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Abstract

We consider the dynamical characteristics of a continuous-time isolated Hopfield-type
neuron subjected to an almost periodic external stimulus. The model neuron is assumed
to be dissipative having finite time delays in the process of encoding the external input
stimulus and recalling the encoded pattern associated with the external stimulus. By
using non-autonomous Halanay-type inequalities we obtain sufficient conditions for the
hetero-associative stable encoding of temporally non-uniform stimuli. A brief study of a
discrete-time model derived from the continuous-time system is given. It is shown that the
discrete-time model preserves the stability conditions of the continuous-time system.

1. Introduction

The experimental and theoretical studies of Skarda and Freeman [28] and Freeman [11]
suggest that a mammal's brain may be exploiting dynamic attractors for its encoding
and subsequent associative recall of memories (or patterns) rather than temporally
static (equilibrium-type) attractors as has been proposed in most studies of artificial
neural networks. Limit cycles, strange attractors and other dynamical phenomena
have been used by many authors to represent encoded temporal patterns as associative
memories (Freeman et al. [12], Yau et al. [31], Chapeau-Blondeau and Chauvet [6],
Moreira and Auto [25], Hjelmfelt and Ross [20]). Most of the existing literature
on theoretical studies of artificial neural networks is predominantly concerned with
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262 S. Mohamad and K. Gopalsamy [2]

autonomous systems containing temporally uniform network parameters and external
input stimuli. Literature dealing with time-varying stimuli or network parameters
appears to be scarce; such studies are however important to understand the dynamical
characteristics of neuron behaviour in time varying environments.

It has been reported (see Eckhorn et al. [8], Gray et al. [18], Engel et al. [9]) that cell
assemblies in the visual cortex oscillate synchronously in response to external stimuli.
Such a synchrony is a manifestation of the encoding process of temporally-varying
external stimuli. Ott et al. [26] have shown that one can convert a chaotic attractor
to any one of a large number of possible time periodic motions by the introduction of
time dependent perturbations of the network parameters.

In this article we study the dynamic behaviour of a neuron of Hopfield type in
its process of encoding temporally non-uniform external stimulus and subsequent
recalling of that encoded pattern. In particular we study the case where the external
input stimulus is of almost periodic type. The neuron which oscillates synchronously in
response to the time-varying external stimulus is assumed to be dissipative. In addition,
we incorporate finite time delays in the processing part of the neuron's architecture.
The incorporation of delays in the formulation is motivated by the following: delays
are naturally present in biological networks through synaptic transmission, finite
conduction velocity and neural processing of input stimuli. We refer to the articles
of Gopalsamy and He [14, 15] and the references therein for literature related to the
stability of neural networks with time delays in temporally uniform environments
modelled by autonomous delay and integro-differential equations.

The purpose of this article is to obtain sufficient conditions for the existence of
a globally attractive almost periodic solution associated with an almost periodic ex-
ternal stimulus. In neuronal terminology, the globally attractive almost periodic
solution represents the hetero-associative recall of the encoded pattern associated with
the external input stimulus. The neuronal parameters, dissipation and gain, can ei-
ther be temporally uniform, periodic or almost periodic. In other words the neuron
being investigated has some synchronous manifestation in its encoding process of
temporally-varying external stimuli. We consider the dynamics of artificial neuron
models in continuous time and discrete-time domains with continuous states.

2. Continuous-time-continuous-state model

We study the dynamics of a single effective neuron subjected to a temporally
non-uniform stimulus whose membrane potential x (r) at time / is modelled by a non-
autonomous equation of the form (for more details see Caianiello and de Luca [5])

\ f K(s)x(t -s)ds\ +c(t), t > t0 (2.1)
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[3] Extreme stability and almost periodicity 263

where r is a finite nonnegative constant, K : [0, T] H-> [0, oo) is assumed continuous
and 0 < JQ K(S) ds < oo, a(-) denotes a dissipative or a negative feedback term,
b() denotes the neuron gain and c() denotes the external stimulus. The real-valued
functions a(t), b(t) and c(t) are continuous and are defined for t e K. They are
assumed to satisfy the following:

0 < a. < a(t) < a*, b. < \b(t)\ < b", ct < \c(t)\ <c*, t e K (2.2)

where
at = inf a(t), bt = inf \b(t)\, ct = inf \c(t)\

i€R leR ;€R

a* = sup a(r), b* = sup |6(0l. c* = sup \c(t)\.
iek /eK /ER

We assume that (2.1) is supplemented with an initial condition of the form

se[to-r,to], (peC([to-T,to]) (2.3)

where C([t0 — r, t0]) denotes the space of real-valued continuous functions defined on
[to - r, t0] and supJ6[(i)_r ̂  |^(5)| < oo for every <p € C([r0 - r, to]). The following
result establishes the boundedness of solutions of (2.1).

THEOREM 2.1. Suppose a(t), b(t) and c(t), t € K, satisfy (2.2). Then

, x f b* + c* b* + c*~\ / x f fe* + c* ** + c*l
*«b)e , =>- *(/)€ , (2.4)

V a* a* \ L a* a* J
/or r > r0 an^

i* + c*
< l-cr(O for t > t0 and a(t) -+ 0 as f ^ o o . (2.5)

a*

PROOF. By considering the upper right derivative ^ and the assumption (2.2) one
obtains from (2.1) that ^ M O I < — a*\x(t)\ + b* + c*,t > t0 from which we have

(\
V

x(to)\ - ^±£) + b—^, t > to. (2.6)
) at

Since at > 0, both assertions (2.4) and (2.5) will follow from (2.6) and this completes
the proof.

In the following we provide sufficient conditions for the extreme stability of (2.1).
Let x(t) = x(t, <p) and ^(0 = y(t, \js), t > t0, denote arbitrary solutions of (2.1)
corresponding to initial conditions <p = <p(s) and rj/ = \j/(s) defined for s e[t0 — r, t0]
respectively. We assume that

sup \<p(s) - f(s)\ = M, M > 0. (2.7)
J€[(b-r,(b]
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Equation (2.1) is said to be extremely stable if lim,_oo \x(t, y) — y(f, VOI = 0,
where x(t, <p) and y(t, i/0 denote arbitrary solutions of (2.1) corresponding to initial
functions <p,ir € C([t0 — r, t0]). The concept of extreme stability has been used in
differential and delay differential equations and can be found in the work of LaSalle
and Lefschetz [23]. The concept was then further extended by Yoshizawa [32].
Gopalsamy and his co-authors (see for instance Gopalsamy et al. [17], Gopalsamy
and He [16]) have applied this stability in their investigations of non-autonomous
delay logistic equations.

THEOREM 2.2. Let the assumption (2.2) hold. If there exists a real number fi > 0
such that

a(t) - \b(t)\ f K(s)ds > fi for t € HI, (2.8)
Jo

then (2.1) is extremely stable.

PROOF. Since x(t) = x(t, cp) and y{t) = y{t, \js) denote solutions of (2.1), we
obtain

j((x(t) - y(0) = -a(t)(x(t) - y(t)) + b(t) tanh \j K(s)x(t - s)ds]

- Z>(0tanh | /" K(s)y(t-s)ds\ (2.9)

for t > t0. By considering the upper right derivative ^ and the mean value theorem
of differential calculus, we derive from (2.9)

d+v(t) Cz

—T1 < -a(t)v(t) + \b(t)\ / K(s)v(t - s) ds
dt Jo

<-a(t)v(t) + \b(t)\( f K(s)ds) sup v(u), t > t0, (2.10)
\J0 / I-T<U<I

where v() = |JC() — y(-)l- We note that 0 < /o
r K (s)ds < oo. The inequality

(2.10) corresponds to a non-autonomous version of Halanay's inequality (Halanay [ 19,
p. 378]). Halanay's inequality has been generalised to nonscalar systems of inequal-
ities (for more details see Gopalsamy [13]) and to non-autonomous cases (see Baker
and Tang [1]).

Let € > 1 be arbitrary. We have from (2.7) that v(t) < fM for t e [t0 - r, tQ]. We
claim

v(t) < eM for t > to. (2.11)
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[5] Extreme stability and almost periodicity 265

Suppose (2.11) does not hold. Let t\ > to be the first instant for which

v(t)<eM for r0 - r < t < tu v(tt) = €M and — ~ - ^ - > 0 . (2.12)
at

From (2.10) we have

K(s)ds) sup v(u) (2.13)

and by applying (2.8) and (2.12) to (2.13) we obtain

d+V(tl) < - (a(h) - |6(r,)| I K(s)ds) eM < -fieM < 0. (2.14)

From (2.12) and (2.14) we have a contradiction. Thus (2.11) holds. Since e > 1 is
arbitrary, by allowing e -> 1+ we have v(t) < M for t > tQ.

Since v(t) remains bounded for t > t0 there exists a constant X such that

limsup v(t) = k (2.15)
/ - •oo

and it follows from 0 < v(t) < M for t > t0 that 0 < k < M. We wish to show
A. = 0. Suppose k > 0. We have t — r->ooasr—>-oo and it follows that

limsup | sup W(M) |=A. . (2.16)

By the assumption (2.8) there exists a constant S satisfying 0 < S < 1 such that

K(s)ds < 5a(0 for t € OK. (2.17)f
Jo

Let p = S + (1 — S)e~"'T° where 7J> > t0 is a positive number. Since at > 0, we
have 0 < p < 1. By applying the properties of limit superiors, it follows from (2.15)
and (2.16) that for any £ satisfying 0 < £ < (1 — p)k/{\ + p) there corresponds a
sufficiently large positive number T = 7\£) > To such that

< k + f, sup u(«) < A. + £ for all r > 7\ (2.18)

From (2.10) we have

d+v(u)
du

for t - T < u < t, t > 27 and hence

<-a(u)v(u) + \b(u)\ ( [ K(s)ds) sup v(r)
V./0 / u-r<r<u

< \b(u)\( f K(s)ds) sup v(r)e-f-a(w)dw (2.19)\J0 ) u_r<r<H
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for t - T < u < t, t > 2T. Upon integrating (2.19) over the interval u G [t - T, t]
for t > 2T we obtain

u(0 < u(r - XV

\Ku)\( [ K(s)ds) sup v(r)e-f'»a(w)dwdu (2.20)
\Jo / u-i<r<u

for r > 27\ By applying (2.2), (2.17) and (2.18) we derive from (2.20)

v(t) < (X + S)e-fi-ra'dw + [ Sa(u)(X / X ^
Jl-T

/

S(k + Z) I ate-aA'-u) du
Jl-T

-8)e-"'T), t>2T. (2.21)

Moreover, we also have from (2.15) (using a property of limit superiors) that there
exists a sequence {f,}, j e 1+ of nonnegative real numbers with tj -> oo as j -> oo
(if necessary we can take its subsequence) such that

• k - £ < v(tj) for all /, > T, = r,(f) (2.22)

where T\ > To and £ is chosen as in the above. From (2.21) and (2.22) we have

k - £ < v(tj) <(k + S)(8 + (1 - 8)e-"'T) for all tj > T (2.23)

where T — max{2T, T,}. It then follows that

k - $ < (k + K)P => S> (\~P)k

1 + P
and this contradicts our choice of £. Hence k = 0. This in turn implies that

l im |x (0 -y (0 l=0
»->oo

and hence (2.1) is extremely stable. This completes the proof.

We shall discuss the dynamics of (2.1) and its ability to encode external stimulus.
In other words, the neuronal parameters a(t) and b(t) oscillate synchronously in
response to the external stimulus c(t). The dynamics of neural networks subjected to
periodic inputs have been considered by Rescigno et al. [27], Konig and Schillen [22]
and Bondarenko [3]. In this study, we investigate the dynamics of (2.1) when a(t),
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[7] Extreme stability and almost periodicity 267

b(t) and c(t) denote real-valued almost periodic functions defined for ( e 1 We
refer to Besicovitch [2] and Corduneanu [7] for various properties of almost periodic
functions; we refer to Fink [10] and Yoshizawa [33] for discussions on almost periodic
differential and delay-differential equations. For the convenience of the reader we
provide a formal definition of an almost periodic function / ( ( ) , / e l .

DEFINITION 2.1. A real-valued function / (r), t e K is called almost periodic if
for any given e > 0 there corresponds a positive number L = L(e) such that each
interval of length L on the real line contains at least one number p = p(e) for which
\\f(t + p) - / ( O i l < € , where 11/(011 = sup,eR | /(0l- The number p is called the
translation number or e-almost period of f (t). The set T(f, e) which contains the
e-almost periods p of/ (0 is relatively dense in R.

We provide below a few properties of real-valued almost periodic functions for
the benefit of the reader. The proofs of these properties can be found in the books
mentioned above.

PROPERTY 2.1. An almost periodic function f (t) is bounded and uniformly contin-
uous for t 6 R.

PROPERTY 2.2. Let fj (t) be almost periodic for t 6 R for each j = 1, 2, 3 . . . .
If the sequence {/,(0} converges to f (t) as j —>• oo uniformly for t € R then the
function f (t) is almost periodic.

PROPERTY 2.3. Let F(u) be a function uniformly continuous in the ball \\u\\ < A
and let f (t) be almost periodic such that \\f (0II < A for t € R. Then the function
F(f (0) is almost periodic for ( e K .

PROPERTY 2.4. A function f (0 is almost periodic if and only if for any sequence of
real numbers [mk], k = 1, 2, 3 , . . . there exists a subsequence {mkj}, j = 1, 2, 3 , . . .
such that the sequence [f (t + mkj)} converges as j -> oo uniformly for t e R.

PROPERTY 2.5. Let / , (0» » = 1, 2 , . . . , m denote almost periodic functions and
€ > 0 be an arbitrary real number. Then there exists a positive real number L = L(e)
such that every interval of length L contains at least one common c -almost period of
fi(t)forall i = 1, 2 , . . . , m. The set [X=\ Tift' e ) " relatively dense in R.

PROPERTY 2.6. Letf (0 andg(t) be almost periodic. Thenf (t)±g(t) andf (t)g(t)
are also almost periodic, andf (t)/g(t) is almost periodic j/inf,eR |g(0l = g* > 0.

, HID denote the space of all real-valued almost periodic functions defined
on R with | | | | denoting the supremum norm. By Property 2.1, each element in sf &>
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is bounded in the norm ||| |. By Property 2.6, we deduce that (£/{?, ||-||) forms a
linear space with respect to addition of almost periodic functions and multiplication
by scalars. Due to Property 2.2, the topology of the norm || • || is equivalent to the
topology of uniform convergence on OS of sequences of almost periodic functions.
Hence (J&&, ||-||) is a complete normed space and thus a Banach space.

In the following we prove the existence of a unique almost periodic solution of
(2.1) which is globally attractive. We recall a well-known fixed point theorem (see
Istratescu [21]) of the following form:

SCHAUDER'S FIXED POINT THEOREM. Let J( denote a compact convex subset of a
Banach space and let P : M -*• JM be continuous. Then the mapping P has a fixed
point in ^ .

THEOREM 2.3. Let a(t), b{t), c(t) e sf& be defined for t € R and assume they
satisfy (2.2). Suppose (2.8) holds. Then there exists a unique almost periodic solution
x*(t) of (2.1) which is globally attractive.

PROOF. We define a set 98 C sf & such that every 0 ( 0 € 98, t e IR satisfies

\\<Ht)\\ < (b* + c*)/at and (2.24)

1100+ P)-0(011 < e , p = p ( e ) f o r a n y e > 0 . (2.25)

From (2.24) and (2.25), it follows that the set 98 is uniformly bounded and equi-
almost periodic. The requirement (2.25) implies that for any e > 0 there corresponds
a positive number L = L(e) such that every interval of length L contains at least one
common e-almost period p = p(e) of every element </>(•) e 98. The convexity of the
set 9S can be verified. We show the compactness of 9B as follows: let {0,(O}> t e R,
i € 1+ = {1, 2, 3 , . . .} denote an arbitrary sequence from the set 9S. By (2.24), we
have

110,(011 < (b* + c*)M for i e 1+. (2.26)

Using the equi-almost periodicity of {0, (0), there exists a positive number L = L (e/3)
such that every interval of length L contains at least one number p = p(e/3) for which

||0,(f + p) - 0,(011 < e/3, i € 1+. (2.27)

To show that the set 98 is compact we must show that there exists a subsequence of
{0, (0) which is convergent in 98 for all / e R. Since the set {0,(0} is equi-continuous
on an interval of length L = L(e/3) and the set satisfies (2.26), by the Arzela-Ascoli
theorem there exists a subsequence {0,B(O}> /x 6 2 + such that

sup |0I(i(O - 0,U(OI < e/3 for all n, v > I = Z(e/3). (2.28)
telO.L)
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Choose any s e R. Since p e [s, — s + L] we must have p + 5 € [0, L]. By applying
(2.27), (2.28) and the triangle inequality we derive that

SUp |0,M (5) - 0,-, (5) | < SUp !</>,„ (S) - </>,„ (S + p) | + SUp |0(/, (5 + p) - 0,. (* + p) |
jeR jeR j+pe[0,L]

< e / 3 + e/3 + e/3 = e for all /x,v>l. (2.29)

Since 5 e K is arbitrary we have from (2.29) that the subsequence {01(i(s)} converges
for all 5 € R. This in turn implies that the set g& has compact closure in the topology
of uniform convergence and hence the set 88 is compact.

Now let us define a mapping P by

( P 0 ) ( O = f (b(t - r) tanh | f K(u)(f>(t -r-u)du\+ c(f - r) J

xe-JS'i'-fi'dr (2.30)

for 0(0 € J , r e I . By applying (2.2) one obtains from (2.30) that

\\(P<P)(t)\\ < (b* + c*) I e-K°'dsdr = ^ - ^ (2.31)
Jo a*

for 0(0 € SB, t € OS. Let e > 0 be arbitrary. Choose e* such that

e a\ e e at
6 =min - - - — , -a,,

4 b* + c*' 4 *' 4/0
r K(u)du b*\ "

We note that 0 < /o
r K(u)du < oo. For this e*, by Property 2.5, there exists a

common almost period p = p ( O of a ( ) , &(•), c(), 0 ( ) , namely

p-r)-*(r-r)| <e* < £ a,,
e (2.32)

p - r) - c(r - r)\ < e* < - at,

\4>(t + p - r - u) - 0(* - r - u)| < e* <
4/0 K(u)du b*

for r, i, f, M € R. From (2.30) we estimate |(P0)(f + p) - (P0XOI as follows:

p)-(P0)(OI
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\b{t + p-r)-b(t- r)\ tanh U

+ \b{t-r)\ tanh / K(u)<j>(t + p - r - u) du1
- tanh ( / K(u)<p(t - r - u) du J e-£«o+P-'>* dr

f°° (C \\
+ / \b(t - r)\ tanh I / K(u)<p(t — r - u)du II

Jo \Jo ) I

+ I \c{t + p-r)-c(t-r]
Jo
f°°

+ \c(t + p-r)\
Jo

(2.33)

for <f>(t) € SS, t e IR. By using the mean value theorem of differential calculus and
(2.32) we can show the following:

tanh ( / K(u)<t>(t + p - r - u) du ) - tanh ( / K(u)4>{t - r - u) du)
\Jo ) \Jo ) Iar r M

K(u)<p(t + p - r - u ) d u - I K(u)<p(t - r - u ) d u ) \
Jo ) \(2.34)

where 9 lies between /o
r K(u)<j>(t + p — r — u)du and /Q

r K(u)<f>(t — r — u)du.
Similarly,

e-Jo> -e~Jo> ' (- I a(t + p-s)ds+

< e-Ka.di j |Q ( / + p _ s ) _ a

Jo

I a(t - s)ds\

e ra:
4 b* + c*

where 6' lies between — /o
r a(t + p — s) ds and — /Q

r a(f — 5) di . We note that

(2.35)

- / a*ds <G' < - / a* c?5.
^o Jo
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We use (2.32), (2.34) and (2.35) in (2.33) to derive

< -a> f e-Ka-dsdr + b*€-^ I e'^^dr
4 Jo 4 6* Jo

€ a2 f°° e C°°
+ b* 2 — / re-"'rdr + -at e-&a'dsdr

4 b* + c* Jo 4 Jo

°°
re-"'r dr = e (2.36)

€ a2 f°
c*- , * /

4 b* + c* Jo

for <j>(t)e38,te R. One can see that the common almost period p which satisfies
(2.32) is actually an e-almost period of {P<t>){t). By (2.31) and (2.36) we deduce that
<p(t) € 38 implies (P<t>)(t) € 38.

Next, we let e' > 0 denote an arbitrary real number. We take any two <pu <j>2 e 9&
such that ||0i(O-02(OII < <5> where S = e'a,/(b* fQ

T K(u)du). From (2.30) we
obtain

= / b(t - r) (tanh / K(u)(j>i (t - r - u) du\
Jo \ Uo J

-tanh I K(u)(f>2(t - r - u)du j e-
f°ai'-s)dsdr

- (P02XOII < b* (j K(u)du\sj e-Ka'dsdr = e'.

This in turn implies that the mapping P is continuous with respect to <p(t) € 38,
t e R. We have that 38 is a compact convex subset of the Banach space &/& and
P : 38 -> 38 \% continuous. By Schauder's fixed point theorem, there exists at least
one x* € 38 such that Px* = x*.

Next we show that x*(t) defined for t e R is a solution of (2.1). We have

dx*(t) a

and it will follow that

= 7 \ (b(r) tanh I / K^u)x*^r ~ u)du\ + c ( r ) ) e-r>aWdtdr

= -a(t)x*(t) + b(t) tanh f K(u)x*(t - u) du\ + c(t), t e R

and hence x*(t) is an almost periodic solution of (2.1) for / e R. This **(f) is a
nontrivial solution if c(t) is nontrivial.
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FIGURE 1. Three neuronal states X\(t), xi(t) and*3(f) converge towards the globally attractive almost
periodic encoded pattern x*(t). The existence of x*(t) can be seen for / > 20.

Now let *(r, ^) € L00 be an arbitrary solution of (2.1); let (L°°, || | |) denote the
space of bounded continuous functions defined on R. We have from Theorem 2.3
that lim^oo \x(t, (p) — x*(t)\ = 0 which implies the global attractivity of the solution
x*(t). The uniqueness of x*(t) follows from its nature being almost periodic and
globally attractive. This completes the proof.

COROLLARY 2.4. Suppose the condition (2.2) holds and let co > 0 be the common
period ofa(t), b(t) and c(t), that is,

a(t + co) = a(t), b(t + co) = b(t), c(t + co) = c(t) for t e R. (2.37)

If the condition (2.8) holds then there exists a unique co-periodic solution x^(t) of
(2.1) which is globally attractive.

PROOF. Let <j> e 38W be such that 4>{t + co) = <p(t) for all t e R and

sup

The set 9Ba is a compact convex subset of the Banach space of all co-periodic functions.
By using the mapping P given by (2.30) and by applying the periodicity of a(-), b(-),
c(-) and </>(•) in (2.33) one can show that (P<p)(t + co) = (Pct>)(t) for all t € K. The
rest of the proof follows similarly as in the proof of Theorem 2.3. This completes the
proof.
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FIGURE 2. The encoded pattern x*(t) associated with the external stimulus c(t) is illustrated for time
20 < t < 50.

EXAMPLE 2.1. We provide computer simulations of the neuronal model (2.1) for
t > 0 to illustrate the existence of a unique globally attractive encoded pattern x*(t)
associated with the almost periodic external stimulus, c(t). For the simulations we
assume the following:

r = 10; K(s) - e~s, s € [-r, 0];

a(t) = 2.0 + 0.6cos(V5 t) + 0.4 sin(nt/2), almost periodic;

b(t) = 1.6 + 0.6cos(\/5 t) + 0.4sin(7rf/2), almost periodic;

c(t) = 4.0sin(\/5 t) + 2.0cos(nt/2), almost periodic.

In simulating (2.1), we use a numerical scheme of the form

jc((n+ !)/») =
1

x(nh)
b(nh)h

l+a(nh)h

c(nh)h
\+a(nh)h'

1 +a(nh)h

« = 0 ,1 ,2 , . . . ,

tanh
; = i

where

h = 0.1, K = 100, K(jh) =
l-e -h

= 1,2 , . . . ,K.

(2.38)

We note from the above that /o
r K(s)ds = Yl]=\ K(jh). The derivation and the

dynamical characteristics of the numerical scheme are discussed in the following
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FIGURE 3. Three neuronal states AT, (r), x2(t) and x^(t) converge towards the globally attractive tu-periodic
encoded pattern oc*(f). The existence of x^(t) can be seen for / > 15.

section. Figure 1 illustrates three solutions JCI (f), x2(t) and *3(f) converging towards
the attractive encoded pattern x*(t). The initial values of the three solutions for
s e [—T, 0] are provided by

(2.39)

In Figure 2, we provide a plot of the encoded pattern x*(t) and the external stimu-
lus, c(t).

= T +0.5s +cos(5),

x2(s) = 5COS(2J),

EXAMPLE 2.2. We illustrate the existence of a unique globally attractive cu-periodic
encoded pattern *^(f)of(2.1). For the computer simulations we assume the following:

r = 10;

a(t) = 2.0 + 0.4sin(7rr/3), period = 6;

b{t) = 1.6 + 0.4sin(7rf/3), period = 6;

c(t) = 8.0cos(;z7/2), period = 4.

The common period of a(t), b(t) and c(t) is co = 12. Again we use the numerical
scheme (2.38) in simulating (2.1). Figure 3 illustrates three neuronal states Xi(t), x2(t)
and *3(0 converging towards the <u-periodic encoded pattern x^(t). The initial values
of the three neuronal states are provided by (2.39). A plot of the encoded pattern x^(t)
and the external stimulus c(t) is provided by Figure 4.
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- 1 0

FIGURE 4. The cu-periodic encoded pattern x£(t) associated with the external stimulus c(t) is illustrated
for time 15 < t < 50.

3. Discrete-time-continuous-state model

When one formulates a discrete-time analogue of a model whose characteristics
are known from its continuous-time version, it is necessary to derive a discrete-time
model which will inherit the dynamical characteristics of the original mother version.
The discrete-time models are often used in numerical solutions and computer simu-
lations. One may refer to Mickens [24], Stuart and Humphries [29] and Broomhead
and Iserles [4] for various discussions on the importance of discrete-time models in
preserving the dynamics of the associated continuous-time systems.

In this section we obtain a discrete-time analogue of the continuous-time model
(2.1) and we shall show that the discrete-time analogue preserves the extreme stability
conditions of (2.1). We first approximate the continuous-time model (2.1) by an
equation with piecewise constant arguments of the form

dx(t)
dt

W
E

LM-'
([*]*) (3.1)

for t € [nh, (n + l)h), n > n0, n0 € 1 = {... , - 2 , - 1 , 0, 1, 2 , . . . } , s e \j h, (j + l)h),
j € Z+ = (1, 2 , . . . } . We note that the interval n > n0 denotes n e [n0, n0 + 1,...}.
In (3.1), h > 0 denotes a uniform discretization step-size, [r] denotes the integer part
of the real number r, and 6(h) > 0 for h > 0 and 9(h) % h + O(h2) for h small. We

https://doi.org/10.1017/S1446181100013936 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013936


276

assume that

S. Mohamad and K. Gopalsamy [16]

£
M

K(s) e^K (tf ]h) for h

For convenience, we let K ( [ | ] h) = 6{h)K ([ | ] h). By applying a semi-implicit
Euler-type scheme to (3.1) we obtain

*([;]* + *)-*([*]*)
h

= -a([i]h)x([i]h + h)
m

L[tl=«

for r € [H/J, (« + l)/i), n > n0 and after some simplification we obtain a discrete-
time-continuous-state model given by

1
1 + a(n)h

. c(n)h

x(n)
b(n)h

1 + a(n)h
tanh

L;=i -}
\+a(n)h

(3.2)

forn > n0 where [£] = n, [f ] =K,K<Z {0, 1, 2,. . .} and/(n) =f(nh). Since 6(h)
is positive and K(-) nonnegative we have K(j) e [0, cx>) fory € {1, 2 , . . . , K] and
0 < Yl"j=i K(J) < oo. The neuronal parameters a(n), b(n) and c(n) are sequences
of real numbers defined for n e 1. As a consequence of the assumption (2.2), the
parameters satisfy

0 < a , < a(n) < a \ b t < \b(n)\ < b*, c , < | c ( / i ) | < c*, n e l

where

(3.3)

at = inf a(n),
nel

a* = sup a(n),
nsZ

K = inf \b(n)\,
nel

ct = inf \c(n)\
nel

c* = sup |c(n)|.
neZ

b* = sup \b(n)\,
neZ

The initial value for the membrane potential x(-) of (3.2) is given by

*(/') = <P(J) f°r j ^ [«o - K,n0] and sup
je[no-K,no]

(3.4)
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where j e [n0 — K, n0] denotes j e {n0 — K, n0 — K + 1 , . . . , n0}. In the following we
briefly show the boundedness of solutions satisfying (3.2) and (3.4). By using (3.3)
in (3.2) we obtain

1 Mb* + c*)
1 + h1 + ath 1 + at

and from which we derive

\x(n)\ < — ^ - + ( ——- ) |*(n0)I — for n > n0. (3.5)

at \l + athj I a* J

One can easily see from (3.5) that

, x f b* + c* b* + c*1 I b* + c* b* + c*~\
x(n0) € , ==> x(n) € , (3.6)

L a* a* J [ a, a, J

for n > n0 and

6* + c*
\x{n)\ < h y(n) for n > n0 and y(«) -> 0 as n ->• oo. (3.7)

a*
Let A:(n) = A:(«, )̂) and y(n) = >>(n, V) for n > n0 denote arbitrary solutions of

(3.2), where cp = tp(j) and ijr = ij/(j) for; € [n0 — K, nQ]. We assume that
sup \<p(j)-*U)\ = M, M>0. (3.8)

jelno-K.no]THEOREM 3.1. Let h > 0. Suppose (3.3) /IOWS. If there exists a real number fi > 0

a(n)-\Hn)\J2K(J)>» fornel, (3.9)

i/ien (3.2) is extremely stable in the sense that lim^oo |jc(n) — y(n)\ = 0, where x(n)
andy(n) denote arbitrary solutions of (3.2).

PROOF. Sincex(/i) = x(n, <p) and^(n) = y(n, rj/) are solutions of (3.2) forn > «0,
we have

b(n)h
——

l+a(n)h
tanh (3.10)

- 7 = 1
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for n > no. By applying the mean value theorem of differential calculus we derive
from (3.10) that

\x(n + 1) - y(n + 1)| < * \x(n) - y(n)\
1 + a(n)h

for n > n0 which leads to

v(n + l)< \ v(n)+ l^n)lH fe*(/)) sup u(ro) (3.11)
1 + a(n)h 1 + a{n)h y-^ f n-K<m<n-\

for n > n0 where u(-) = |x(-) — y ( ) | .

We gather from (3.8) that v(n) < M for n € [n0 — ^, «o]- We claim

v{n) < M for n > n0. (3.12)

Suppose (3.12) is not true. Let there be the first integer ni satisfying n\ > n0 such that

v(n) < M for n0 — K < n < nx and u(ni) > M. (3.13)

From (3.11) we obtain

x ^ v ( n , D , i ( , D i E ; = i o )
M < u(n,) < — H —— '—-T sup v{m)

1 + a(nx -\)h 1 + a(n\ - \)h n,_i_,<m<ni_2

C/)\
)A y

We note that a(n) and 6(n) are defined on 2. By using (3.3) and (3.9) we show the
following:

+ \()\j:Ui 0 ) . + l ( ) l E 7 = i 0 ) l+a(n)h
l+a(n)h ~ \+a{n)h l+a(n)h +

s - T T ^ + 1 = ? <say) (315)

for n € 2. Because /i > 0 and a* > ^ > 0, we have 0 < g < 1. Using (3.15) in
(3.14) we are led to M < v(«i) < gM which means a contradiction. Hence the claim
(3.12) holds.
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Since 0 < v(n) < Mforn > n0, there exists a real constant k satisfying 0 < k < M
such that

limsup v(n) — k. (3.16)
n-*oo

Moreover, since n — K -* oo as n —> oo we also have

limsup I sup u(m)l=A. (3.17)
n->oo \n-K<m<n-l J

In the following we wish to show that k = 0. Suppose k > 0. By using the
properties of limit superiors, we have from (3.16) and (3.17) that for any £ satisfying
0 < f < (1 — g)k/(l + g) where g is given in (3.15), there corresponds a sufficiently
large positive integer N = N(1-) > n0 such that

v(n)<k + $, sup v(m)<k + % for n > N. (3.18)
n— K<m<n— 1

We gather from (3.11) and (3.18) that

forw > /V. Moreover from (3.16), there exists a sequence {«;},y € 2+ofnonnegative
integers with ny —> oo as y —>• oo such that for the same ^ as chosen in the above,
there corresponds a positive integer Â  = Ni(£) such that

k - £ < v(nj) for all nj > TV,. (3.20)

It follows from (3.19) and (3.20) that

k - | < v(nj) < g(k + £) for all tij > N' (3.21)

where N' = max{/V, A^}. From (3.21) we obtain that £ > (1 - sOVO + S") a nd this
contradicts our choice of £. Thus k = 0 and hence iimn_»oo |*(/i) — J( / J ) | = 0 . This
completes the proof.

4. Some remarks

We have obtained sufficient conditions under which the continuous-time neuronal
model is extremely stable. The same conditions guarantee the model to have hetero-
associative stable encoding of temporally non-uniform stimuli. In this study we have
assumed that the neuron oscillates synchronously in response to the external input
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stimulus. If the external stimulus is of almost periodic type (or periodic type) then
under the sufficient conditions the resulting encoded pattern (a global attractor) is
almost periodic (or periodic).

Throughout the study we have incorporated delays distributed over a finite time
interval in the processing part of the neuron's architecture. We note that one can apply
the same analysis to a model with finite delays given in the form

= -a(t)x(t) + b(t)tonh[x(t - r)] + c(r), t > t0 (4.1)
at

and the associated discrete-time formulation in the form

for n > nQ. One then obtains that if

a(t) - b(t) >v, t € K (continuous)
(4.3)

a(n) — b(n) >v, n el (dsicrete)

for some v > 0 then the hetero-associative stable recall of the encoded pattern is
guaranteed in both models (4.1) and (4.2). One observes from (4.3) that the discrete
delays in (4.1) and (4.2) do not affect the neuron's capability to encode the external
stimulus and recall the encoded pattern.

In this article we have systematically formulated a discrete-time model based on
discretizing the respective continuous-time equation. We have seen that discretization
step-size h > 0 does not express itself explicitly in the stability conditions. Moreover,
the extreme stability conditions of the continuous-time system are preserved by the
discrete-time model. These advantages inherited in the discrete-time model are lacking
in some conventional numerical schemes like the Euler-type and Runge-Kutta-type
schemes. In fact, one can employ the same analysis as shown in this article on the
Euler-type scheme and show how the step-size h > 0 restricts the range of values of
the parameter a(•) (see also Wang and Blum [30]).

Acknowledgement The authors wish to thank the referees for their suggestions
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