore $I^{2}=I$.

Lemma 9. Under the assumptions of Lemma 8, $E_{11}^{2}=E_{11}$.
Proof. $E_{11} \cup I$ has exactly three minimal subalgebras. By Lemma 8, it is commutative and non-nilpotent. By Lemma 6, $E_{11} \cup I$ must be of type IV even if $F=G F(2)$. Therefore $E_{11}^{2}=E_{11}$. Similarly $E_{22}^{2}=E_{22}$.

Lemma 10. Suppose $M=M_{2}(F)$. Then $A \simeq M$ and, for suitable choice of the $e_{i j}$, the $e_{i j}$ have either the same multiplication as the $\eta_{i j}$ or the opposed multiplication.

Proof. By Lemmas 8 and 9, we have

$$
E_{12}=R\left(E_{11} \cup E_{12}\right)=R\left(E_{22} \cup E_{12}\right)
$$

and therefore $E_{12} \leqq R\left(E_{11} \cup E_{12} \cup E_{22}\right)$. Since $E_{11} \cup E_{22}$ is semi-simple, $\left(E_{11} \cup E_{12} \cup E_{22}\right) / R\left(E_{11} \cup E_{12} \cup E_{22}\right)$ has a subalgebra isomorphic to $E_{11} \cup E_{22}$, and it follows that $R\left(E_{11} \cup E_{12} \cup E_{22}\right)=E_{12}$.

Suppose $R=R(A) \neq 0$. Then $R \cap\left(E_{11} \cup E_{12} \cup E_{22}\right) \leqq E_{12}$. If $R \cap\left(E_{11} \cup E_{12} \cup E_{22}\right)=0$, then $R \cup\left(E_{11} \cup E_{12} \cup E_{22}\right)=A$ and $A / R \simeq E_{11} \cup E_{12} \cup E_{22}$ which is impossible as $E_{11} \cup E_{12} \cup E_{22}$ has nonzero radical. Therefore $R \cap\left(E_{11} \cup E_{12} \cup E_{22}\right)=E_{12}$. Similarly $R \geqq E_{21}$ and therefore $A=E_{12} \cup E_{21} \leqq R$. But A is not nilpotent. Therefore $R=0$. Since any simple algebra which is not a division algebra contains a subalgebra isomorphic to $M_{2}(F)$, either A is a direct sum of division algebras or $A \simeq M_{2}(F)$. Since A contains nilpotent elements, A is not a direct sum of division algebras.

We now prove that the $e_{i j}$ may be chosen as asserted. Since $A \simeq M_{2}(F)$, A has an identity element 1 and $\langle 1\rangle$ is the centre of A. By Lemma $8, I$ is in the centre of A and therefore $I=\langle 1\rangle$.

Since $E_{11}^{2}=E_{11}$, we may take e_{11} idempotent. Similarly we may take e_{22} idempotent. But $e_{11}, 1,1-e_{11}$ are idempotents in $E_{11} \cup E_{22}$ which has only three idempotents. Therefore $1-e_{11}=e_{22}$ and $e_{11} e_{22}=e_{22} e_{11}=0$.

However e_{12} is chosen, we have either $e_{11} e_{12}=e_{12}, e_{12} e_{11}=0$ or $e_{11} e_{12}=0, e_{12} e_{11}=e_{12}$. We consider the first case, the same argument applying to the second with the order of all products reversed. Since $\left(e_{11}+e_{22}\right) e_{12}=e_{12}$, we have $e_{22} e_{12}=0, e_{12} e_{22}=e_{12}$. If $e_{21} e_{11}=0$, then we must also have $e_{22} e_{21}=0$. This implies

$$
\begin{aligned}
& e_{12} e_{21}=\left(e_{12} e_{22}\right) e_{21}=e_{12}\left(e_{22} e_{21}\right)=0 \\
& e_{21} e_{12}=e_{21}\left(e_{11} e_{12}\right)=\left(e_{21} e_{11}\right) e_{12}=0
\end{aligned}
$$

contrary to $A=E_{12} \cup E_{21}$. Therefore

$$
e_{22} e_{21}=e_{21}=e_{21} e_{11}, e_{11} e_{21}=0=e_{21} e_{22}
$$

For any $a=\alpha e_{11}+\beta e_{12}+\gamma e_{21}+\delta e_{22} \in A, \alpha, \beta, \gamma, \delta \in F$, we have $e_{11} a e_{11}=\alpha e_{11}$. But

$$
e_{12} e_{21}=\left(e_{11} e_{12}\right)\left(e_{21} e_{11}\right)=e_{11}\left(e_{12} e_{21}\right) e_{11}
$$

Therefore $e_{12} e_{21}=\lambda e_{11}$. Similarly $e_{21} e_{12}=\mu e_{22}$. But

$$
\lambda e_{12}=\left(e_{12} e_{21}\right) e_{12}=e_{12}\left(e_{21} e_{12}\right)=\mu e_{12}
$$

and therefore $\lambda=\mu$. Since $A=E_{12} \cup E_{21}, \lambda \neq 0$. We replace e_{12} by $e_{12}^{\prime}=e_{12} / \lambda$. Then $e_{12}^{\prime} e_{21}=e_{11}$. Thus we may choose the $e_{i j}$ so that $\lambda=1$ and the $e_{i j}$ have the same multiplication as the $\eta_{i j}$.

Lemma 11. Let Δ be a finite-dimensional division algebra, $M=M_{n}(\Delta)$, $n \geqq 2$ and let N be a nilpotent subalgebra of M. Then N^{ϕ} is nilpotent and $d\left(N^{\phi}\right)=d(N)$.

Proof. If $d(N)=1$, then for some subalgebra U of M containing N, there exists an isomorphism $\alpha: U \rightarrow M_{2}(F)$ of U onto $M_{2}(F)$ such that $N^{\alpha}=\left\langle\eta_{12}\right\rangle$. This follows from consideration of the similarity invariants of a matrix $\eta \in N$. By Lemma $8, N^{\phi}$ is nilpotent.

For general N, every one-dimensional subalgebra of N is nilpotent. Hence every minimal subalgebra of N^{ϕ} is nilpotent and therefore N^{ϕ} is nilpotent. We then have

$$
d\left(N^{\phi}\right)=l\left(N^{\phi}\right)=l(N)=d(N)
$$

Lemma 12. Let $M=M_{n}(F), n \geqq 2$. Then $A \simeq M$ and, for suitable choice of the $e_{i j}$, the $e_{i j}$ have either the same multiplication as the $\eta_{i j}$ or the opposed multiplication.

Proof. Since $\left\langle\eta_{i i}, \eta_{i j}, \eta_{j i}, \eta_{j j}\right\rangle$ for $i \neq j$ is isomorphic to $M_{2}(F)$, by Lemma $9, E_{i i}^{2}=E_{i i}$ for all i. If we choose for $e_{i i}$ the unique idempotent in $E_{i i}$, then by Lemma 10 applied to $\left\langle\eta_{i i}, \eta_{i j}, \eta_{j i}, \eta_{j j}\right\rangle$, we have $e_{i i} e_{j j}=0$ for $i \neq j$. However $e_{i j}$ is chosen ($i \neq j$), we have either $e_{i i} e_{i j}=e_{i j}=e_{i j} e_{j j}$, $e_{i j} e_{i i}=0=e_{i j} e_{i j}$ or $e_{i i} e_{i j}=0=e_{i j} e_{i j}, \quad e_{i j} e_{i i}=e_{i j}=e_{i j} e_{i j}$.

By Lemma 11, $\left\langle e_{i j}, e_{k l}\right\rangle$ is nilpotent if i, j, k, l are distinct. Since it has $k+1$ minimal subalgebras, it is null and therefore $e_{i j} e_{k l}=0$. Similarly $e_{i j} e_{i k}=0$ and $e_{i j} e_{k j}=0$ if i, j, k are distinct. Since $e_{r r} e_{j k}=e_{j k}$ either for $r=j$ or for $r=k$, by taking the appropriate value for r, we obtain in either case

$$
e_{i i} e_{j k}=e_{i i} e_{r r} e_{j k}=0
$$

if i, j, k are distinct, since then $e_{i i} e_{r r}=0$. Similarly $e_{j k} e_{i i}=0$.
By Lemma 11, if i, j, k are distinct, then $E_{i j} \cup E_{j k}$ is a three-dimensional nilpotent subalgebra. Therefore $e_{i j} e_{j k}$ and $e_{j k} e_{i j}$ are not both 0 . If $e_{i i} e_{i j}=e_{i j}$, then

$$
e_{j k} e_{i j}=e_{i k}\left(e_{i i} e_{i j}\right)=\left(e_{j k} e_{i i}\right) e_{i j}=0
$$

and so $e_{i j} e_{j k} \neq 0$, whence $\left(e_{i j} e_{j j}\right) e_{j k} \neq 0$ and therefore $e_{j j} e_{j k}=e_{j k}$. By
repeated application of this argument, we have that, if $e_{11} e_{12}=e_{18}$, then $e_{i i} e_{i j}=e_{i j}$ for all i, j. We suppose $e_{11} e_{12}=e_{12}$, and prove that the $e_{i j}$ may be chosen so that they have the same multiplication as the η_{11}. The same argument applies with the order of all products reversed if $e_{11} e_{12}=0$, giving $e_{i j}$ with the opposed multiplication.

Since $d\left(E_{i j} \cup E_{j k}\right)=3$ and $d\left(E_{i j} \cup E_{i k}\right)=2, e_{i j}, e_{j k}, e_{i k}$ is a basis of $E_{i j} \cup E_{j k}$ and therefore

$$
e_{i j} e_{j k}=\alpha e_{i j}+\beta e_{j k}+\gamma e_{i k}
$$

for some $\alpha, \beta, \gamma \in F$. But

$$
\begin{aligned}
e_{i j} e_{j k} & =\left(e_{i i} e_{i j}\right)\left(e_{j k} e_{k k}\right)=e_{i i}\left(e_{i j} e_{j k}\right) e_{k k} \\
& =\gamma e_{i k}
\end{aligned}
$$

It remains to prove that the $e_{i j}$ can be so chosen that $e_{i j} e_{j k}=e_{i k}$ for all i, j, k.
We choose $e_{12}, e_{13}, \ldots, e_{1 n}$ arbitrarily. By Lemma 10, we can choose $e_{i 1}$ such that $e_{1 i} e_{i 1}=e_{11}$. The $e_{i 1}$ are uniquely determined by this condition and satisfy $e_{i 1} e_{1 i}=e_{i 1}$. For i, j distinct and not equal to 1 , we can choose $e_{i j}$ such that $e_{1 i} e_{i j}=e_{1 j}$. This determines $e_{i j}$ uniquely. We then have

$$
e_{1 k}=e_{1 j} e_{j k}=\left(e_{1 i} e_{i j}\right) e_{j k}=e_{1 i}\left(e_{i j} e_{j k}\right)
$$

and therefore $e_{i j} e_{j k}=e_{i k}$ for all i, j, k.
Lemma 13. Let η be an idempotent of $M=M_{n}(\Delta), n \geqq 2$. Then $\langle\eta\rangle$ is not nilpotent, $\langle\eta\rangle=\langle e\rangle$ for some idempotent e.

Proof. Let r be the rank of η. Then for some inner automorphism α of $M,\left(\eta_{11}+\eta_{22}+\ldots+\eta_{\pi r}\right)^{\alpha}=\eta$. Let N be the subalgebra $M_{n}(F)$ of M. By Lemma 12 applied to $N^{a},\langle\eta\rangle^{\phi}$ is not nilpotent. Since $d(\langle\eta\rangle \phi)=1$ and $\langle\eta\rangle^{\phi}$ is not nilpotent, there exists a unique idempotent e such that $\langle e\rangle=\langle\eta\rangle$.

5. Simple algebras

Theorem 2. Let $S=M_{n}(\Delta)$ where $n \geqq 2$ and Δ is a finite dimensional division algebra. Let $\phi: \mathscr{L}(S) \rightarrow \mathscr{L}(A)$ be an \mathscr{L}-isomorphism of S onto A. Then $A \simeq M_{n}(D)$ for some division algebra D which is \mathscr{L}-isomorphic to Δ and $d(D)=d(\Delta)$.

Proof. For any subalgebra U of S, we have be Lemmas 11, 13, that U^{ϕ} is nilpotent if and only if U is nilpotent. Thus the maximal nilpotent subalgebras of A are the images under ϕ of the maximal nilpotent subalgebras of S. By Barnes [3], $R(A)$ is the intersection of the maximal nilpotent subalgebras of A. Since $R(S)=0, R(A)=0$ and A is semi-simple.

Let N be the subalgebra $M_{n}(F)$ of S and let ξ be the identity of S. We may identify Δ with the subalgebra $\Delta \xi$ of S. Then $S=N \cup \Delta, N \cap \Delta=\langle\xi\rangle$.

Let B be any simple direct summand of A. Then B contains an idempotent e. Let $U=\langle e\rangle^{\phi^{-1}}$. If U is nilpotent, then by lemma 11, $U^{\phi}=\langle e\rangle$ is nilpotent, contrary to e being idempotent. Therefore U is non-nilpotent and so contains an idempotent η. Clearly $U=\langle\eta\rangle$ and $\langle e\rangle=\langle\eta\rangle$. But $\eta \in N^{\alpha}$ for some inner automorphism α of S. Since $N^{\alpha \phi} \simeq M_{n}(F)$ and $B \cap N^{\alpha \phi} \geqq\langle e\rangle \neq 0$, we have $B \geqq N^{\alpha \phi}$ and therefore $\langle\xi\rangle \phi \leqq B$. Since $\langle\xi\rangle^{\alpha \phi}$ is the only minimal subalgebra of $\Delta^{\alpha \phi}$ and is not nilpotent, $\Delta^{\alpha \phi}$ is a division algebra. Since $B \cap \Delta^{\alpha \phi} \geqq\langle\xi\rangle^{\alpha \phi} \neq 0$ and B is an ideal, $B \geqq \Delta^{\alpha \phi}$. Thus $B \geqq N^{\alpha \phi} \cup \Delta^{\alpha \phi}=(N \cup \Delta)^{\alpha \phi}=S^{\alpha \phi}=A$. Therefore A is simple.

Since A simple, $A \simeq M_{m}(D)$ for some division algebra D and some m. If $U \simeq M_{r}(F)$ is a subalgebra of $M_{m}(D)$, then $r \leqq m$. Since $N^{\phi} \simeq M_{n}(F)$ is a subalgebra of A, we have $n \leqq m$. By the same argument applied to the \mathscr{L}-isomorphism ϕ^{-1}, we have $n \geqq m$. We therefore have $A \simeq M_{n}(D)$. But $\Delta_{1}=\Delta \eta_{11}=\eta_{11} S \eta_{11}$ is the unique maximal division subalgebra of S containing η_{11}. It follows that Δ_{1}^{ϕ} is the unique maximal division subalgebra of A containing e_{11} and therefore $\Delta_{1}^{\phi}=e_{11} A e_{11}=D e_{11}$. Thus $D \simeq \Delta_{1}^{\phi}$ and it follows that D is \mathscr{L}-isomorphic to Δ.

Consider the maximal nilpotent subalgebra U of S consisting of all upper triangular matrices $\sum_{i<j} \delta_{i j} \eta_{i j}$. This is the unique maximal nilpotent subalgebra of S containing the $\eta_{i j}$ with $i<j$. It follows that U^{ϕ} is the subalgebra of A consisting of all elements of the form $\sum_{i<j} d_{i j} e_{i j}$ where $d_{i j} \in D$. Since U and U^{ϕ} are nilpotent, $d(U)=d\left(U^{\phi}\right)$. But $d(U)=\frac{1}{2} n(n-1) d(\Delta)$ and $d\left(U^{\phi}\right)=\frac{1}{2} n(n-1) d(D)$. Therefore $d(D)=d(\Delta)$.

Corollary. Let S be a finite- dimensional simple algebra over the finite field F. Suppose S is not a field. Let $\phi: \mathscr{L}(S) \rightarrow \mathscr{L}(A)$ be an \mathscr{L}-isomorphism of S onto A. Then $A \simeq S$.

Proof. A finite-dimensional division algebra over a finite field is an extension field and is determined up to isomorphism by its dimension.

Theorem 3. Let $S=M_{n}(\Delta)$ for some finite-dimensional division algebra 4 . Suppose $n \geqq 3$. Let $\phi: \mathscr{L}(S) \rightarrow \mathscr{L}(A)$ be an \mathscr{L}-isomorphism of S onto A. Then S is semi-isomorphic to A.

Proof. (i) The subalgebra $\Delta_{1}=\Delta \eta_{11}$ of S is a division algebra isomorphic to Δ. The subalgebra $V=\Delta \eta_{12}+\Delta \eta_{13}$ is null and every subspace of V is a subalgebra of $S . V$ can be considered as a left vector space over Δ_{1}. We show that the Δ_{1}-subspaces of V are the subalgebras $P \leqq V$ with the property $P=V \cap\left(\Lambda_{1} \cup P\right)$.

Suppose P is a Δ_{1}-subspace of V. Then $\Delta_{1} \cup P=\Delta_{1} \oplus P$ (vector space direct sum). Let $\delta \eta_{11}+p \in V, \delta \in \Delta, p \in P$. Then $\delta \eta_{11} \in V$ which implies $\delta=0$. Thus $\left(\Lambda_{1} \cup P\right) \cap V \leqq P$ and hence $\left(\Lambda_{1} \cup P\right) \cap V=P$.

Conversely, suppose $V \cap\left(\Delta_{1} \cup P\right)=P$. Since V is an ideal in $\Delta_{1} \cup V$,
$P=V \cap\left(\Delta_{1} \cup P\right)$ is an ideal in $\Delta_{1} \cup P$. Therefore $\Delta_{1} P \leqq P$ and P is a Δ_{1}-subspace of V.
(ii) By theorem 2, $A \simeq M_{n}(D)$ for some division algebra D. Consider the subalgebra $S^{\prime}=M_{n}(F)$ of $M_{n}(\Delta)$. Put $A^{\prime}=S^{\prime \phi}$. Then ϕ induces an \mathscr{L}-isomorphism of S^{\prime} onto A^{\prime}, and by lemma $12, A^{\prime}$ has a basis $e_{i j}(i, j=1,2, \ldots, n)$, where $\left\langle e_{i j}\right\rangle=\left\langle\eta_{i j}\right\rangle^{\phi}$, with either the same multiplication as the $\eta_{i j}$ or the opposed multiplication. By dimension considerations as in the proof of theorem 2, it follows that the $e_{i j}$ are a basis of A as a left vector space over D.

We now suppose that the $e_{i j}$ have the same multiplication as the $\eta_{i j}$ and prove that there exists a semi-linear map $\sigma: \Delta \rightarrow D$ such that $\left(\delta \delta^{\prime}\right)^{\sigma}=\delta^{\sigma} \delta^{\prime \sigma}$ for all $\delta, \delta^{\prime} \in \Delta$. In the case in which the $e_{i j}$ have the opposed multiplication, the same argument with the order of all products in A reversed proves the existence of a semi-linear map $\sigma: \Delta \rightarrow D$ such that $\left(\delta \delta^{\prime}\right)^{\sigma}=\delta^{\prime} \sigma \delta^{\sigma}$ for all $\delta, \delta^{\prime} \in \Delta$. In either case, we then have S semi-isomorphic to A.

Put $D_{1}=D e_{11}$. Then it follows as in the proof of Theorem 2, that $\Delta_{1}^{\phi}=D_{1}$. Put $W=D_{1} e_{12}+D_{1} e_{13}$. We prove that $W=V \phi$. For any subalgebra U of S, it follows from Lemmas 11, 13 and Barnes [3], that $R\left(U^{\phi}\right)=(R(U))^{\phi}$. But $V=R\left(\Delta_{1} \cup V\right), W=R\left(D_{1} \cup W\right)$ and

$$
\begin{aligned}
\left(\Delta_{1} \cup V\right)^{\phi} & =\left(\Delta_{1} \cup\left\langle\eta_{12}\right\rangle \cup\left\langle\eta_{13}\right\rangle\right)^{\phi} \\
& =D_{1} \cup E_{12} \cup E_{13} \\
& =D_{1} \cup W .
\end{aligned}
$$

Therefore $V^{\phi}=W$.
W is a left vector space over D_{1} and by (i), the D_{1}-subspaces of W are the subalgebras Q such that $Q=W \cap\left(D_{1} \cup Q\right)$. Thus P^{ϕ} is a D_{1}-subspace of W if and only if P is a Δ_{1}-subspace of V. Thus we have an isomorphism ϕ of the lattice of F-subspaces of V onto the lattice of F-subspaces of W which takes Δ_{1}-subspaces of V to D_{1}-subspaces of W.

If $\Delta=F$, the result holds trivially. Suppose $\Delta \neq F$. Then $d(V)=2 d(\Delta)>3$. By the "fundamental theorem of projective geometry", there exists a semi-linear map $\sigma: V \rightarrow W$ which induces ϕ (restricted to V).

The elements e_{12}, e_{13} of E_{12}, E_{13} are chosen arbitrarily in the proof of Lemma 12. We may therefore take $e_{12}=\eta_{12}^{\sigma}$ and $e_{13}=\eta_{13}^{\sigma}$. For any $\delta \in \Delta_{1}$, $\left(\delta \eta_{12}\right)^{\sigma} \in D_{1} e_{12}$ since σ maps Δ_{1}-subspaces of V to D_{1}-subspaces of W. Therefore there exists a unique $d \in D_{1}$ such that $d e_{12}=\left(\delta \eta_{12}\right)^{\sigma}$. Put $\delta^{\sigma}=d$. This defines a semi-linear map $\delta \rightarrow \delta^{\sigma}$ of Δ_{1} onto D_{1}.

Since σ is semi-linear, $\left(\eta_{12}+\eta_{13}\right)^{\sigma}=\eta_{12}^{\sigma}+\eta_{13}^{\sigma}=e_{12}+e_{13}$. For any $\delta \in \Delta_{1}$,

$$
\begin{aligned}
\left(\delta\left(\eta_{12}+\eta_{13}\right)\right)^{\sigma} & =\left(\delta \eta_{12}\right)^{\sigma}+\left(\delta \eta_{13}\right)^{\sigma} \\
& =\delta^{\sigma} e_{12}+d^{*} e_{13}
\end{aligned}
$$

for some $d^{*} \in D_{1}$. But $\left(\delta\left(\eta_{12}+\eta_{13}\right)\right)^{\sigma} \in D_{1}\left(e_{12}+e_{13}\right)$ and therefore $\delta^{*}=\delta^{\sigma}$. Therefore, for any $\delta, \delta^{\prime} \in \Delta_{1}$,

$$
\begin{aligned}
\left(\delta\left(\eta_{12}+\delta^{\prime} \eta_{13}\right)\right)^{\sigma} & =\left(\delta \eta_{12}\right)^{\sigma}+\left(\delta \delta^{\prime} \eta_{13}\right)^{\sigma} \\
& =\delta^{\sigma} e_{12}+\left(\delta \delta^{\prime}\right)^{\sigma} e_{13}
\end{aligned}
$$

But $\left(\delta\left(\eta_{12}+\delta^{\prime} \eta_{13}\right)\right)^{\sigma} \in D_{1}\left(e_{12}+\delta^{\prime} \sigma e_{13}\right)$ and therefore $\left(\delta \delta^{\prime}\right)^{\sigma}=\delta^{\sigma} \delta^{\prime \sigma}$.

6. Semi-simple algebras

Lemma 14. Let $F=G F(2)$ and let $A=P \oplus Q$ where P is a proper extension field of F of finite dimension and $Q \simeq F$. Let $\phi: \mathscr{L}(A) \rightarrow \mathscr{L}(B)$ be an \mathscr{L}-isomorphism of A onto B. Then $B=P^{\phi} \oplus S$ where $S \simeq F$ and P^{ϕ} is an extension field of F

Proof. (i) We need only consider the case $l(P)=2$, for if $l(P)>2$, we take $K \leqq P$ such that $l(K)=2$. If the result holds for $K \oplus Q$ and η_{1} is the identity of P, then $\left\langle\eta_{1}\right\rangle^{\phi}$ is not nilpotent, P^{ϕ} has a unique minimal subalgebra $\left\langle\eta_{1}\right\rangle^{\phi}$ and so is a field. By hypothesis, $(K \oplus Q)^{\phi}=K^{\phi} \oplus S$ where $S \simeq F$. Take e_{1} the identity of P_{ϕ} and e_{2} the identity of S. Then $e_{1} e_{2}=e_{2} e_{1}=0$. For all $x \in P \phi, x e_{2}=\left(x e_{1}\right) e_{2}=0, e_{2} x=e_{2}\left(e_{1} x\right)=0$. Therefore P^{ϕ} is an ideal in B and $B=P^{\phi} \oplus S$.
(ii) Let η_{1}, η_{2} be the identitites of P, Q. Put $E=\left\langle\eta_{1}, \eta_{2}\right\rangle$. Then $\left\langle\eta_{1}\right\rangle,\left\langle\eta_{2}\right\rangle=Q,\left\langle\eta_{1}+\eta_{2}\right\rangle$ are all the minimal subalgebras of A and $\mathscr{L}(A)$ is

(iii) Suppose B is nilpotent. Then $d(B)=3$. If $b \in B$ and $b^{3} \neq 0$, then $\left\langle b, b^{2}, b^{3}\right\rangle=B$ and $\left\langle b^{2}, b^{3}\right\rangle$ is the only maximal subalgebra of B. Therefore $b^{3}=0$ for all $b \in B$. If $b^{2} \neq 0$, then $\left\langle b, b^{2}\right\rangle$ is a subalgebra \mathscr{L}-isomorphic to P, and therefore $b \in P \phi$.

We have $P^{\phi}=\left\langle u, u^{2}\right\rangle, Q^{\phi}=\langle v\rangle$ for some u, v. Since E^{ϕ} is nilpotent and has three minimal subalgebras, $E \phi$ is null. Therefore the three minimal subalgebras of B are $\left\langle u^{2}\right\rangle,\langle v\rangle,\left\langle u^{2}+v\right\rangle$.

Consider the element $u+v$. Since $u+v \notin P \phi$, we have $(u+v)^{2}=0$. Thercfore $\langle u+v\rangle$ is another minimal subalgebra of B. Therefore B is not nilpotent.
(iv) Suppose P^{ϕ} is nilpotent. Then $P^{\phi}=\left\langle u, u^{2}\right\rangle$ for some u, and $Q^{\phi}=\langle e\rangle$ for some idempotent e. Since $l(B)=3$, every nilpotent element of B is in $R=R(B)$. Therefore $P \phi \leqq R$. But B is not nilpotent. Therefore $R=P^{\phi}$ and $\left\langle\eta_{1}\right\rangle^{\phi}=R^{2}$ is an ideal in B. Since B / R^{2} has only two minimal subalgebras, it is commutative and $e u-u e \in\left\langle u^{2}\right\rangle$. Therefore $u e u-u^{2} e=0$, $e u^{2}-u e u=0$ and $e u^{2}=u^{2} e$. This implies that $E \phi$ has only two minimal subalgebras. Therefore $P \phi$ is not nilpotent, and so must be an extension field of F.
(v) Suppose $R=R(B) \neq 0$. Then $d(R)=1, R=\langle r\rangle$ for some r, and either $R=Q^{\phi}$ or $R=\left\langle\eta_{1}+\eta_{2}\right\rangle^{\phi}$. Let e be the identity of P^{ϕ}. Then E^{ϕ} is of type VI and without loss of generality, we may suppose er $=r$, $r e=0$. Then $d\left(P^{\phi} r\right)=d\left(P^{\phi}\right)$ since P^{ϕ} is a field and $e r=r \neq 0$. But $r \in R$ which is an ideal, and therefore $d\left(P^{\phi}\right)=1$ contrary to $l(P)=2$. Therefore $R(B)=0$.
(vi) Since $R(B)=0, B$ is a direct sum of fields. Since P^{ϕ} is a proper extension of F, one of the direct summands of B is a proper extension. But P^{ϕ} is the only subalgebra of B with lattice of length 2 and only one minimal subalgebra. Therefore P^{ϕ} is a direct summand of B. Clearly the other direct summand is isomorphic to F.

It is clear from the lattice diagram that a lattice automorphism of A may map Q to $\left\langle\eta_{1}+\eta_{2}\right\rangle$. Thus Q^{ϕ} need not be a direct summand of B.

Lemma 15. Let $F=G F(2)$ and let A be a finite-dimensional semisimple algebra over F, not a field or direct sum of one-dimensional algebras. Let $\phi: \mathscr{L}(A) \rightarrow \mathscr{L}(B)$ be an \mathscr{L}-isomorphism of A onto B, and let η be an idempotent in A. Then $\langle\eta\rangle{ }^{\phi}$ is not nilpotent.

Proof. Let S_{1}, \ldots, S_{m} be the simple direct summands of A. We may suppose $d\left(S_{1}\right) \geqq 2$.

Suppose $\eta \in S_{1}$. If $S_{1} \simeq M_{n}(K), n \geqq 2$ for some extension field K of F, then the result holds by Lemma 13. If S_{1} is a field, then by hypothesis, $A \neq S_{1}$. Let η_{2} be the identity of S_{2}. By Lemma 14 applied to $S_{1} \cup\left\langle\eta_{2}\right\rangle$, $\langle\eta\rangle^{\phi}$ is not nilpotent.

Suppose $\eta \notin S_{1} . S_{1}$ contains a field K which is a proper extension of F since, if S_{1} is not itself a field, then it has a subalgebra isomorphic to $M_{2}(F)$ which has a subalgebra isomorphic to $G F(4)$. We take some such subfield K of S_{1}. Then $K \cup\langle\eta\rangle \simeq K \oplus F$ and by Lemma $14,\langle\eta\rangle^{\phi}$ is not nilpotent.

Lemma 16. Let A be a finite-dimensional semi-simple algebra over the field F, and let $\phi: L(A) \rightarrow \mathscr{L}(B)$ be an \mathscr{L}-isomorphism of A onto an algebra B. Suppose A is not a division algebra. If $F=G F(2)$, suppose further that A is not a direct sum of one-dimensional algebras. Let U be a subalgebra of A. Then U^{ϕ} is nilpotent if and only if U is nilpotent.

Proof. (i) Let $N=\langle n\rangle$ be a one-dimensional nilpotent subalgebra of A. We prove $N \phi$ nilpotent. Let S_{1}, \ldots, S_{r} be the simple direct summands of A which are not division algebras. (If there are no such summands, then A has no nilpotent subalgebras and we have nothing to prove.) Then $N \leqq S_{1} \oplus \cdots \oplus S_{r}$. If $N \leqq S_{i}$ for some i, then N^{ϕ} is nilpotent by Lemma 11. We use induction over r. Suppose the result holds for subalgebras of $S_{1} \oplus \ldots \oplus S_{r-1}$. Then $n=u+v, u \in S_{1} \oplus \cdots \oplus S_{r+1}, v \in S_{r}$, and we may suppose $u \neq 0, v \neq 0$. Then $\langle u\rangle \phi,\langle v\rangle \phi$ are nilpotent and therefore $\langle u, v\rangle^{\phi}$ is nilpotent. But $N^{\phi} \leqq\langle u, v\rangle \phi$ and so is nilpotent.
(ii) Let η be an idempotent in A. We prove that $\langle\eta\rangle \Phi$ is not nilpotent. In the case $F=G F(2)$, this holds by Lemma 15. Suppose $F \neq G F(2)$. There exists an idempotent $\eta^{\prime} \neq \eta$ which commutes with η since the identity of A is not the only idempotent in A. For this $\eta^{\prime},\left\langle\eta, \eta^{\prime}\right\rangle$ is of type IV and by Lemma 6, $\left\langle\eta, \eta^{\prime}\right\rangle^{\phi}$ is of type IV and $\langle\eta\rangle^{\phi}$ is not nilpotent.
(iii) We have now proved the result for one-dimensional subalgebras of A. But a subalgebra is nilpotent if and only if all its one-dimensional subalgebras are nilpotent. Hence the result holds for all subalgebras of A.

Lemma 17. Suppose S_{1}, S_{2} are \mathscr{L}-isomorphic finite-dimensional simple algebras and $A=S_{1} \oplus S_{2}$. Let η be the identity of A. Then there exists a

Proof. (i) Suppose $\alpha: S_{1} \rightarrow S_{2}$ is an isomorphism. Put

$$
S_{\alpha}=\left\{s+s^{\alpha} \mid s \in S_{1}\right\} .
$$

Then $S_{\alpha} \simeq S_{1}$. If η_{i} is the identity of S_{i}, then $\eta_{1}^{\alpha}=\eta_{2}$ and $\eta=\eta_{1}+\eta_{2} \in S_{\alpha}$.
(ii) Suppose S is \mathscr{L}-isomorphic to S_{1} and $\eta \in S$. If $S_{1} \simeq M_{n}(\Delta), n \geqq 2$, then S is simple by Theorem 2. If S_{1} is a division algebra, then A has no nilpotent elements. Since S has only one minimal subalgebra, S is a division algebra. Thus in either case, S is simple. Each element $s \in S$ is uniquely expressible in the form $s=s_{1}+s_{2}, s_{i} \in S_{i}$. The map $\alpha_{i}: S \rightarrow S_{i}$ given by $s^{\alpha_{i}}=s_{i}$ is a homomorphism. Since S is simple and $\eta^{\alpha_{i}}=\eta_{i} \neq 0, \alpha_{i}$ is a monomorphism. Since $l(S)=l\left(S_{i}\right)$ and $l\left(S_{i}\right)$ is finite, α_{i} is onto and therefore $S_{1} \simeq S \simeq S_{2}$.

Theorem 4. Let A be a finite-dimensional semi-simple algebra over the field F, and let $\phi: \mathscr{L}(A) \rightarrow \mathscr{L}(B)$ be an \mathscr{L}-isomorhism of A onto an algebra B. Let S_{1}, \ldots, S_{r} be the simple direct summands of A. Suppose A is not a division algebra and, in the case $F=G F(2)$, that not all the S_{i} are one-dimensional. Then B is semi-simple. For each S_{i} of dimension greater than one, S_{i}^{ϕ} is a simple direct summand of B. If $S_{i} \simeq S_{j}$, then $S_{i}^{\phi} \simeq S_{j}^{\phi}$.

Proof. By Lemma 16, ϕ maps the maximal nilpotent subalgebras of A to the maximal nilpotent subalgebras of B. By Barnes [3], it follows
that $(R(A))^{\phi}=R(B)$ and therefore $R(B)=0$.
Suppose S is a simple subalgebra of A. If S is not a division algebra, then S^{ϕ} is simple by Theorem 2. If S is a division algebra, then by Lemmas $2,16, S^{\phi}$ is a division algebra. In either case, S^{ϕ} is simple.

Let e be any idempotent of B. There exists an idempotent $\eta \in A$ such that $\langle\eta\rangle^{\phi}=\langle e\rangle$. Let S_{i} be a simple direct summand of A of dimension greater than one. Then $\left\langle S_{i}, \eta\right\rangle$ has only one maximal simple subalgebra of dimension greater than one. Therefore $\left\langle S_{i}, \eta\right\rangle^{\phi}$ is semi-simple algebra with only one maximal simple subalgebra of dimension greater than one, and therefore this subalgebra S_{i}^{ϕ} is a direct summand of $\left\langle S_{i}, \eta\right\rangle$. Therefore $e S_{i}^{\phi} \leqq S_{i}^{\phi}$, $S_{i}^{\phi} e \leqq S_{i}^{\phi}$. Let T_{1}, \ldots, T_{s} be the simple direct summands of B, let e_{k} be the identity of T_{k} and ε the identity of S_{i}^{ϕ}. Since $\varepsilon e_{j} \in S_{i}^{\phi} \cap T_{j}$, either $\varepsilon e_{j}=0$ or $S_{i}^{\phi} \leqq T_{j}$. Since $e_{1}+\ldots+e_{s}$ is the identity of B, for some $j, \varepsilon e_{j} \neq 0$ and $S_{i}^{\phi} \leqq T_{j}$. But similarly $T_{j}^{\phi^{-1}} \leqq S_{k}$ for some k. Therefore $S_{i}^{\phi}=T_{j}$ and S_{i}^{ϕ} is a direct summand of B.

Suppose $S_{i} \simeq S_{j}, i \neq j$. If $d\left(S_{i}\right)=1$, then trivially $S_{i}^{\phi} \simeq S_{j}^{\phi}$. Suppose $d\left(S_{i}\right) \geqq 2$. Then $S_{i}^{\phi}, S_{j}^{\phi}$ are direct summands of $\left(S_{i} \oplus S_{j}\right)^{\phi}$. There exists $S \simeq S_{i}$ contained in $S_{i} \oplus S_{i}$ and containing the identity η of $S_{i} \oplus S_{i}$. Let η_{i}, η_{j} be the identities of S_{i}, S_{j} and e_{i}, e_{j} those of $S_{i}^{\phi}, S_{j}^{\phi}$. Since $\left\langle\eta_{i}\right\rangle^{\phi}=\left\langle e_{i}\right\rangle$, $\left\langle\eta_{j}\right\rangle^{\phi}=\left\langle e_{j}\right\rangle$ and $\left\langle\eta_{i}, \eta_{j}\right\rangle$ has only three minimal subalgebras, $\langle\eta\rangle^{\phi}=\langle e\rangle$ where e is the identity of $S_{i}^{\phi}+S_{j}^{\phi}$. Thus S^{ϕ} is a simple subalgebra of $S_{i}^{\phi}+S_{j}^{\phi}$ \mathscr{L}-isomorphic to S_{i}^{ϕ} and containing e. By Lemma $17, S_{i}^{\phi} \simeq S_{j}^{\phi}$.

We remark that the method of proof of Theorem 3 can be extended to show that, if $S_{i} \simeq S_{j} \simeq M_{n}(\Delta), n \geqq 2, \Delta$ a finite dimensional division algebra, then $S_{i} \oplus S_{j}$ is semi-isomorphic to $\left(S_{i} \oplus S_{j}\right)^{\phi}$. We need only consider the case $n=2$. If $\eta_{r s} \in S_{i}$ have the usual meaning and $\eta_{r s}^{\prime}$ are the corresponding elements of S_{j}, we consider $\Delta \eta_{12}+\Delta \eta_{12}^{\prime}$ as a left vector space over $\Delta\left(\eta_{11}+\eta_{11}^{\prime}\right)$ and the result follows as before. If one of the direct summands $S_{i} \simeq M_{n}(F), n \geqq 2$, then we have $S_{i} \simeq S_{i}^{\phi}$. Thus we have

Corollary. Let A be a finite-dimensional semi-simple algebra over an algebraically closed field F. Suppose A has dimension greater than one. Let $\phi: \mathscr{L}(A) \rightarrow \mathscr{L}(B)$ be an \mathscr{L}-isomorphism of A onto an algebra B over F. Then $A \simeq B$.

References

[1] Ancochea, G., 'On semi-automorphisms of division algebras", Annals of Math. 48 (1947), 147-153.
[2] Artin, E., Nesbitt, C. J. and Thrall, R. M., Rings with minimum condition (University of Michigan Press, Ann Arbor, 1944).
[3] Barnes, D. W., "On the radical of a ring with minimum condition", J. Aust. Matb. Soc. 5 (1965), 234-236.
[4] Hua, L. K., "On the automorphisms of a sfield", Proc. Nat. Acad. Sci. USA. 35 (1949), 386-389.
[5] Jacobson, N., Structure of rings, Am. Math. Soc. Colloquium Publications XXXVII, 1956.
[6] Kaplansky, I., "Semi-automorphisms of rings", Duke Math. J. 14 (1947), 521-525.
University of Sydney

[^0]: ${ }^{1}$ Closely related concepts are discussed in Ancochea [1], Hua [4] and Kaplansky [6].
 2 Jacobson, N.: Lectures on abstract algebra, vol. I, p. 74, exercise 6.

[^1]: " See Jacobson [5], p. 165, Corollary to the "fundamental theorem of finite Galois theory."

